
1

Joint Modified Block Replacement and 
Production/Inventory Control Policy for       

a Failure-Prone Manufacturing Cell 

F. Berthaut a,  A. Gharbi a,*,  K. Dhouib b

a Automated Production Engineering Department, École de technologie supérieure, Production System Design and Control 
Laboratory, University of Québec, 1100 Notre Dame Street West, Montreal, Que., Canada H3C 1K3. 
E-mail : francois.berthaut@polymtl.ca , ali.gharbi@etsmtl.ca

b Mechanical Engineering and Productique Department, École Supérieure des Sciences et Techniques de Tunis, LMSSDT 
Laboratory, University of Tunis, 5 Av. Taha Hussein, Tunis, Tunisia  
E-mail : karemdhouib@yahoo.fr

Abstract: 

This paper considers a joint preventive maintenance (PM) and production/inventory control policy of an 
unreliable single machine, mono-product manufacturing cell with stochastic non-negligible corrective and 
preventive delays. The production/inventory control policy, which is based on the Hedging Point Policy (HPP), 
consists in building and maintaining a safety stock of finished products in order to respond to demand and to 
avoid shortages during maintenance actions. Without considering the impact of preventive and corrective actions 
on the overall performance of the production system, most authors working in the reliability and maintainability 
domains confirm that the age-based preventive maintenance policy (ARP) outperforms the classical block-
replacement policy (BRP). In order to reduce wastage incurred by the classical BRP, we consider a modified 
block replacement policy (MBRP), which consists in cancelling a preventive maintenance action if the time 
elapsed since the last maintenance action exceeds a specified time threshold. The main objective of this paper is 
to determine the joint optimal policy that minimizes the overall cost, which is composed of corrective and 
preventive maintenance costs as well as inventory holding and backlog costs. A simulation model mimicking the 
dynamic and stochastic behaviour of the manufacturing cell, based on more realistic considerations of the real 
behaviour of industrial manufacturing cells, is proposed. Based on simulation results, the joint optimal 
MBRP/HPP parameters are obtained through a numerical approach that combines design of experiment, analysis 
of variance and response surface methodologies. The joint optimal MBRP/HPP policy is compared to classical 
joint ARP/HPP and BRP/HPP optimal policies, and the results show that the proposed MBRP/HPP outperforms 
the latter. Sensitivity analyses are also carried out in order to confirm the superiority of the proposed 
MBRP/HPP, and it is observed that for practitioners, the proposed joint MBRP/HPP offers not only cost savings, 
but is also easy to manage, as compared to the ARP/HPP policy.  
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1 Introduction 

The bulk of industrial capital is composed of systems that produce goods and delivery 
services. As these systems are prone to failure with usage and age, interest in the development 
of efficient maintenance strategies has grown exponentially [1][2]. Maintenance activities 
restore a system to a specified condition, and can be categorized under corrective and 
preventive actions. Corrective maintenance (CM) occurs at failure, while preventive 
maintenance (PM) occurs while a system is operating, which implies systematic inspection, 
detection and prevention of failures [3]. The objective is to carry out a trade-off between 
maximizing the system’s utilisation and avoiding failures as much as possible in order to 
reduce maintenance costs and improve system reliability and availability [4].  

Barlow and Hunter [5] introduced the concept of the age replacement PM policy (ARP), 
which consists of replacing a unit at failure or whenever it reaches a constant age T, and that 
of the block replacement PM policy (BRP), under which units are replaced at failure or at 
fixed intervals kT (k = 1, 2…), irrespective of the unit age. Detailed comparisons of the ARP 
and BRP are proposed by Barlow and Proschan [6], and mainly provide that the ARP is 
economically superior to the BRP. Although the BRP is more wasteful (i.e., almost new 
components are replaced when failures occur shortly before planned PM), it seems more 
practical to implement and to manage than the ARP since it does not require tracking unit 
ages and does not modify the PM planning after each maintenance operation. Several 
approaches have been proposed in order to improve the performance of the classical BRP: (1) 
Barlow and Hunter proposed the concept of minimal repair at failure [5] (i.e., a minimally 
repaired system is restored to its “condition just prior to failure”); (2) Cox and Blaming 
proposed the concept of inactivity [7][8] (i.e., if the unit fails not long before the planned PM, 
it is maintained in a down state until the next PM); (3) Bhat, Tango, and Murthy and Nguyen  
proposed using used items [9][10][11] (i.e., if the equipment fails not long before the PM, 
then the unit is replaced with a used item), and  (4) Tango proposed using less reliable items 
[12] (i.e., if the equipment fails not long before the PM instant, the unit is replaced with a 
new, less reliable item). 

Berg and Epstein [13], as well as Archibald and Dekker [14], proposed a modified block 
replacement policy (MBRP), under which PM actions are performed at fixed intervals if the 
time elapsed since the last maintenance action exceeds a fixed threshold. Otherwise, the PM 
action is cancelled, and the last installed unit is not removed, and is kept in operation. The 
authors showed that the MBRP strategy is better than the BRP policy, and almost as good as 
the ARP policy in terms of maintenance cost, when maintenance durations are negligible, 
while being rather simple to implement and to control in practice. For constant maintenance 
durations, the MBRP policy enhances the maintenance cost and the average availability of the 
machine as compared to the BRP policy [15]. 

In order to tackle these optimization problems, including complex renewal functions, 
most researchers consider that PM and CM durations are negligible with respect to the item’s 
lifetime. However, in most practical situations, especially for manufacturing cells which 
typically operate at high utilisation rates (70-80%), production interruptions due to 
maintenance not only affect the average system availability [16], but also its capacity to fulfill 
demand, and may result in shortage situations. In order to reduce the impact of random 
phenomena and shortage situations due to demand variability, process quality deterioration 
and machine breakdowns on the overall performance of manufacturing systems, buffer 
inventory has been often considered [3][17][18]. Scheduling in this environment has also 
attracted many researchers, as maintenance helps improve production efficiency or product 
quality but it extends the makespan and may cause job tardiness [19][20]. 

