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Abstrat  
This paper presents a method to find the optimal production, repair/replacement and preventive maintenance 
policies for a degraded manufacturing system. The system is subject to random machine failures and repairs. The 
status of the system is considered to degrade with repair activities. When a failure occurs, the machine is either 
repaired or replaced. A replacement action renews the machine while a repair action brings it to a degraded 
operational state for which the next repair time increases as the number of repairs increases. A preventive 
maintenance action is considered to improve the reliability of the machine and therefore the disruptions caused 
by the machine failures are reduced. The decision variables are the production rate, the preventive maintenance 
rate and the repair/replacement switching policy upon machine failure. The objective of the study is to find the 
decision variables that minimize an overall cost, including repair, replacement, preventive maintenance, 
inventory holding and backlog costs over an infinite planning horizon. The proposed model is based on a semi-
Markov decision process and the stochastic dynamic programming method is used to obtain the optimality 
conditions. A numerical example is given to illustrate the proposed model. A sensitivity analysis is considered to 
confirm the structure of the control policy and to illustrate the usefulness on the proposed approach. 

Keywords: Manufacturing systems, numerical methods, optimal control, deteriorating systems, 
production, replacement/repair, preventive maintenance. 

1. Introduction

     In recent years there has been considerable interest in production planning and preventive 

maintenance control in manufacturing systems (see Dong-Ping (2009) and references therein). Such 

systems are subject to multiple uncertainties such as machines failures and repairs. Hence, repairable 

systems have attracted the attention of several researchers working in the field of deteriorating 

production systems as in Soro (2010). The repair costs may be very high after the machine experiences a 

large number of failures. In such a situation, it becomes more reasonable to replace the machine by a 

new one. A preventive maintenance action could also be considered in order to increase the operating 

time of the machine and reduce the disruptions of the production due to failures.  
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     In manufacturing environment, production activities, repairs, replacement and preventive 

maintenance actions are mutually interdependent. Gabriella et al. (2008) presented a general overview of 

models and discussed some sectors of interaction between maintenance and production. Until now, no 

work has been conducted which simultaneously provides the production planning, the 

repair/replacement and the preventive maintenance policies for systems that deteriorate with age and the 

number of failures.  In this paper, we combine the production, repair/replacement and preventive 

maintenance control activities of a stochastic manufacturing system subject to random breakdowns. 

Many articles have been written on the interactions between production, corrective maintenance, 

preventive maintenance, replacement and machine deteriorations without integrating them in a unified 

model as in this paper.  

      The preventive maintenance is usually planned and aimed at increasing the reliability of a 

deteriorating system or decreasing the operating costs of repairable systems (see Boukas  and Haurie 

(1990), Dellagi et al. (2007) and Yuan et al. (2001)).  Boukas and Haurie (1990) included an age-

dependent machine failure rate and allowed the control to influence the jump rate from the machine 

operation mode to preventive maintenance mode. They determined production rate and maintenance rule 

which minimize the total expected cost of a two-machine system. However, with the numerical scheme 

adopted in their work, it remains computationally difficult to obtain the optimal control of a large scale 

FMS. To cope with this difficulty, Kenné and Boukas (2003) proposed a hierarchical control approach 

to determine the production and preventive maintenance policies for large scale manufacturing systems. 

A review of hierarchical approaches under uncertainties can be found in  Sethi and Zhang (1994). 

Dehayem et al. (2009) used a hierarchical approach to develop a Semi-Markov Decision Model in order 

to make a lower level determination of the optimal repair and replacement policy for a system that 

deteriorates with age, and is subject to damage failures.  Given that policy, at higher levels, they derived 

a production plan for the system over an infinite planning horizon. However, there is no evidence that 

the structure of the control policy obtained at lower level remains valid at the higher level of the 

hierarchy.  

        Yao et al. (2005) studied the joint preventive maintenance and production policies for an unreliable 

production system in which maintenance/repair times are non-negligible and random. Gharbi et al. 

(2007) assumed that failure frequencies can be reduced through preventive maintenance, and developed 

joint production and preventive maintenance policies depending on produced parts inventory levels. In 

their models, they assumed that maintenance actions always restore the machine to a perfect condition or 
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does not change the failure rate of the system, such that the machine performs similarly from one failure 

to another. A more realistic assumption is that the machine does not always return to a perfect condition 

following a corrective maintenance. Such a repair is called an imperfect repair as in Liao (2007). 

     The imperfect repair model has been well documented, for repair and replacement policies in 

manufacturing systems (Kijima et al. (1988), Pérès and Noyes (2003)). Unfortunately, most available 

results concern only cases where production and demand satisfaction are not taken into account. The 

authors considered that repair, replacement and preventive maintenance take a small amount of time, 

and that they do not therefore significantly affect production activities (see Beichelt  (1992), Makis and 

and  Jardine  (1993)).  