https://www.researchgate.net/publication/222004052_Minimizing_the_makespan_on_single-machine_scheduling_with_aging_effect_and_variable_maintenance_activities?el=1_x_8&enrichId=rgreq-9232394b-f6ba-43f9-916f-5e7a310bc719&enrichSource=Y292ZXJQYWdlOzIyNzQxOTI2NztBUzoxNTk1ODA2MDQ2MDg1MTJAMTQxNTA1ODM4OTg5Mw==
https://www.researchgate.net/publication/23794624_Effects_of_maintenance_policies_on_the_productivity_of_flexible_manufacturing_cells?el=1_x_8&enrichId=rgreq-9232394b-f6ba-43f9-916f-5e7a310bc719&enrichSource=Y292ZXJQYWdlOzIyNzQxOTI2NztBUzoxNTk1ODA2MDQ2MDg1MTJAMTQxNTA1ODM4OTg5Mw==
https://www.researchgate.net/publication/23794514_The_control_of_the_setting_up_of_a_predictive_maintenance_program_using_a_system_of_indicators?el=1_x_8&enrichId=rgreq-9232394b-f6ba-43f9-916f-5e7a310bc719&enrichSource=Y292ZXJQYWdlOzIyNzQxOTI2NztBUzoxNTk1ODA2MDQ2MDg1MTJAMTQxNTA1ODM4OTg5Mw==
https://www.researchgate.net/publication/247077927_Optimum_Preventive_Maintenance_Polices?el=1_x_8&enrichId=rgreq-9232394b-f6ba-43f9-916f-5e7a310bc719&enrichSource=Y292ZXJQYWdlOzIyNzQxOTI2NztBUzoxNTk1ODA2MDQ2MDg1MTJAMTQxNTA1ODM4OTg5Mw==
https://www.researchgate.net/publication/247077927_Optimum_Preventive_Maintenance_Polices?el=1_x_8&enrichId=rgreq-9232394b-f6ba-43f9-916f-5e7a310bc719&enrichSource=Y292ZXJQYWdlOzIyNzQxOTI2NztBUzoxNTk1ODA2MDQ2MDg1MTJAMTQxNTA1ODM4OTg5Mw==
https://www.researchgate.net/publication/224583334_A_Modified_Block_Replacement_Policy_Using_Less_Reliable_Items?el=1_x_8&enrichId=rgreq-9232394b-f6ba-43f9-916f-5e7a310bc719&enrichSource=Y292ZXJQYWdlOzIyNzQxOTI2NztBUzoxNTk1ODA2MDQ2MDg1MTJAMTQxNTA1ODM4OTg5Mw==
https://www.researchgate.net/publication/3152127_Modified_block-replacement_for_multiple-component_systems?el=1_x_8&enrichId=rgreq-9232394b-f6ba-43f9-916f-5e7a310bc719&enrichSource=Y292ZXJQYWdlOzIyNzQxOTI2NztBUzoxNTk1ODA2MDQ2MDg1MTJAMTQxNTA1ODM4OTg5Mw==
https://www.researchgate.net/publication/229674978_A_Modified_Block_Replacement_Policy?el=1_x_8&enrichId=rgreq-9232394b-f6ba-43f9-916f-5e7a310bc719&enrichSource=Y292ZXJQYWdlOzIyNzQxOTI2NztBUzoxNTk1ODA2MDQ2MDg1MTJAMTQxNTA1ODM4OTg5Mw==
https://www.researchgate.net/publication/245507350_Joint_optimal_periodic_and_conditional_maintenance_strategy?el=1_x_8&enrichId=rgreq-9232394b-f6ba-43f9-916f-5e7a310bc719&enrichSource=Y292ZXJQYWdlOzIyNzQxOTI2NztBUzoxNTk1ODA2MDQ2MDg1MTJAMTQxNTA1ODM4OTg5Mw==
https://www.researchgate.net/publication/4870065_A_survey_of_maintenance_policies_of_deteriorating_systems_Eur_J_Oper_Res_139_469-489?el=1_x_8&enrichId=rgreq-9232394b-f6ba-43f9-916f-5e7a310bc719&enrichSource=Y292ZXJQYWdlOzIyNzQxOTI2NztBUzoxNTk1ODA2MDQ2MDg1MTJAMTQxNTA1ODM4OTg5Mw==
https://www.researchgate.net/publication/265588270_A_Note_on_Extended_Block_Replacement_Policy_with_Used_Items?el=1_x_8&enrichId=rgreq-9232394b-f6ba-43f9-916f-5e7a310bc719&enrichSource=Y292ZXJQYWdlOzIyNzQxOTI2NztBUzoxNTk1ODA2MDQ2MDg1MTJAMTQxNTA1ODM4OTg5Mw==
https://www.researchgate.net/publication/23794825_Production_lot_sizing_with_process_deterioration_and_machine_breakdown_under_inspection_schedule?el=1_x_8&enrichId=rgreq-9232394b-f6ba-43f9-916f-5e7a310bc719&enrichSource=Y292ZXJQYWdlOzIyNzQxOTI2NztBUzoxNTk1ODA2MDQ2MDg1MTJAMTQxNTA1ODM4OTg5Mw==
https://www.researchgate.net/publication/222418476_The_deterministic_EPQ_with_partial_backordering?el=1_x_8&enrichId=rgreq-9232394b-f6ba-43f9-916f-5e7a310bc719&enrichSource=Y292ZXJQYWdlOzIyNzQxOTI2NztBUzoxNTk1ODA2MDQ2MDg1MTJAMTQxNTA1ODM4OTg5Mw==


 3

 Joint consideration of production planning and corrective maintenance problems in 
manufacturing systems has been tackled using the optimal control theory. To control the flow 
rates of parts through a system subject to random failures and repairs, Kimemia and 
Gerschwin [21] and Akella and Kumar [22] introduced the hedging point policy (HPP) 
concept. The HPP entails the build-up and preservation of a final product safety stock while 
the machine is operational in order to hedge against future shortages caused by machine 
failures. The optimality of the HPP has been demonstrated for failure and repair times 
described by homogeneous Markov processes, and therefore, for a failure replacement 
maintenance strategy, in the case of constant demand rate [22] and stochastic demand rate 
[23]. For general failure and repair time distributions, the optimal control policy cannot be 
solved analytically [24][25], but the structure of the optimal inventory policy can be 
approximated by the HPP [26][27][28]. 

A significant branch of the literature is dedicated to minimizing the cost of combined 
preventive maintenance and production/inventory control policies, by considering the 
dynamics of a manufacturing system (buffer inventory level and machine state) and renewal 
approach during a maintenance cycle with constant or stochastic maintenance durations. Most 
of the proposed models considered failure-prone manufacturing systems composed of a single 
machine, and manufacturing a single product in order to respond to a constant and continuous 
demand. These mathematical models combined BRP or ARP with a production/inventory 
control policy that consists in building up and maintaining a buffer stock to respond to 
demand during maintenance operations [29][30][31][32]. For tractability considerations, they 
introduced simplifying restrictive assumptions such as the one that there are no breakdowns 
on the machine during the build-up and depletion phases of the buffer stock. Moreover, they 
assumed that in shortage situations, unfulfilled demand is simply considered as lost sales, and 
is not backlogged at all. These assumptions are used to simplify the complex mathematical 
models by making the inventory level periodic with the maintenance cycle. However, the 
probability of a machine failing during its early life cannot be neglected, because failures 
during build-up periods may result in shortage situations and in high penalty costs. Based on 
simulation results, Rezg et al. [33] showed that this assumption leads to different control 
parameters and to a 5% difference between incurred costs. In more recent works, Gharbi et al. 
[34] and Rezg et al. [35] relaxed this assumption. However, they considered that in surplus 
situations, the maintained machine remains non-operational until the complete depletion of 
the safety stock. In practical situations, breakdowns may occur during the build-up of buffer 
stock, and the inventory level at the end of a maintenance cycle is not necessarily periodic 
with stochastic maintenance durations. Chelbi and Ait-Kadi [36] also noted that the 
expression of the maintenance and inventory cost involves the sum of random variables (i.e., 
time between failures plus CM duration), which are hard to compute for most probability 
distributions. Furthermore, all the papers dealing with joint preventive maintenance and 
production/inventory control policies only considered classical ARP or BRP. Although the 
MBRP represents an attractive trade-off between the BRP and the ARP, it has, to our 
knowledge, never been considered for non-negligible and stochastic maintenance durations, 
or with inventory control policies. 

In this paper, we propose a joint preventive maintenance and production/inventory control 
policy based on MBRP and hedging point policies (HPP) for a mono-product, single-machine 
manufacturing cell. This paper relaxes the aforementioned assumptions and considers that: 
(1) breakdowns are allowed during build-up phases of the finished goods inventory; (2) the 
inventory level is not necessarily periodic with the maintenance cycle; (3) maintenance 
actions have non-negligible delays, and (4) unmet demand due to shortage situations is 
backlogged, instead of being lost. A simulation model is proposed to mimic the real dynamic 
and stochastic behaviour of the manufacturing cell under the joint MBRP/HPP policy. The 