        If a machine is not initially new or is not new after each maintenance activity, it will clearly have 

different dynamics after each breakdown and repair. As stated by Pérès-Ocon and Torres-Castro (2002), 

under particular conditions involving exponential times, such a system can be modeled as continuous-

time Markov chains. However, that is not the case when the probability distributions of operating and 

repair times follow general distributions. A semi-Markov process can then be used for modeling the 

system. Sloan (2008) developed a semi-Markov decision process model of a single-stage production 

system with multiple products and multiple maintenance actions. Such a model simultaneously 

determines maintenance and production schedules, while taking into account the fact that the equipment 

conditions affect the yield of each product differently. As can be seen from previous works, available 

studies did not simultaneously take into account the effect of a preventive maintenance control, 

repair/replacement, and the effect of increasing repair times with the number of failures. 

       Our aim in this paper is to develop optimal strategies for manufacturing systems, which take into 

account the deterioration of a machine in accordance with the number of failures (i.e., the repair time 

increases with the number of failures). Thus, repair activities depend on the machine’s repair history and 

Markovian decision processes are no longer appropriate for the model of the control problem. The 

model proposed in this paper will simultaneously provide the following three policies:  

- Repair/replacement switching policy based on the age of the machine and the number of failures 

above which the machine must be replaced if a failure occurs 

- Preventive maintenance policy based on the age of the machine at which preventive maintenance 

must be performed 

- Production policy based on the age of the machine and the stock level of finished goods  
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The resulting simultaneous control approach consists in developing a Semi-Markov Decision Process 

(SMDP) in order to determine an optimal production, repair/replacement and preventive maintenance 

policies for the system. Such policies are determined in order to minimize inventory, backlog, repair, 

replacement and preventive maintenance costs over an infinite planning horizon. 

    The paper is organized as follows. In Section 2, we present the industrial context of the problem under 

study. In Section 3, we define the notations and assumptions used in the model. The problem statement is 

presented in Section 4.  Numerical examples are presented in Section 5, and a sensitivity analysis is given 

in Section 6 to illustrate the usefulness of the proposed approach. Discussions and extensions of the 

proposed approach are given in Section 7 and the paper is finally concluded in Section 8. 

2. Industrial context 

      The study presented in this paper has many applications, especially in production industry. As state 

by Badia and Berrade (2009), many engineering systems are subject to the so-called unrevealed failures. 

The unrevealed failures are constituted of those that are detected only by special tests, inspections or 

monitorings.  Seal machines, filling machines, machining centers, grinders, milling, and many of tools 

machines are among examples. They have a large number of components (treadmill, ball screws, spindle 

heads, precision gear boxes, axis drive components, rotary tables, saddles, pallets and short). Those 

components stochastically deteriorate over time and hence the machine also deteriorates over time. Very 

often, parts of such machines are broken or damaged, although the machine is operational.  

       For example, worn nozzle, abrasives in pumped liquid, relief valve stuck, partially plugged or 

improperly adjusted, cavitations, worn bearing do not necessarily stop a liquid filling machine. A worn 

bearing will for example create knocking noise, while the machine still functioning. Thus, the failure of 

a machine is due to one or more removable and repairable components. Over time, the number of 

components to check and to repair at failure increases and thus the mean repair time increase also.  

      A preventive maintenance could serve to clean and adjust valves, control stroke and flow injection, 

replace worn nozzle with properly sized nozzle. Preventive interventions intend to reduce breakdowns 

risk and to maintain the smooth functioning of the machine.  

      The model presented in this paper is suitable for repairable manufacturing systems characterized by 

deterioration due to production and failures.  The overall production system is renewed by a replacement 

after a sequence of successive failures and repairs; to be able to maintain a competitive advantage.  
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3. Notation and assumptions 

    Throughout this article, we use the following notations and assumptions: 

3.1  Notations 

The following notations will be used to describe the proposed control model.  
( )x    stock level 

( )n t   number of failures at time t  

( )a t   age of the machine at time  t  

( )    stochastic process 

d   demand rate 

q   transition rate from mode   to   

Q   transition rate matrix 

( )g               instantaneous cost 

c   holding cost per unit of item over per unit of time 
c   backlog cost per unit of item over per unit of time  

0c   replacement cost 

rc   repair cost  

( )J               total cost 

( )v    value function 

   discount rate 

( )u    production rate of the manufacturing system 

( )    preventive maintenance rate of the machine 

maxu   maximal production rate of the manufacturing system 

   minimal preventive maintenance rate 

   maximal preventive maintenance rate 

( )ns    age of the machine for a systematic replacement at failure  

mN   Number of failure for a systematic replacement of the machine at failure 

3.2 Assumptions 

The mathematical model in this analysis has the following assumptions: 

1) An infinite planning horizon. 



2) Failures of the machine are instantly detected and repaired (corrective maintenance).   

3) The shortage cost depends on the shortage quantity and time (average value ($/unit of time)). 

4) The holding cost depends on the mean inventory level (average value ($/unit of time)). 

5) The cost of any replacement activity after failure is greater than the cost of a maintenance 

activity (corrective or preventive maintenance). In addition, the mean replacement time, (i.e., the 

mean time it takes to replace the machine after a failure) is lower than the time it takes to repair 

the machine when a failure occurs. 

6) The mean time to repair increases with the number of failures 

7) The mean replacement time is shorter than the mean time to repair for any number of failures 

8) The mean time to replace the machine (i.e., the mean time the machine spends in operation 

before replacement at failure) is longer than the mean time to failure 

9) The repair costs depend on the number of failures  and are bounded non-decreasing functions 

4. Problem formulation 

      In this section we describe a stochastic model for a deteriorating failure-prone machine producing 

one type of products to meet the demand of customers.  The repairable machine goes through a finite 

number of successive failures before it is replaced by a new one. Therefore, we can assume that there 

exist a maximum number of failures N  that the machine can experience before replacement to 

guarantee the feasibility of the system. Thus, the number of failure  ( ) 0,1, ,n t N  . For a given 

number of failure, the inventory/backlog of the system, ( )x t , evolves according to the following 

differential equation:  

 ( ) ( ) ,     (0)x t u t d x x    (1) 

where x is the initial stock level and ( )u t is the production rate of the machine at time t ; with ( ) 0x t   

representing an inventory surplus and ( ) 0x t  a backlog of ( )x t . In the operational mode of the 

machine, we assume that max0 ( )u t u   where maxu  is its maximum production capacity. As the 

machine produces parts, its age increases. The machine age after the thn failure is given by: 

 1 0 0( ) ( ) ,     ,  0,   0n n n n na t a t t t t t t         (2) 

where nt is the instant of the thn failure and n is the virtual age of the machine after the thn repair given 

by the following expression: 

 1 1( ) ,     1 n n n na t t n         (3) 
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where   is known as repair intensity and is assumed to be constant in this paper ( 0 1  ). A repaired 

machine is as good as new if 0  ; otherwise its virtual age increase with the number of failures (i.e., 

0 1 2   <  n        ). The function ( )a t is an increasing function of number of produced parts, 

since the last restart of the machine. It is described by the following differential equation: 

 ( ) ( ( )),       ( ) 0a t f u a T    (4) 

where T is the last restart time of the machine (i.e., 1 20, , ,  T t t  ).  

      The machine modes can be classified as operational, denoted by 1; under repair, denoted by 2; under 

replacement, denoted by 3, and under preventive maintenance, denoted by 4. The mode of the machine 

at time t  is then given by  ( ) 1,2,3,4t    such that: 

1     if the machine is operationnal
2    if the machine is under repair

( )
3    if the machine is under replacement
4    if the machine is under preventive maintenance     

t









  

The machine may randomly be at any of the four modes over an infinite horizon as described in 

appendix A where the transition diagram and details on transition rates are provided.   

      Let ( ) 0ns x   be the age at which if a failure occurs, the machine is replaced. The replacement 

switching age ( )ns x is assumed to be a control variable for a given stock level x .  Moreover, since each 

manufacturing system that deteriorates with age is to be replaced in the long term, we can assume that 

there exists an upper bound on the replacement age, upM , which is very large (compared to 1( )s  ) 

beyond which the machine is systematically replaced.  

      For any state variable ( ( ), ( ), ( ))x t t a t , we can identify the action to be undertaken at the thn failure as 

follow: 

- If  and ( ) ( )nn N a t s x  , then the machine is to be repaired 

- Else the machine is replaced due to one of the following three situations: 

a. The number of failures exceeds N  

b. The age of the machine reaches ( )ns x  

c. The age of the machine exceeds upM  

The corrective maintenance of the machine is not perfect in the sense that the repair time increases 

with the number of failures. After corrective maintenance, the age is reset to the virtual age n . At the 



next failure, it will take much more time to repair the machine. Thus, repair activities depend on the 

machine’s repair history and the system is thus described by a Semi-Markov Decision Process (SMDP). 

Hence, we shall refer to  Q   as the transition matrix of the semi-Markov chain    . The control 

variables are the age ( )ns   after which the machine should be systematically replaced at the next failure, 

the production rate ( )u  and the preventive maintenance rate ( )  . Hence, the set of the feasible control 

policies ( ) , including ( ),  ( ) and ( )ns u    , depends on the machine mode    and is given by:  

       3
max( ) ( ), ( ), ( ) , ( ) 0, 0 Ind 1 , ( )n ns u s u u                   �  (5) 

The instantaneous cost associated to the considered planning problem is given by: 