https://www.researchgate.net/publication/4916375_Generalized_inspection_strategy_for_randomly_failing_systems_subjected_to_random_shocks_Int_J_Prod_Econ?el=1_x_8&enrichId=rgreq-9232394b-f6ba-43f9-916f-5e7a310bc719&enrichSource=Y292ZXJQYWdlOzIyNzQxOTI2NztBUzoxNTk1ODA2MDQ2MDg1MTJAMTQxNTA1ODM4OTg5Mw==
https://www.researchgate.net/publication/3023922_Optimal_production_control_in_a_discrete_manufacturing_system_with_unreliable_machines_and_random_demands?el=1_x_8&enrichId=rgreq-9232394b-f6ba-43f9-916f-5e7a310bc719&enrichSource=Y292ZXJQYWdlOzIyNzQxOTI2NztBUzoxNTk1ODA2MDQ2MDg1MTJAMTQxNTA1ODM4OTg5Mw==
https://www.researchgate.net/publication/4913338_Optimal_safety_stocks_and_preventive_maintenance_periods_in_unreliable_manufacturing_systems?el=1_x_8&enrichId=rgreq-9232394b-f6ba-43f9-916f-5e7a310bc719&enrichSource=Y292ZXJQYWdlOzIyNzQxOTI2NztBUzoxNTk1ODA2MDQ2MDg1MTJAMTQxNTA1ODM4OTg5Mw==
https://www.researchgate.net/publication/220381962_Modeling_and_optimizing_a_joint_inventory_control_and_preventive_maintenance_strategy_for_a_randomly_failing_production_unit_Analytical_and_simulation_approaches?el=1_x_8&enrichId=rgreq-9232394b-f6ba-43f9-916f-5e7a310bc719&enrichSource=Y292ZXJQYWdlOzIyNzQxOTI2NztBUzoxNTk1ODA2MDQ2MDg1MTJAMTQxNTA1ODM4OTg5Mw==
https://www.researchgate.net/publication/3030537_Optimal_Control_of_Production_Rate_in_a_Failure_Prone_Manufacturing_System?el=1_x_8&enrichId=rgreq-9232394b-f6ba-43f9-916f-5e7a310bc719&enrichSource=Y292ZXJQYWdlOzIyNzQxOTI2NztBUzoxNTk1ODA2MDQ2MDg1MTJAMTQxNTA1ODM4OTg5Mw==
https://www.researchgate.net/publication/3030537_Optimal_Control_of_Production_Rate_in_a_Failure_Prone_Manufacturing_System?el=1_x_8&enrichId=rgreq-9232394b-f6ba-43f9-916f-5e7a310bc719&enrichSource=Y292ZXJQYWdlOzIyNzQxOTI2NztBUzoxNTk1ODA2MDQ2MDg1MTJAMTQxNTA1ODM4OTg5Mw==
https://www.researchgate.net/publication/239395843_Joint_optimization_of_preventive_maintenance_and_inventory_control_in_a_production_line_using_simulation?el=1_x_8&enrichId=rgreq-9232394b-f6ba-43f9-916f-5e7a310bc719&enrichSource=Y292ZXJQYWdlOzIyNzQxOTI2NztBUzoxNTk1ODA2MDQ2MDg1MTJAMTQxNTA1ODM4OTg5Mw==
https://www.researchgate.net/publication/233654356_Joint_optimal_inventory_control_and_preventive_maintenance_policy?el=1_x_8&enrichId=rgreq-9232394b-f6ba-43f9-916f-5e7a310bc719&enrichSource=Y292ZXJQYWdlOzIyNzQxOTI2NztBUzoxNTk1ODA2MDQ2MDg1MTJAMTQxNTA1ODM4OTg5Mw==
https://www.researchgate.net/publication/263134259_Production_planning_problem_in_manufacturing_systems_with_general_failure_and_repair_time_distributions?el=1_x_8&enrichId=rgreq-9232394b-f6ba-43f9-916f-5e7a310bc719&enrichSource=Y292ZXJQYWdlOzIyNzQxOTI2NztBUzoxNTk1ODA2MDQ2MDg1MTJAMTQxNTA1ODM4OTg5Mw==
https://www.researchgate.net/publication/3020691_Manufacturing_Flow_Control_and_Preventive_Maintenance_A_Stochastic_Control_Approach?el=1_x_8&enrichId=rgreq-9232394b-f6ba-43f9-916f-5e7a310bc719&enrichSource=Y292ZXJQYWdlOzIyNzQxOTI2NztBUzoxNTk1ODA2MDQ2MDg1MTJAMTQxNTA1ODM4OTg5Mw==
https://www.researchgate.net/publication/235720401_An_Algorithm_for_the_Computer_Control_of_a_Flexible_Manufacturing_System?el=1_x_8&enrichId=rgreq-9232394b-f6ba-43f9-916f-5e7a310bc719&enrichSource=Y292ZXJQYWdlOzIyNzQxOTI2NztBUzoxNTk1ODA2MDQ2MDg1MTJAMTQxNTA1ODM4OTg5Mw==
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main objective of this paper is to compare the long-run average maintenance and inventory 
total cost of MBRP, ARP and BRP when combined with HPP, in order to determine the best 
joint preventive maintenance and production/inventory control policy. The joint optimal 
MBRP/HPP, ARP/HPP and BRP/HPP policies are each obtained through design of 
experiments, simulation analysis, and response surface methodology. This flexible resolution 
approach allows the exploration of the effects of a wide range of cost and time parameters on 
the control policies. 

The rest of the paper is organized as follows: Section 2 presents the system description, 
the assumptions, and the structure of the three proposed control policies. The resolution 
approach based on simulation modeling, design of experiments, analysis of variance and 
response surface methodology is presented in Section 3. Section 4 validates the proposed 
resolution approach and then exposes the optimal solution for a specific basic case. Section 5 
provides a sensitivity analysis of the total cost with respect to corrective, preventive, 
inventory holding and shortage costs. Section 6 specifically investigates the impact of the 
maximum production rate, the shortage cost, and the CM parameters on the behaviour of the 
optimal policy. Finally, Section 7 concludes the paper and summarises the main results. 

2 Problem statement 

2.1 System description, assumptions and notations 

The manufacturing system considered in this study is a production cell including one machine 
and manufacturing a single product type. The manufacturing cell can produce at a maximum 
capacity umax so as to satisfy a constant finished good demand rate d, with umax > d. The cell is 
prone to failure, characterised by the random variable Tf with a general probability 
distribution. The manufacturing machine is repaired at failure during a random amount of 
time Tcm and is preventively maintained during a random amount of time Tpm, where Tcm and 
Tpm are random variables having general probability distributions. From a practical point of 
view, the density probability functions of these stochastic events could be obtained from 
historical failure and maintenance data [37]. CM and PM activities are characterized by their 
respective costs, denoted ccm and cpm, and their respective mean times, denoted MTCM and 
MTPM. At failure or at planned PM action, the manufacturing cell is withdrawn until the 
completion of the maintenance activity. Hence, the demand for finished goods is only met by 
safety stock and all unmet demands are backlogged. Inventory holding and backlog are 
characterized by their respective costs by time unit, denoted c+ and c-. Once the production 
resumes, the manufacturing cell is able to satisfy backlogged demand without interrupting the 
normal process. As depicted in Fig. 1, the objective is to find the production rate and the 
preventive maintenance strategy that minimize the average total maintenance and inventory 
cost per unit of time. 

The model under consideration includes the following commonly admitted assumptions: 
- Failures are instantaneously detected; 
- The failure rate increases in time, and consequently, the likelihood of machine 

breakdown is reduced by PM; 
- PM and CM actions differ in terms of cost and duration (cpm < ccm;  

MTCM > MTPM); 
- Breakdowns do not affect the quality of finished goods; 
- All necessary resources are available when needed; 
- PM and CM actions restore the manufacturing cell to the as good as new operational 

state. 
  

https://www.researchgate.net/publication/222408378_Contemporary_Maintenance_Management_Process_Framework_and_Supporting_Pillars?el=1_x_8&enrichId=rgreq-9232394b-f6ba-43f9-916f-5e7a310bc719&enrichSource=Y292ZXJQYWdlOzIyNzQxOTI2NztBUzoxNTk1ODA2MDQ2MDg1MTJAMTQxNTA1ODM4OTg5Mw==
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Fig. 1 The manufacturing system considered 

2.2 Formulation of the control policy 

The manufacturing cell production process is controlled over time by a buffer stock control 
policy derived from the well-known Hedging Point Policy [22], as presented below: 
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where S is the buffer stock capacity, also called the hedging point in the sphere of optimal 
control, x(t) is the stock level at a specified instant t, and u(t) is the manufacturing cell 
production rate for a specified stock level x(t). This policy entails the build-up of the buffer 
stock with an excess production capacity (u = umax), which shall then be maintained at its 
maximum level S (u = d) in order to palliate for interruptions due to breakdowns or PM 
actions (u = 0). Kimemia and Gerschwin [21] and Akella and Kumar [22] showed that the 
HPP is optimal for systems prone to failures described by homogeneous Markov processes 
(i.e., time-invariant up and down transition rates), and thus only subject to CM. In the case of 
time-dependent transition rates, and especially for increasing failure rates, the dynamic 
programming equations that characterize the optimal control policy cannot be solved 
analytically [24][25], but the structure of the optimal inventory policy can be approximated 
by the HPP [26][27][28]. 