      0( ( ), , , , , , ) Ind ( ) 2 Ind ( ) 3 Ind ( ) 4n r mg t a x n s u c x c x c t c t c t                 (6) 

where constants  and c c  are used to penalize inventory and backlog, respectively;  max(0, )x x  , 

max(0, )x x   , rc  is the repair cost, 0c  is a replacement cost, mc is the preventive maintenance cost; and 

the indicator function is defined as follows: 

 
1     if  ( ) is true  

Ind( ( ))
 0    otherwise

 
   


 

The production planning problem considered in this paper is the determination of the optimal control 

policy * * *( ( ), ( ), ( ))ns u    minimizing the expected discounted cost given by:  

 
0̀

, e | (0) , (0) , (0)( , , , , , ) E ( , , , , , , )t
n n dt x x a aJ a x n s u g a x n s u          

   (7) 

where   is a discount rate. The value function of the problem for a given number of failures n  is 

defined by: 

 
( , , ) ( )

( , , , ) inf ( , , , , , , )ns un
v a x n J a x n s u

 
  


  (8) 

The elementary properties of the value function ( )v  given by equation (8) are presented in appendix B. The 

optimal control policy  * * *( ( ), ( ), ( ))ns u     denotes a minimiser over ( ) of the right hand side of equation 

(B-1). This policy corresponds to the value function described by equation (8). Then, when the value 

function is available, an optimal control policy can be obtained as in equation (B-1). However, an analytical 

solution of equations (B-1) is almost impossible to obtain.  The numerical solution of the HJB equations 

(B-1) is a challenge which was considered insurmountable in the past. Boukas and Haurie (1990) showed 

that implementing Kushner’s method can solve such a problem in the context of production planning. The 

numerical methods used to solved the proposed optimality conditions are also presented in appendix B.  In 
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the next section, we provide a numerical example to illustrate the structure of the control policies. 

5. Numerical example 

 This section provides a numerical example to demonstrate the obtained results. The purpose is to show 

the effectiveness of the close loop production, preventive maintenance and repair/replacement switching 

policies for a deteriorating system with a feedback on the number of failures, the age of the machine and 

the stock level. The instantaneous cost is the one described by equation (A-1), presented in Appendix A, 

with values of parameters given later in this section. In this example, the mean time to repair the machine 

increase with the number of failure due to the repair time given by equation (3) with 21(1) 1000T  and 

0.5,  3b br d   (i.e., the mean time to repair the machine at the first failure is 1000 units of times and 

increase with the number of failures n ). The transition rate is 1
21 21 21( ) ( ) with (1) 0.001q n T n q  .  

The failure rate and the corresponding operational time is obtained from a Weibull distribution with 

scale parameter 0.05   and a shape parameter 3  . In addition, max 0.4u  , 0.25d  , 31 10q  , 

41 0.25q  , 0.01  . The other parameters are presented in table 1.  

0c  rc  mc  xh  ah  c  c     

20000 100 10 0.5 1 2 150 0.05 0.0001 0.1 

Table 1. Parameters of the numerical example 

The computational domain D  is defined by: 

  , , : 5 15,  0 100,  0 20D x a n a a n       
 

The policy improvement technique is used to solve the system of four equations obtained from (B-1 for 

each mode of the machine.  The obtained results are presented in this section to clearly illustrate the 

production, preventive maintenance and repair/replacement switching policies. 

a) Production policy 

The optimal production policy *( , , )u a x  , illustrated by the figure 1(a), indicates the production rate, for a 

given number of failures n , for each stock level ( )x t , and each  age ( )a t  of the machine, 

 

 

 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
                         

                           (a):  *( , , )u x a        (b):  *( )nz   

 
Figure 1. Optimal production rate and its boundary  

 

To illustrate the optimal production policy, we use its boundary given by figure 1(b). The boundary of 

the optimal production policy is the optimal stock level *( )nz  such that, if the stock level in the system 

(.)x is less than the optimal stock level, the production should be at a maximum rate to reach the optimal 

stock level. Once the stock level in the system is equal to the optimal stock level, the production should 

be at the demand rate. If the stock level in the system exceeds the optimal stock level, then we do not 

produce. The optimal production policy recommends a production in zone uA to reach the stock level 

* ( )nz  and no production in zone uB .  

The optimal stock level is given by figure 2(a) for 1,2,6,9n   and by figure 2(b) for 9n  .  

 
 
 
 
 
 
 
 
 
 
 
 
                           (a):  Low number of failures     (b):  High number of failures 
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Figure 2. Optimal stock levels *( )nz   

 

 As in figure 2(a), when the machine has not yet had its first failure, while awaiting the first failure, the 

number of parts to hold in inventory is equal to zero. The corresponding curve matches with the line  

0x    and the zone uA  is inexistent. When the machine has experienced its thn failure, the number of 

parts to hold in inventory increases and attains a maximal value at *max( ( ))nz  . This maximal number of 

parts to hold in inventory increases with the number of failures until a given maximal number of 

failures, as can be seen in figures 2(a) and 2(b). The corresponding maximal number of failures in this 

example is 9, as shown in figure 2(b). Moreover, when the number of failures exceeds 9, the zone uA  

and zone uB  are constant.  

   As illustrated by figure 3, the production policy is characterized by three parameters 

1 2( ),  ( ),  ( )mA n A n z n such that: 

- if the age of the machine ( )a t is less than 1( )A n , the number of parts to hold in inventory is zero 

(i.e., * ( ) 0nz   ).  

- If the machine’s age ( )a t  is such that 1 2( ) ( ) ( )A n a t A n  , then the number of parts to hold in 

inventory must be brought from zero to ( ) mz n .  

- If the machine’s age reaches 2 ( )A n , the stock must be maintained at level ( ) mz n . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Production policy *z ( )n   parameters  



Figure 4 gives the production policy for several failure numbers. The number of parts to hold in 

inventory increases as the age ( )a t  and the number of failures n  increase.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
       

Figure 4. Number of parts to hold in inventory for each number of failures 
 
 
      The maximal number of parts to hold in inventory for several numbers of failures presented in figure 

5 increases from one failure to another. This is logical because if the machine is to be repaired, it will 

take a greater amount of time. The optimal policy recommends holding a small number of parts in 

inventory after failure 9 because the machine will be renewed when failure 10 occurs.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Maximal number of parts ( ) mz   

 

Based on the results from figures 1 to 5, the production rate is given by the following machine failure 

dependent hedging point:  
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*
max

* *

 if ( ) ( )

(1, , , )         if ( ) ( )

0         otherwise

n

n

u x t z

u a x n d x t z

  
  



                 (13) 

with    

1
*

1 2

2

0                    if ( ) ( )

( ) ]0, ( )[    if ( ) ( ) ( )

( ),            if ( ) ( )
n m

m

a t A n

z z n A n a t A n

z n a t A n


    
 

 

It is important to note from equation (13) that when 1( ) ( )a t A n , the stock level should be brought from 

0 in order to reach ( )mz n at 2 ( ) ( )a t A n . The stock level is maintained at the value ( )mz n  
when 2 ( ) ( )a t A n . 

b) Preventive maintenance policy 
 
      The obtained optimal preventive maintenance policy is presented in figures 6(a), 6(b) and 6(c  

 
 
 
 
 
 
 
 
 
 

(a): Before 1 failure     (b): Before 4 failures 
 
 
 
 
 
 
 
 
 
 
 

(c):  Before 10 failures 
 

Figure 6. Preventive maintenance policy *( )   
 

). It shows that when the machine has not yet experienced its first failure (figure 6(a)), a preventive 

maintenance action is not recommended. Conversely, when the number of failures increases (figures 



6(b) and 6(c)), machine age dependent preventive maintenance actions are recommended. However, it 

depends on the age of the machine. Throughout the rest of the paper, we use the boundary of the optimal 

preventive maintenance, namely Trace of PM, present in figure 7 to analyze the evolution of the optimal 

preventive maintenance policy. The boundary ( , )T x n of the optimal preventive maintenance policy 

divided the plan  ( , )x a  in two zones:  

- In zone A , it is recommended to preventively send the machine to maintenance.  

- In zone B , the optimal preventive maintenance policy consists of not proceeding to a preventive 

maintenance of the machine.  

      
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure  7. Trace of the preventive maintenance policy (.)T  
 

The Trace of PM is presented in figure 8 for different number of failures.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure  8. Boundary of the preventive maintenance policy for several failures 



15 

When the machine has experienced less than 3 failures (indicated by arrow 1 in figure 8), the zone A  is 

non-existent. There is no preventive maintenance action before the 3th failure. The zone A  appears 

between failure 3 and failure 4, as indicated by arrow 2 in figure 8. It then increases, as indicated by 

arrow 3, and attains a constant value indicated by arrow 4, from failure 6 to failure 9.  

     The preventive maintenance actions are triggered according to a machine age dependent policy 

described in figures 6, 7 and 8. Such a policy states that preventive maintenance should be performed at 

rate * ( )  given by the following equation:  

                          *   if ( ) ( );  i.e., the zone B  is active
(1, , , )

  otherwise;  i.e., the zone A  is active

a t T
a x n  







 

 


               (14) 

where ( )T  is the age limit for preventive maintenance before the thn  failure of the machine.  

 
c) Repair/replacement switching policy 
 
The obtained repair/replacement switching policy * ( )ns x is presented in figures 9(a) and 9(b).   

 
 
 
 
 
 
 
 
 
 
 
 
 

                                        (a):   * ( )ns        (b):  snT  

 
Figure  9. Repair /replacement policy and its boundary 

 
      From figure 9(a), the age * ( )ns x  over which the machine should be replaced if a failure occurs, 

decreases with the number of failures and increases with the stock level. The age * ( )ns x  is equal to 0 

when the machine has experienced 9 failures. It means that while awaiting the 10th failure, the 

replacement age is 0, no matter the stock level. The machine will experience a maximum number of 9 



failures before systematic replacement at the next failure, no matter its age and the stock level. Hence, 

* 9mN  .  