The manufacturing cell machine is also subject to an MBRP policy. This paper aims to 
analyse and compare the performance of the MBRP with classical BRP and ARP when 
integrated with an HPP, in order to determine the best joint policy. It should be recalled that 
the ARP preventively maintains the manufacturing cell machine when it reaches a given age 
threshold denoted TA. The BRP consists in scheduling PM actions at regular intervals denoted 
TB. The MBRP entails that PM are scheduled at regular intervals denoted TMB1, and performed 
if the time elapsed since the last maintenance action exceeds a given time threshold, denoted 
TMB2 [14]. Consequently, we consider the following control policies: 

- ARP/HPP, defined as a combination of ARP and HPP policies and characterized by 
control parameters (S, TA); 

- BRP/HPP, defined as a combination of BRP and HPP policies and characterized by   
control parameters (S, TB); 

https://www.researchgate.net/publication/3152127_Modified_block-replacement_for_multiple-component_systems?el=1_x_8&enrichId=rgreq-9232394b-f6ba-43f9-916f-5e7a310bc719&enrichSource=Y292ZXJQYWdlOzIyNzQxOTI2NztBUzoxNTk1ODA2MDQ2MDg1MTJAMTQxNTA1ODM4OTg5Mw==
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https://www.researchgate.net/publication/263134259_Production_planning_problem_in_manufacturing_systems_with_general_failure_and_repair_time_distributions?el=1_x_8&enrichId=rgreq-9232394b-f6ba-43f9-916f-5e7a310bc719&enrichSource=Y292ZXJQYWdlOzIyNzQxOTI2NztBUzoxNTk1ODA2MDQ2MDg1MTJAMTQxNTA1ODM4OTg5Mw==
https://www.researchgate.net/publication/3020691_Manufacturing_Flow_Control_and_Preventive_Maintenance_A_Stochastic_Control_Approach?el=1_x_8&enrichId=rgreq-9232394b-f6ba-43f9-916f-5e7a310bc719&enrichSource=Y292ZXJQYWdlOzIyNzQxOTI2NztBUzoxNTk1ODA2MDQ2MDg1MTJAMTQxNTA1ODM4OTg5Mw==
https://www.researchgate.net/publication/235720401_An_Algorithm_for_the_Computer_Control_of_a_Flexible_Manufacturing_System?el=1_x_8&enrichId=rgreq-9232394b-f6ba-43f9-916f-5e7a310bc719&enrichSource=Y292ZXJQYWdlOzIyNzQxOTI2NztBUzoxNTk1ODA2MDQ2MDg1MTJAMTQxNTA1ODM4OTg5Mw==
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- MBRP/HPP, defined as a combination of MBRP and HPP policies and 
characterized by control parameters (S, TMB1, TMB2). 

To our knowledge, a cost comparison of the ARP/HPP and BRP/HPP has never been 
tackled in the literature. Indeed, computations of the exact maintenance and inventory total 
cost during a maintenance cycle with the ARP or the BRP differ, and they are hard to obtain 
without simplifying assumptions. In fact, all proposed analytical approaches are limited to the 
analysis of only one maintenance cycle based on the renewal theory, and the main simplifying 
assumptions used are: (1) no breakdowns are allowed during the build-up of the finished 
goods inventory, and (2) unmet demand during maintenance interventions is lost, such that 
the inventory periodically reaches the same level (i.e., the buffer level) after CM or PM 
[29][30][32]. 

According to the effective dynamic and stochastic behaviour of the manufacturing cell, 
we propose to relax these restrictive assumptions. Figs. 2–4 illustrate some possible scenarios 
of the manufacturing cell real dynamics according to the inventory level evolution under the 
ARP/HPP, the BRP/HPP, and the MBRP/HPP, respectively. Fig. 2 highlights that the 
maintenance cycle begins when production resumes after a maintenance action (CM or PM), 
and lasts until the next failure (if Tf < TA), or until the next PM, if the machine does not fail 
before the age threshold (Tf > TA). During maintenance periods, the inventory level decreases 
with a rate equal to (- d) and possibly drops below 0 (in case of shortage), which results in 
penalty costs. Once operational, the inventory level increases at rate (umax - d). If the 
manufacturing cell machine does not fail or if its age is below TA during the build-up phase of 
the safety stock, then the inventory level can reach the hedging point S, and is maintained 
until the occurrence of the next maintenance event (CM or PM). Note that failures or PM 
actions may occur during the build-up phases, and that the evolution of the inventory level is 
not periodic as is the case in the majority of the proposed analytical models. 

 
 

  
 

Fig. 2. Evolution of the dynamics of the system under the ARP/HPP 
 
 
Fig.3 and Fig. 4 show the evolution of the dynamics of the inventory level under the joint 

BRP/HPP and MBRP/HPP policies during several maintenance cycles [kT, (k + 1)T], where T 
denotes TB and TMB1 for the BRP/HPP and the MBRP/HPP, respectively. The following 
scenarios can be observed during the production/maintenance process: 
- Interval [T, 2T]: The maintenance cycle begins with a PM activity during which the 

inventory level decreases at a rate equal to (- d). At the end of the PM operation, the system 
becomes operational, and the inventory level increases at rate (umax - d), and is then 
maintained at level S. 

https://www.researchgate.net/publication/239395843_Joint_optimization_of_preventive_maintenance_and_inventory_control_in_a_production_line_using_simulation?el=1_x_8&enrichId=rgreq-9232394b-f6ba-43f9-916f-5e7a310bc719&enrichSource=Y292ZXJQYWdlOzIyNzQxOTI2NztBUzoxNTk1ODA2MDQ2MDg1MTJAMTQxNTA1ODM4OTg5Mw==
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Fig. 3. Evolution of the dynamics of the system under the BRP/HPP 
 

 
 

Fig. 4. Evolution of the dynamics of the system under the MBRP/HPP 
 
- Interval [2T, 3T]: If no failure occurs, the manufacturing cell process is shut down and a 

PM activity is performed at the beginning of the maintenance cycle. A failure then occurs 
and triggers a corrective intervention, which is completed before the end of the cycle. 
Production resumes shortly before the next PM action scheduled at instant 3T. The repaired 
machine then survives until the next scheduled PM action. 

- Interval [3T, 4T]:  
 Under the BRP/HPP (Fig. 3), a PM action is performed as scheduled, which triggers a 

fall in the inventory level to a negative value and the replacement of a relatively new 
component. The manufacturing cell becomes operational and does not fail until the 
next PM scheduled at instant 4T, allowing the inventory level to increase and to reach 
level S.  

 Under the MBRP/HPP (Fig. 4), the PM activity is simply skipped and the inventory 
level rises faster, up to its maximum level S, since a repaired machine has resumed 
production during interval [3T – TMB2, 3T] and survived until 3T. It can be noted that 
the MBRP/HPP is less wasteful than the BRP/HPP; in fact the MBRP/HPP will 
generate fewer PM actions, and thus fewer new operational equipments that will be 
removed and rejected, and consequently, less inventory shortages. 

- Interval [4T, 5T]: Both the BRP/HPP and MBRP/HPP have the same dynamic behaviour, 
since no repaired machine resumes production during interval [5T – TMB2, 5T]. Several 
breakdowns occur in fairly quick succession during [4T, 5T], such that the threshold level 
is never reached. The last failure occurs before instant 5T and repairs end after the 
scheduled PM activity. In this case, the scheduled PM activity is skipped for both the 
BRP/HPP and the MBRP/HPP. 
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The maintenance cycles with both the BRP/HPP and the MBRP/HPP begin with a PM 
intervention (if not skipped), and have a constant duration TB and TMB1, respectively, during 
which the system can fail several times. Once again, the inventory level is not periodic unless 
restrictive assumptions are used. 

In the case of negligible PM and CM durations, and irrespective of any 
production/inventory control policy, Archibald and Dekker [14] explained that the BRP is 
more wasteful and less cost-effective than the MBRP and the ARP. Where we have non-
negligible PM and CM durations, and when combined with an inventory control policy, the 
BRP/HPP should lead to consecutive inactivity periods during which the inventory can be 
low and can result in finished goods shortage costs, as well as in the wastage of components. 
Consequently, we expect the MBRP/HPP and ARP/HPP to be better than the BRP/HPP. 
Furthermore, since PM strategies aim to avoid most, but not all failures, the inherent problem 
of balancing PM and CM actions, when combined with production/inventory control, will 
depend not only on maintenance costs (cpm < ccm), but also on maintenance durations  
(MTCM > MTPM) and possibly on inventory shortage (c -

 >> c+ ). In this context, and as will 
be shown in the next sections, the extension of the MBRP and ARP to the MBRP/HPP and 
ARP/HPP would lead to conclusions that differ from those obtained by Archibald and Dekker 
[14]. 

3 Resolution approach 

Beyond the restrictive assumptions proposed in the aforementioned papers, the expression of 
the total cost with the BRP/HPP involves nth convolution products to model the sum of 
random variables (i.e., the time between failures plus the CM duration), which are difficult to 
estimate for most probability distributions [36][38]. In addition, modeling the maintenance 
cycle under the BRP/HPP is more complex than under the ARP/HPP (see Figs. 2–3). Indeed, 
a maintenance cycle with the BRP/HPP can include several failures between two scheduled 
PM activities. In this context, simple assumptions, such as no breakdowns during the 
inventory build-up periods, have been used both to make the inventory level periodic with the 
maintenance cycle and to simplify the expression of the total cost for possible scenarios based 
on the renewal theory (no failure or many failures between two PM activities) [29][31]. If 
skipping PM activities is allowed, as in the case of the MBRP, the number of scenarios will 
soar (“zero or more failures between two PM” multiplied by “zero or more skipped PM”), 
and the problem will become even more intractable. 

Due to the high complexity of the problem, the joint preventive maintenance and 
inventory control will be tackled using simulation modeling, since it does not require the 
inventory trajectory to be periodic or any other restrictive assumptions. As well, simulation 
modeling allows any probability distribution to be used, and skipping PM can be easily 
considered. Simulation modeling presents two advantages: (1) the performance of the 
proposed policies can be obtained and compared, given that a different simulation model is 
developed for each joint control policy, and (2) the robustness and the flexibility of the 
simulation approach allows an analysis of these policies in a wide range of cost and time 
configurations (see Sections 5 and 6). 

The resolution of the joint preventive maintenance and inventory control problem 
proposed in this paper required the determination of the optimum values of the control 
parameters (S, TA), (S, TB) and (S, TMB1, TMB2) for the ARP/HPP, BRP/HPP and MBRP/HPP, 
respectively. This section presents the resolution approach based on simulation modeling, 
design of experiments, analysis of variance and response surface methodologies. The 
resolution approach consists in estimating the relationship between total cost and the control 

https://www.researchgate.net/publication/3152127_Modified_block-replacement_for_multiple-component_systems?el=1_x_8&enrichId=rgreq-9232394b-f6ba-43f9-916f-5e7a310bc719&enrichSource=Y292ZXJQYWdlOzIyNzQxOTI2NztBUzoxNTk1ODA2MDQ2MDg1MTJAMTQxNTA1ODM4OTg5Mw==
https://www.researchgate.net/publication/3152127_Modified_block-replacement_for_multiple-component_systems?el=1_x_8&enrichId=rgreq-9232394b-f6ba-43f9-916f-5e7a310bc719&enrichSource=Y292ZXJQYWdlOzIyNzQxOTI2NztBUzoxNTk1ODA2MDQ2MDg1MTJAMTQxNTA1ODM4OTg5Mw==
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parameters, based on data collected by simulation, and then in finding the location of the 
minimum cost for each control policy.  

3.1 Simulation model 

A simulation model that combines discrete and continuous changes was developed for each of 
the three policies using the Visual SLAM language [39]. The model is composed of networks 
and routines, which describe a specific task in the system, and is shown in Fig. 5, with the 
following descriptions of the different blocks: 

(1) The INITIALIZATION block initializes the values of the control parameters (i.e.,  
(S, TA), (S, TB) or (S, TMB1, TMB2)) for which the simulation run is conducted as well as 
the values of the parameters of the system (the demand rate, the maximum production 
rate and the probability distributions of the lifetimes and of the maintenance durations, 
etc.). 

(2) The FAILURE block generates the lifetime, TF, the CM and PM durations, (Tcm and 
Tpm, respectively), according to their probability distributions. 

(3) The CONTROL POLICY block provides the production rate according to equation (1) 
and the maintenance decision, as described in Figs. 2–4. A FLAG is raised whenever the 
inventory level crosses the threshold S or whenever the time since the last maintenance 
action exceeds TMB2. 

(4) The STATE EQUATIONS are expressed by a C language insert and networks.  They 
describe the inventory level and the machine age as functions of the production rate, the 
demand rate and the machine state (failure, CM or PM). 

 

 

 
 

Fig. 5. Simulation block diagram 
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(5) The TIME ADVANCE block changes the current time according to a time step, based 
on discrete event scheduling (breakdown and maintenance times), continuous variable 
threshold crossing events and time step specifications. 

(6) The UPDATE INVENTORY LEVEL AND CUMULATIVE VARIABLES block 
traces the real-time variations of the inventory level for the chosen time step. The 
cumulative variables are integrated using the Runge-Kutta-Fehlberg method, as 
described in Pritsker and O'Reilly [39].  

(7) The UPDATE INCURRED COST block calculates the average total cost, which 
consists of the inventory/backlog, corrective and preventive maintenance costs. 

The simulation runs until the simulation time Tsim reaches the stopping time Tend defined as 
the time needed to reach the steady-state. 

3.2 Design of experiments, ANOVA and response surface methodology 

For each joint preventive maintenance and production/inventory control policy, two (for the 
ARP/HPP and BRP/HPP) or three (for the MBRP/HPP) independent variables and one 
dependent variable (the incurred cost) are considered. We define a new variable τ, such that 

12 MBMB TτT   and 10  τ , to make sure that 12 MBMB TT  . The design of experiments 
defines how the control factors can be varied to determine the effects of the main factors and 
their interactions on the incurred cost with a minimal set of simulation experiments. Due to 
the convexity property of the cost function [25][40], complete 32 (for the ARP/HPP and 
BRP/HPP policies) and 33 (for the MBRP/HPP policy) designs of experiments are carried out. 
A second-order regression model is proposed to estimate the cost as a function of the control 
parameters. Four replications were conducted for each combination, and thus 36 (32 x 4) 
simulation runs were made for the ARP/HPP and BRP/HPP and 108 (33 x 4) for the 
MBRP/HPP. 

The first step in the statistical analysis of the simulation results involves a multifactor 
analysis of variance (ANOVA), accomplished using a statistical software application 
(STATISTICA). The ANOVA analysis quantifies the effects of the main factors, their 
quadratic effects and their interactions on the dependent variable. Non-significant factors are 
eliminated with a level of significance (i.e., p-value > 0.05). This analysis also provides the 
proportion of the observed variability explained by the model, which is denoted by the 
adjusted coefficient of determination of the model [41].  

As a second step, the response surface methodology (RSM) is applied to estimate the 
relationship between the incurred cost and the input factors [41]. For each of the three 
proposed policies, we assume that there exists a continuous function Ψ of the input factors, 
called response surface, which gives the value of the incurred cost for any combination of 
these factors. Let us consider the following second-order models with standardized factors 
corresponding to the ARP/HPP, BRP/HPP, and MBRP/HPP policies, respectively: 

εTSαTαSαTaSααTSψ AAAAA  12
2

22
2

11210),(  (2)

εTSβTβSβTβSββTSψ BBBBB  12
2

22
2

11210),(  
(3)

2
122

2
11312101 ),,( MBMBMBMB TγSγτγTγSγγτTSψ    

ετTγτSγTSγτγ MBMB  12313112
2

33  

(4)

where (α0, αi, αij,), (β0, βi, βij), (γ0, γi, γij),  3,2,1),( ji  are unknown parameters and ε is the 
residual error. Non-significant effects are ignored or added to the residual error ε. 
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Using STATISTICA, the unknown parameters are estimated from the collected data. The 
homogeneity of the variances and the residual normality condition are also verified. The 
corresponding response surfaces are then computed to illustrate the location of the optimal 
control parameters for each joint policy. 

4 Numerical application of the resolution approach 

To confirm the validity of the resolution approach, the results obtained with simulation 
models are compared to numerical examples proposed in the literature. The resolution 
approach presented above is then applied to a basic illustrative example.  

4.1 Validation of the resolution approach 

The combined maintenance and inventory policies proposed in this paper have not been 
addressed under the same assumptions in other papers. For that reason, the validation of the 
simulation is conducted with the maintenance and inventory models taken separately.  

On the one hand, the maintenance part is checked by comparing the control parameters 
and the costs obtained with the proposed resolution approach to those obtained analytically in 
Archibald and Dekker [14] with the data parameters shown in Table 1. The first and second 
numbers of the Weibull distribution denote the shape and the scale parameters, respectively, 
and the results are summarized in Table 2, which highlights the fact that the cost difference 
between the two approaches is negligible (relative errors below 0.5%).  
 