       The boundary of the repair/replacement switching policy, denoted by snT  is presented in figure 9(b). 

Such a boundary divides the plan ( , )x n in two zones: 

- In zone BSn , the machine is systematically replaced if a failure occurs. 

- In zone ASn  , the machine is repaired if a failure occurs above the replacement age * ( )ns x . 

Let ( , )nR a x denotes a function with value 1 if a repair action is undertaken after the thn failure; and 0 if 

not. Based on the above results and with such a notation, the repair/replacement switching policy is 

given by the following expression: 

                          
*1  if ( ) ( );  i.e., the zone A  is active

( , )
0  otherwise;  i.e., the zone B  is active

n Sn
n

Sn

a t s x
R a x

  


               (15) 

with * ( )ns x  given in figure 9(a).  

    In the next section, we will confirm the structure of the obtained control policies through a sensitivity 

analysis and illustrate the usefulness of the proposed approach. 

6. Sensitivity and Result Analysis 

     A sensitivity analysis is presented in this section on cost parameters to confirm the structure of the 

obtained control policies given by equations (13)-(15) and to illustrate the contribution of this paper. The 

sensitivity of the control policies are analyzed according to the variation of the cost of repair, the cost of 

replacement and the cost of preventive maintenance. 

a) Variation of the repair cost 

Figure 10(a) illustrates the maximal number of parts to hold in inventory for four replacement cost 

values 5,  10,  20 and 30rc  . The results show that the variations of the repair cost have no significant 

effect on the threshold value ( )mz   but they affect the repair/replacement switching policy as shown in 

figure 10(b).  From figure 10(b), when the repair cost varies and takes the values 5, 10, 20 and 30, the 

machine is systematically replaced after the 13th , 10th , 7th and 6th failures, respectively. The trend is then 

to replace the machine early when the repair cost increases. Thus, if the machine is to be replaced at the 

next failure, the number of parts to hold in inventory while awaiting that failure is not high.  
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    The preventive maintenance policy, shown in figure 10(c), is significantly affected by the variation of 

the repair cost. The area A  increases with the repair cost, that is, as repair costs increase, the 

preventive maintenance is recommended more often.   It is clear from the above results that the repair 

costs significantly influence the obtained optimal control policies. The machine is replaced earlier (it 

experiences a lower number of failures) when the repair cost increases, and the optimal threshold 

depends on the number of failures the machine experiences and the preventive maintenance area 

increases. 

 
 
 
 
 
 
 
 
 
 
 
                                      (a): ( )mz n      (b): Boundary of ( )ns   

 
 
 
 
 
 
 
 
 
 
 

(c): ( )T   for a given failure number n  
 

Figure  10. Variation of the repair cost 
 

b)     Variation of the replacement cost 

     The variation of the replacement cost 0c  affects the optimal threshold stock level as shown in figure 

11(a). After a certain number of failures, the threshold level is significantly different from one 

replacement cost to another. For a replacement cost value of 5,000, from the 5th failure, there is no need 

to stock parts, while for a replacement cost value of 20,000, products should be stocked up to 9 failures.  



      Further, when the replacement cost is 5,000, as illustrated in figure 11(b), the machine is 

systematically replaced at the 6th failure. From figure 11(c), we notice that there are only three curves 

instead of four curves given that the curve representing the value 0 5,000c   is not illustrated. This is 

because no preventive maintenance is recommended when replacement cost is 5,000. This observation is 

logical in that, since the replacement is not expensive, it is better to replace the machine with a new one 

as compared to sending it to preventive maintenance and then expecting another failure. 

 
 
 
 
 
 
 
 
 
 

(a): ( )mz n                                              (b): Boundary of * ( )ns   

 
 
 
 
 
 
 
 
 
 
 
                                          (c):     ( )T    for a given failure number n    

 
Figure  11. Variation of the replacement cost 

 

c)     Variation of the preventive maintenance cost 

    The variation of the preventive maintenance cost mc  has a relatively small effect on the production 

and repair/replacement policies, as shown in figures 12(a) and 12(b). On the other hand, it significantly 

affects the preventive maintenance policy, as illustrated in figure 12(c), where we observe that for a high 

preventive maintenance cost value ( 300mc  ), the area where a preventive maintenance is 

recommended is reduced. 



19 

 
 
 
 
 
 
 
 
 
 
 
 
 

                           (a): ( )mz n                                             (b): * ( )ns   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

        (c): ( )T   for a given failure number n  

 
Figure  12. Variation of the  preventive maintenance cost 

 
     These conclusions on the influence of preventive maintenance cost on production and preventive 

maintenance policy are close to those obtained by Gharbi et al. (2007). They observed, when 

formulating an analytical model for the joint determination of an optimal age-dependent buffer 

inventory and preventive maintenance policy in a production environment, that increasing preventive 

maintenance costs reduces preventive maintenance frequency and have no significant effect on the trend 

of the production policy as in this paper. 