 

Table 1. Data parameters of the illustrative case presented in Archibald and Dekker (1996) 
 

umax d ccm cpm c+ c- Tf Tcm Tpm 

0 0 5 1 0 0 WEIBULL (1.5, 1) 0 0 
 
 
Table 2. Comparison of the simulation-based approach and analytical results for the maintenance policy 
 

 Ti 
sim * Ti 

ana * TMB2 
sim * TMB2 

ana * Ci 
sim * Ci 

ana * relative error (%) 

ARP 0.72 0.68   4.93 4.91 0.41 
BRP 0.81 0.77   5.18 5.16 0.32 
MBRP 0.67 0.63 0.42 0.41 4.94 4.94 0.02 

* Ti 
sim ,Ti 

ana, Ci 
sim, Ci 

ana denote the optimal PM control parameters and the optimal costs obtained through the   
simulation approach and analytically (i = A, B, MB1 for the ARP/HPP, BRP/HPP and MBRP/HPP, 
respectively). 

 
 
 The inventory part of the simulation model was tested by comparing the simulation 

results with the analytical results of Akella and Kumar [22] for exponential failure and repair 
times (i.e., non-increasing failure rate). PM is not performed and the ARP, BRP and MBRP 
are boiled down to the same maintenance policy (i.e., the failure replacement policy). The 
corresponding simulation model and the results of this comparison are similar to those 
presented in Kenné and Gharbi [28]. 

These tests validate the simulation modeling and the resolution approach adopted in this 
paper. The model is then run in order to jointly take into account maintenance and inventory 
policies and to solve the optimization problem for a basic case. 
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4.2 Detailed results for a basic case 

The resolution approach and the results are detailed in a step-by-step manner for the basic 
case presented in Table 3. The manufacturing system considered here is designed to produce 
at a maximum production rate 25% higher than the demand rate. The stochastic time variables 
that describe the time between failures and the CM and PM durations follow Weibull and 
Lognormal distributions, respectively (the first and second values within parentheses indicate 
the mean and the standard deviation for the lognormal distribution). The maintenance 
parameters are such that CM takes twice as long and costs six times as much as PM. Backlogs 
are penalized by a cost twenty times as high as the holding cost. 
 
 

Table 3. Data parameters of the basic case 
 

umax 
(units / day) 

d 
(units / day) 

ccm 
($) 

cpm 
($) 

c+

($ / unit / day)
c –

($ / unit / day)
Tf  (days) Tcm (days) Tpm (days) 

500 400 3000 500 1 20 Weibull(2, 20) Log-N (1, 0.5) Log-N (0.5, 0.1)

 
 
To ensure that a steady-state is reached, the duration of the simulation runs is set to 

1,000,000 units of time, given by preliminary runs. Simulation runs are conducted according 
to the designs of experiments presented in the previous section.  

First, ANOVA analyses are carried out on the collected data, as presented in Table 4 for 
the MBRP/HPP. All the factors, interactions and quadratic effects are significant  
(p < 0.05). The R-squared adjusted value has a value of 98.793%, which implies that more 
than 98% of the total variability is explained by the model [41]. The model, which is 
composed of the factors, their interactions and the quadratic effects, fits the basic case data. 
The ANOVA tables for the ARP/HPP and BRP/HPP lead to the same conclusions, with  
R-squared adjusted values of 98.387% and 98.283%, respectively. 

 
 

Table 4. ANOVA table for the MBRP/HPP  
 

 SS Df MS F P 

TMB1 272.3486 1 272.3486 30.27403 0.000000 
TMB1

2 2178.873 1 2178.873 242.2015 0.000000 
S 89656.02 1 89656.02 9966.081 0.000000 
S2 26087.38 1 26087.38 2899.850 0.000000 

τ 868.2089 1 868.2089 96.50931 0.000000 

τ2 66.62345 1 66.62345 7.405802 0.007734 
TMB1 . Z 2552.108 1 2552.108 283.6900 0.000000 
TMB1 . τ 40.77576 1 40.77576 4.532597 0.035841 

Z . τ 119.7359 1 119.7359 13.30973 0.000431 
Block 12.10210 3 4.034034 0.448420 0.718992 
Error 854.6310 95 8.996116   

Total SS 122708.8 107   R2 (adj.) = 98.793

  
 
The corresponding cost functions are given as follows for the MBRP/HPP, the BRP/HPP 

and the ARP/HPP policies, respectively: 
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τSSTTC MBMBMB  6794.3963.32085.35318.102674.297.426 22
11

         ετSτTSTτ MBMB  5769.15009.03597.79344.1 11
2  

(5)

εSTSSTTC BBBB  2124.6903.13283.10482.25409.2742.499 22  (6)

εSTSSTTC AAAA  7656.33887.59576.3500.19241.2087.432 22  (7)

Fig. 6 presents the projection of the cost response surface on two-dimensional planes for the 
MBRP/HPP. The minimum total cost, CMB* = $416.52, is located at  
S* = 226, TMB1* = 4.92 and τ* = 0.81 (TMB2* = 4.01), these values being the optimal control 
parameters that should be applied with the MBRP/HPP. Similarly, the optimal total costs for 
BRP/HPP and ARP/HPP are CB* = $491.15, located at S* = 263, TB* = 5.01 and  
CA* = $427.43, located at S* = 230, TA* = 4.50, respectively. 

 
  

 
 

Fig. 6. Cost response surfaces for the MBRP/HPP 
 
 

The advantage of the simulation-based approach also lies in providing the possibility of 
easily collect and analyse several performance indices. Table 5 presents complementary 
performance indices obtained by simulation with the previous optimal control parameters. 

 
 

Table 5. Complementary performance indices measured by simulation 
 

Policy X +* X - * 
Number 
of CM 

Number 
of PM 

PM 
breaks

Availability 
(%) 

Average 
lifetime

(day) 

Inventory 
cost  

($ / day) 

Maintenance 
cost 

($ / day) 

Ci 

($ / day)

MBRP/HPP 167.91 6.16 10315 189068 10999 89.39 4.42 290.29 126.23 416.52 
BRP/HPP 199.15 8.23 9950 195143 3733 89.21 4.33 363.40 127.75 491.15 
ARP/HPP 170.91 6.54 10015 191164  89.40 4.43 301.49 125.94 427.43 

* X + and X – denote the average positive and negative inventory levels, respectively.  
 
 

According to Table 5, the average lifetime and availability of the machine confirm that 
the best use of the machine is obtained under the ARP/HPP and the MBRP/HPP and that the 
BRP/HPP triggers a wastage of relatively new components. Since the MBRP/HPP skips PM 
interventions if the time since the last maintenance action is below TMB2, the resulting  
maintenance cost is almost as good as that obtained with the ARP/HPP. The inventory policy 
for the BRP/HPP suffers from consecutive inactive periods caused by breakdowns that occur 
shortly before scheduled PM, unlike the ARP/HPP and the MBRP/HPP, whose age thresholds 
enable a wider spacing of maintenance actions. As a result, the optimal inventory level under 
the BRP/HPP requires a higher hedging point than under the ARP/HPP and the MBRP/HPP 
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in order to avoid inventory shortage. Consequently, the joint BRP/HPP policy is the most 
expensive amongst the three proposed policies. When comparing the ARP/HPP and the 
MBRP/HPP, we observe that the MBRP/HPP triggers fewer PM actions and almost as many 
failures as with the ARP/HPP. Inactive periods are consequently scarcer with the MBRP/HPP 
than with the ARP/HPP, which explains why the optimal hedging point and inventory costs 
are higher with the ARP/HPP than with the MBRP/HPP. 

From the preceding discussion, we can draw the following conclusions for the basic case: 
- The BRP/HPP is the least efficient policy amongst the proposed policies, in terms of 

both inventory and maintenance costs; 
- The MBRP/HPP is better than the ARP/HPP. In fact, the ARP/HPP slightly 

outperforms the MBRP/HPP in terms of maintenance cost, whereas the latter is 
better in terms of inventory cost.  

The optimal control parameters of the maintenance control policies obtained by 
simulation without considering any production/inventory control policy are presented in 
Table 6. On the one hand, these results extend those presented by Archibald and Dekker [14] 
to the case of non-negligible and stochastic maintenance durations. On the other hand, a 
comparison between the previous results and Table 6 shows how inventory control combined 
with maintenance affects the optimal maintenance control parameters. The optimal values of 
Ti and τ in the joint control policies are respectively significantly lower and higher than for 
the maintenance strategy, when the production/inventory control is not considered. Indeed, 
PM in the joint control policy are more often performed and more often skipped in order to 
avoid failures and consecutive inactive periods, which lead to shortage situations. 
 
 

Table 6. Comparison of the optimal maintenance control policies 
 

Policy Ti τ Availability (%) Average lifetime (day) Maintenance cost ($ / day) Δi, ARP* (%)

MBRP 9.16 0.45 93.33 8.24 106.84 0.63 
BRP 9.08  92.81 7.42 109.67 3.28 
ARP 8.78  93.35 8.25 106.18  

* Δi, ARP denotes the relative deviation from the maintenance cost obtained with the ARP policy. 
 