 
 



7. Discussions and extensions  

It is important to note that in many situations, the dynamics of several variables change after 

breakdowns as a result of the machine degradation phenomenon. As shown in the above results, taking 

into account some degradation with age after a machine failure leads to a policy comprising several 

critical threshold values, which increase from one breakdown to another. The results obtained indicate 

that the optimal production, repair/replacement and preventive maintenance policies for the considered 

manufacturing system are characterized by a special structure. Such a structure is defined by: 

- three parameters for production (i.e., 1 2( ), ( ), ( )mz n A n A n ), 

- two parameters for the repair/replacement switching policy (i.e. ( ),n ms x N )  

- one parameter for the preventive maintenance policy (i.e. ( )T  ).  

    The overall control policy given by equations (13), (14) and (15) is completely defined by the values 

of six parameters 1 2( ), ( ), ( )mz n A n A n ), ( ),n ms x N  and ( )T   for production, repair/replacement switching 

and preventive maintenance policies. 

      For a given stock level, the structure of the optimal repair/replacement policy is an extension of the one 

obtained by Makis and Jardine (1993) and Love et al. (2000). As shown in section 5, their results appear as 

a particular case of the repair/replacement switching policy presented in this paper. Our results state that if 

at the thn   failure, the age of the machine is above a certain critical value, the machine should be replaced. 

Otherwise, an imperfect repair should be undertaken. The repair/replacement policy present in this work is 

more realistic and appropriate for manufacturing systems because it takes into account the stock level in the 

system, the rate at which parts should be produced and a preventive maintenance policy.  

     Through the observations from the sensitivity analysis, it clearly appears that the proposed approach, 

based on a simultaneous control of production, repair/replacement and preventive maintenance strategies, 

provides more realistic results in the context of stochastic manufacturing systems. For a more complex 

manufacturing system consisting of m machines, producing k  different part types, the control policy 

depends on 6 m k    parameters  The solution of HJB equations (as in equation (12)) is almost impossible 

for large  and m k  since the dimension of the numerical scheme to be implemented increase exponentially 

with the complexity of the system. For the aforementioned problem (i.e., with  and m k ), a combination of 

the control theory and the simulation based experimental design as in Gharbi and Kenné (2003) can be used 

to obtain a near optimal control policy.  This could give the possibility to develop a more general model in 
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production planning including capacity limits, multi-product management and uncertainties on product 

demands.   

8. Conclusion 

       In this paper, a production, repair/replacement and preventive maintenance planning problem in 

manufacturing systems has been studied. The objective of the study was to determine how to produce 

while the machine is in operation, when to replace versus repair the machine if a failure occurs and 

when to perform a preventive maintenance, if any, in order to minimize the overall incurred cost. Our 

formulation included mode- and control-dependent jump rates, and allows us to represent the increasing 

probability of failures due to machine aging and increasing repair time resulting from imperfect repair 

activities. We used reset functions, which permit repair and preventive maintenance activities to restore 

the machine’s age to level 0, and replacement, which provides a new machine. Thus, we extended the 

repair and replacement switching age control model to the case where production and preventive 

maintenance rates are controlled. Due to the fact that the repair activities of the machine depend on the 

repair history, we proposed to use a semi-Markov decision process to determine the optimal policies. 

We provide a numerical example, and through a couple of sensitivity analyses, we showed that the 

structure of the results obtained is maintained.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix A.  

The diagram in figure A-1 illustrates the transitions between different modes of the machine.  

 

 

 

 

 

 

 

 

 

 

 

Figure A-1. State transition diagram 

The transition rates ,  ,q    , are described as follow:  

- The failure rate 12 ( ( ))nq a t  and the replacement rate 13( ( ))nq a t of the machine depend on its 

age ( )a t  and are obtained from a machine age dependent Weibull distribution.   

- The machine is replaced at a constant rate 31q .  

- The repair rate 21( )q n
 
is the inverse of 21( )T n    To define 21( )T n , let 21( )t n be the repair time after 

the thn failure, and 21( )T n  the expectation of 21( )t n . The sequence  21( ),  1,2, ,t n n N  forms a 

non-decreasing arithmetic-geometric process with parameters 0bd   and 0 1br  . We have for 

example 21 21E( (1)) (1) 0t T  and 21(1) 0T  means that the repair time is negligible. As in Leung 

(2006), the non-decreasing repair time 21( )T n is given by: 

                         

21
21 1

(1)
( ) ( 1) ,   1, 2, ,bn

b

T
T n n d n N

r                                                   (A-1) 

- The transition rate from operational mode 1 to preventive maintenance mode 4 (i.e., 14 ( )q   ) 

is a control variable. The inverse of ( ) 
 
represents the expected delay between the decision to 

trigger preventive maintenance actions and the effective switch from operational to preventive 

1 

2 
 

 21q  

 

12 ( )q 
 

22q  

4 

    14 ( )q    

      41q  

44q  3 
       13q  

       31q  

33q  

11q  
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maintenance mode (see Boukas and Haurie (1990) for details). The following constraints hold 

for the preventive maintenance jump rate: 

( )              (A-2) 

                 where  and    are the minimal and maximal  preventive maintenance rates of the machine.  