5 General sensitivity analysis of cost parameters 

Another set of experiments is considered to measure the sensitivity of the proposed control 
policies with respect to cost parameters. The goal is to demonstrate the efficiency and the 
robustness of the resolution approach and to study the behaviour of each control policy when 
varying cost parameters. 

Table 7 presents nine configurations of cost parameters derived from the basic case  
(case 1) by changing them to higher and lower values, one at a time. Table 8 highlights the 
consistency between the variation of each cost parameter and the optimal control parameters 
and costs. As observed in the previous section, we noticed that the inventory cost is larger and 
the maintenance cost is lower under the ARP/HPP than under the MBRP/HPP. 

The first observation from Table 8 is that the optimum control parameters evolve in the 
same direction and with the same magnitude in response to any variation in cost parameters. 
Their variations are examined and compared to the basic case as follows: 

- Variation of the CM cost ccm (cases 2 and 3): When the CM cost increases (case 3), 
the joint control policies give preference to PM. Thereby, the time thresholds (TA* 
and TMB2*) and the intervals between periodic PM (TB* and TMB1*) decrease. In this  
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Table 7. Combination of cost parameters of the sensitivity analysis 
 

Case number ccm cpm c+ c- 

1 3000 500 1 20 

2 2000 500 1 20 

3 4000 500 1 20 

4 3000 250 1 20 

5 3000 750 1 20 

6 3000 500 0.5 20 

7 3000 500 1.5 20 

8 3000 500 1 15 

9 3000 500 1 25 

 
 

Table 8. Sensitivity analysis for different cost parameters 
 

Case 
Ti*  S TMB2 Total cost  

Cost comparison 
(%) of MBRP/HPP 

BRP/ 
HPP 

ARP/ 
HPP 

MBRP/
HPP 

 
BRP/ 
HPP 

ARP/
HPP 

MBRP/
HPP 

MBRP
/HPP

BRP/
HPP 

ARP/
HPP 

MBRP/
HPP  

with 
BRP/HPP 

with 
ARP/HPP

1 5.01 4.50 4.92  263 230 226 4.01 491.15 427.43 416.52  -15.20 -2.55 

2 5.05 4.56 5.00  262 229 225 4.18 481.15 417.34 406.03  -15.61 -2.71 

3 4.96 4.44 4.81  263 230 227 3.84 501.05 437.37 426.63  -14.85 -2.45 

4 4.78 4.17 4.32  265 233 230 3.32 441.20 377.91 365.50  -17.16 -3.28 

5 5.19 4.74 5.39  261 228 222 5.11 539.02 473.95 459.78  -14.70 -2.99 

6 5.16 4.51 4.97  378 258 244 4.14 374.75 335.23 328.05  -12.46 -2.14 

7 4.96 4.48 4.82  218 203 209 3.86 580.86 506.46 496.11  -14.59 -2.04 

8 5.10 4.61 5.06  234 211 213 4.20 446.48 392.37 384.13  -13.97 -2.10 

9 4.95 4.43 4.80  281 242 234 3.87 530.13 458.71 446.21  -15.83 -2.73 

* Ti denotes TB, TA and TMB1 for the BRP/HPP, ARP/HPP and MBRP/HPP policies, respectively. 
 
 

situation, the average number of failures decreases, whereas the number of PM 
actions increase. Consequently, the inventory controls require a slightly higher 
hedging point S*. An increase in the CM costs leads both to a decrease in the 
inventory/backlog cost and to an increase in the maintenance cost, but the overall 
cost increases. A decrease in the CM cost has the opposite effects (case 2). 

- Variation of the PM cost cpm (cases 4 and 5): A variation of the PM cost has the 
opposite effect when compared with the variation of the CM cost. Indeed, they both 
affect the optimal balance between PM and CM. 

- Variation of the holding cost c+ (cases 6 and 7): When the holding cost increases 
(case 7), all the joint control policies react by lowering the hedging point S*.  The 
average inventory levels will then decrease, while the risk of shortage increases. 
The maintenance control policies adapt to avoid breakdowns by lowering the PM 
intervals (TB* and TMB1*) and the time thresholds (TA* and TMB2*). The total cost 
increases in response to an increase in the holding cost. Note that a decrease in the 
holding cost has the opposite effects (case 6). 

- Variation of the shortage cost c- (cases 8 and 9): The tolerance for risk of shortage 
in the system is affected by any variations of the shortage cost. To avoid shortages, 
PM should be performed more frequently and the inventory level should be higher 
when the shortage cost increases (case 9). As a result, the PM intervals (TB* and 
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TMB1*) and the time thresholds (TA* and TMB2*) decrease, while the hedging points 
S* increase. An increase in the total cost is also observed for each joint control 
policy. Note that a decrease in the holding cost has the opposite effects (case 8).  

From the optimal costs of the ARP/HPP, BRP/HPP and MBRP/HPP observed in Table 8, 
we notice that the MBRP/HPP outperforms both the BRP/HPP (at least 12.46%, and up to 
17.16% better) and the ARP/HPP (at least 2.04%, and up to 3.28% better). To confirm these 
observations, and hence the advantages of the MBRP/HPP over the BRP/HPP and the 
ARP/HPP in terms of costs, a Student’s t-test is conducted [41]. The 95% confidence interval 
of the difference between the costs obtained with the ARP/HPP and MBRP/HPP,  
CA* - CMB*, as well as those of CB* - CMB* and CB* - CA*, are presented in Table 9. Since the 
lower bounds of the confidence intervals of the cost differences are positive in all cases at a 
95% confidence level (CA* - CMB* > 0, CB* - CMB* >0 and CB* - CA* > 0), we confirm that 
the BRP/HPP is the least efficient control policy and that the MBRP/HPP is not only easier to 
implement and manage, but also better than the ARP/HPP in terms of total cost. 

 
  

Table 9. Cost difference confidence intervals (95%) of the ARP/HPP,  
BRP/HPP and MBRP/HPP for cases 1 to 9 

 
Case **

AB CC   **
MBB CC   **

MBA CC   

1 [66.48, 67.72] [78.18, 79.66] [11.43, 12.20] 

2 [66.26, 67.47] [77.21, 78.82] [10.66, 11.64] 

3 [66.14, 67.23] [78.37, 79.83] [11.82, 12.96] 

4 [65.86, 67.48] [81.94, 83.56] [15.18, 16.96] 

5 [67.67, 68.97] [77.38, 78.80] [9.30, 10.23] 

6 [39.93, 40.93] [47.44, 48.68] [7.17, 8.08] 

7 [73.41, 74.71] [86.23, 87.88] [12.42, 13.56] 

8 [54.55, 55.67] [62.52, 63.89] [7.71, 8.48] 

9 [74.68, 75.98] [89.41, 100.00] [14.26, 15.49] 

 

6 Influence of the maximum production rate, of the shortage cost 
and of the CM parameters  

In the last section, we observed the effects of variations of the cost parameters on the optimal 
control parameters and on the incurred total cost for each control policy. It showed the 
advantages of MBRP/HPP over the ARP/HPP and the BRP/HPP in terms of total cost. The 
objective of this section is to give a better insight into the feasibility of the system (i.e., its 
capacity to fulfil the demand), the cost differences and the availability of the system when 
varying the maximum production rate, the shortage cost and the CM parameters. 

6.1 Feasibility condition 

Section 4.2 showed that extending the maintenance strategies to the joint preventive 
maintenance and production/inventory control policies modifies the preventive maintenance 
parameters, causing the PM to be performed and skipped more often than in the case without 
inventory control in order to avoid failures and consecutive inactive periods. However, the 
incurred availability of the system becomes lower and approaches the feasibility condition of 
the system, which entails that the operational availability of the system must be larger than  
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d ⁄ umax so as to satisfy demand in the long run. The system availability for the proposed 
control policies is a function of the maintenance parameters, and does not depend on the 
hedging point level. Fig. 7 illustrates the relationship between the availability, the occurrences 
of failures and the feasibility condition for the previous joint control policies when varying 
the preventive maintenance parameter Ti, i = A, B, MB1 (with a given τ for the MBRP/HPP 
policy). 
 