- The machine mode changes from preventive maintenance to operational mode at a constant 

rate 41 q . 

 Let  ( )( ) qQ     denotes a 4 4  matrix such that: 

 ( )

( ) 0,   

( ) q

q

q


 
 

 




  
     

 The machine will be able to meet the demand rate d over an infinite planning horizon and reach a 

steady state, at a given machine age na , if:  

max 1 ( )nu a d           (A-3) 

The machine age dependent limiting probability of the operational mode 1, for a given number of 

failures n , is shown to be 1

( ) 3121 41
( ) ( ) ( )12 13

( ) 1/ 1n qq n q
q a q aa    

   
 

. Thus, 1 ( )n  depends on the decision 

variables as the transition rates are controlled through preventive maintenance. By controlling ( )  , we 

act on the mean time before preventive maintenance. The system capacity is then described by a finite 

state semi-Markov chain that depends on the preventive maintenance policy. 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix B.  

      The properties of the value function and the way to obtain the Hamilton-Jacobi-Bellman (HJB) 

equations can be founded in Kenné et al. (2003). Such equations describe the optimal control policies 

(optimality conditions) for production, repair/replacement and preventive maintenance problems. 

Regarding the optimality principle, we can write the HJB equations as follows: 

  
( , ) ( ) ( )

( , , ) ( ) ( , , )
min min ( ) ( ) ( )( , , , ) ( ,0, , ( ) ( , , , )

nu s

v z n da t v z n
g u d q

a dt x
v a x n v x n v a x n

    

     
  

                     
  (B-1) 

where   , 
-

-
0         if ( ) 1 and ( ) 3   

( ) 1    if ( ) 2,3 and ( ) 1 
         otherwise  

n n
n

   
    




  
   


 ( )v

x



  and ( )v

a



  are the partial derivatives of the value function ( )v   with respect to x  and to a ; and 

 denote the first jump time of ( )t . 

             Let us now develop the numerical methods for solving the optimality conditions given by equation 

(B-1) by the adaptation of Kushner’s technique as in Kushner and Dupuis (1992).  Let xh  and ah  be the 

finite difference interval of variables x  and a  respectively. The main idea of the approach consists in 

approximating ( , , , )v a x n  by a function ( , , , )hv a x n  and the first-order partial derivatives of the value 

function ( )v

x



   and ( )v

a



 , using the following expressions: 

                     
   

   

1

1

, , , , , ,        if  ( ) 0
, , ,

, , , , , ,       otherwise

h h
x

x

h h
x

x

h
v

x

h

v a x h n v a x n u t d
a x n

v a x n v a x h n

 


 

     


   
 

   


 
               (B-2) 

                               1, , , , , , , , ,h h
a

aa h
v a x n v a h x n v a x n    

 
                                         (B-3) 

where ( , )x ah h h . With approximations given by equations (10) and (11) and after some manipulations, 

the HJB equations can be rewritten as follows:  

( , ) ( ) ( )

( , , , ) ( , , , ) ( , , , )
( ) 1

min min
( ) ( , , , )(1 ) (1 )

( )
( , , , )

n

h h

h h
x x x x a h a

h
h

u s
h

v a x h n v a x h n v a h x n
g

P v a x n

P P P
v a x n

 

   
 

  

 


 

 

 
  

            
     

   


  

 (B-4) 

where  
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  if  - 0   if  - 0| | ( )
| | ,  ( ) ,    ( ) ,  ( )= ,  P ( )

0        otherwise 0        otherwise 
h x x ax h x h

x a h h

u d d u
u d u d qu d f u

q P P Ph h
h h

  
      

            
  

 

  

The system of equations (B-1) can be interpreted as the infinite horizon dynamic programming equation 

of a discrete-time, discrete-state decision process as in Boukas and Haurie (1990) and Kenné et al. 

(2003) for production, repair/replacement and preventive maintenance planning problems. The obtained 

discrete optimality conditions, described by four equations (i.e., one equation for each mode 

 1, 2,3, 4   ) can be solved using either policy improvement or successive approximation 

methods. In this paper, we use the policy improvement technique to obtain a solution of the 

approximating optimization problem. The algorithm of this technique can be found in Kushner and 

Dupuis (1992). 
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