 
 

Fig. 7. Availability of the system according to Ti , i = A, B, MB1 
 
 
If Ti increases, then PM is performed less often, and the availability increases and reaches 

an asymptotic value, which corresponds to the manufacturing cell availability under a   
replacement on failure strategy (i.e., MTTF / (MTTF + MTCM) = 94.66% for the basic case, 
where MTTF denotes the mean time to failure). On the other hand, if Ti decreases, then the 
availability decreases and reaches the feasibility condition, which imposes a minimal value 
for Ti, and thus influences the choice of the control parameters. For instance, the availability 
must be larger than d ⁄ umax = 80% for umax = 500 and 88.89% for umax = 450, which implies 
that TA must be larger than 2.03 and 4.24, respectively. With the parameters of the basic case, 
if umax < 423, then the system is not feasible. However, if umax is just over 423, then the 
system will be hardly feasible, and the inventory build-up period will be long, and there will 
be frequent shortages. 

6.2  Influence of the maximum production rate 

Fig. 8 shows, for the basic case, the relative cost difference between the MBRP/HPP and 
the BRP/HPP as compared with the ARP/HPP (denoted by RDCi/A = (Ci* - CA*) / CA*,  
i = B, MB) when the maximum production rate umax goes up incrementally. The 
manufacturing cell availability evolution as a function of umax for the studied joint control 
policies is also depicted in Fig. 8. A variation of the maximum production rate affects the 
build-up and shortage durations. Since the BRP/HPP leads to consecutive inactive periods, 
the relative cost difference between the BRP/HPP and ARP/HPP increases when the 
maximum production rate decreases. The MBRP/HPP policy skips more and more PM in 
order to allow the inventory level to build up and reach its maximum level. As shown for the 
basic case in Table 5, the MBRP/HPP undergoes fewer shortages than the ARP/HPP, and this 
difference becomes more marked as umax decreases. For this reason, the relative difference 
between the MBRP/HPP and the ARP/HPP increases when the maximum production rate 
decreases. Fig. 8 also highlights the fact that when umax falls below 550, the total costs 
significantly diverge and their availabilities significantly increase, since the feasibility  
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Fig. 8. Effects of the maximum production rate on the control policies 
 
 
condition imposes a minimal value for the time between PM, and thus imposes the choice of 
the optimal control parameters. We can conclude that the MBRP/HPP behaves significantly 
better than the ARP/HPP and BRP/HPP when the system is close to the feasibility condition. 

6.3 Influence of shortage cost and CM cost parameters 

In this section, the shortage cost has been varied from 5 to 50 (c- / c+ varies from 5 to 50) 
and the CM cost from 500 to 5000 (ccm / cpm varies from 1 to 10). All other parameters remain 
unchanged, with the numerical values defined in the basic case. The relative cost differences 
between the BRP/HPP and the MBRP/HPP as compared with the ARP/HPP and their 
operational availabilities are depicted in Fig. 9 and Fig. 10, respectively.  

If the CM cost increases, then the optimal policies give preference to PM in order to avoid 
breakdowns, and the availability of the system decreases for the three policies (see Fig. 10). 
The benefits gained from skipping PM interventions with the MBRP/HPP become more and 
more significant when PM are more frequently scheduled, and thus the relative cost 
difference between the MBRP/HPP and ARP/HPP decreases (Fig. 9). Since the number of 
breakdowns decreases in response to an increase in the CM cost, the number of consecutive 
inactive periods observed with the BRP/HPP decreases, and consequently, the cost difference 
between the BRP/HPP and the ARP/HPP decreases. 

On the other hand, if the shortage cost increases, then the hedging point level increases to 
palliate for future interruptions due to CM or PM, and the maintenance policies evolve to 
limit long inactive periods with more frequent PM. As observed in Figs. 9–10, the joint 
control policies are more sensitive to the shortage cost than to the CM cost. The advantages of 
the ARP/HPP over the BRP/HPP increase when the shortage cost increases, because the main 
drawback of the BRP/HPP lies in the risk of consecutive CM and PM, and thus the risk of 
backlogs. As for the basic case, the MBRP/HPP leads to average positive and negative 
inventory levels that are slightly lower than under the ARP/HPP and to a better inventory 
cost. A higher value of c- increases the difference between their inventory costs and results in 
a decrease in the cost difference between the MBRP/HPP and the ARP/HPP. When the 
shortage cost increases, the availabilities decrease and reach an asymptotic limit, which is a 
trade-off between the feasibility condition and the number of failures. Similarly, the cost 
differences tend to stabilize for high shortage cost values. 

The main conclusion is that if shortages or breakdowns lead to more penalties, then the 
MBRP/HPP significantly outperforms the ARP/HPP. 
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Fig. 9. Effects of the shortage cost and of the CM cost on the total cost 
 
 

 
 

Fig. 10. Effects of the shortage cost and of the CM cost on the availability 

6.4 Influence of the time to execute corrective maintenance 

Another set of experiments was conducted in order to analyse the effects of the mean time to 
corrective maintenance (MTCM) and its standard deviation (SDCM) on the joint optimal 
control policies. The relative cost differences between the MBRP/HPP and the BRP/HPP and 
the ARP/HPP and the availability of the system under each control policy are presented in  
Fig. 11 when varying the MTCM from 0.5 to 2 (MTCM / MTPM varies from 1 to 4), and in 
Fig. 12 when varying the SDCM from 0 to 1. All other parameters are the same as in the basic 
case.  
 
 

 
 

Fig. 11. Effects of mean time to perform CM on the total cost and on the availability 
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Fig. 12. Effects of standard deviation of the time to perform CM 
on the total cost and on the availability 

 
 

As expected, the optimal joint control policies give more and more preference to PM in 
order to avoid breakdowns and shortages when the MTCM or SDCM increases. The benefits 
gained from skipping PM interventions with the MBRP/HPP become more and more 
significant when PM are more frequently scheduled, and thus the relative cost difference 
between the MBRP/HPP and ARP/HPP decreases. It can be seen that varying the MTCM has 
the same effect as does the shortage cost on total costs and on the availabilities of the joint 
control policies, since they both affect backlogs. 

7 Concluding remarks 

A joint preventive maintenance and production/inventory control policy for a  
single-machine, mono-product manufacturing cell has been proposed. The production 
inventory control policy is based on the HPP, which allows the building of a safety stock to 
hedge against demand shortages during shutdown periods caused by corrective and 
preventive activities. The preventive maintenance policy is based on the MBRP, which entails 
that maintenance of the manufacturing cell be performed at failures or at scheduled periods if 
the time since the last maintenance action is below a specified threshold age. 

A general simulation model has been considered to mimic the real dynamic and stochastic 
behaviour of the manufacturing cell. The proposed model relaxes many simplifying and 
unrealistic assumptions considered by several authors in many contributions such as: (1) 
breakdowns are not allowed during build-up of the finished goods inventory; (2) the 
inventory level is periodic with the maintenance cycle; (3) corrective and maintenance actions 
have negligible delays, and (4) unmet demands due to shortage situations are lost, instead of 
being backlogged. The optimal solution for the joint MBRP/HPP problem is obtained through 
a numerical approach that combines experimental design, simulation modeling, analysis of 
variance, and response surface methodologies. 

The joint MBRP/HPP is compared to the joint BRP/HPP and the joint ARP/HPP by 
considering the cost incurred by preventive and corrective activities, holding inventories, and 
demand shortages. Without considering the impact of maintenance activities on the overall 
performance of the manufacturing system, most authors working in the reliability and 
maintainability fields mention that ARP policy outperforms the BRP policy. In spite of its 
wasteful character, the BRP policy is more generally considered and implemented in the 
industrial context since it is more practical and easy to manage than the ARP policy. By 
jointly considering preventive maintenance and production/inventory control policies, the 
results show that the proposed MBRP/HPP policy outperforms the BRP/HPP and ARP/HPP 
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policies in terms of incurred total cost. In addition, the MBRP is as easy to implement and to 
manage as the BRP policy. This reinforces the interest of the MBRP when integrated with 
inventory control in real manufacturing context. 

This article should stimulate further research on joint maintenance and 
production/inventory control.  We considered some of the most “popular” or classical 
maintenance and production/inventory control policies proposed in the literature or used in 
practice. We suggest that other maintenance strategies and other production/inventory 
policies should be investigated. To that purpose, the simulation-based resolution approach 
proposed in this paper should prevail over analytical approaches in considering complex 
models because many restrictive assumptions can be relaxed and it also allows for an easy 
collection of complementary performance indices and so a more thorough analysis.   
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