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Abstract This paper examines the phenomenon of constraint singularity of a
parallel mechanism, as defined in a recent publication. We focus our
attention on the fact that constraint singularities are always singular
points of the configuration space of the kinematic chain. As such, they
separate distinct configuration space regions and may allow transitions
between dramatically different operation modes. All this is exemplified
by a multi-operational parallel mechanism that can undergo a variety
of transformations when passing through singular configurations.

1. Introduction
A constraint singularity is a configuration of a parallel mechanism

with n < 6 dof, where both the mechanism as a whole and the moving
platform have at least n+ 1 dof (Zlatanov et al., 2002). By definition, a
constraint singularity is always an IIM-type singularity (Zlatanov et al.,
1994) , i.e., a configuration with increased instantaneous mobility (IIM).

IIM-type (or uncertainty, Hunt, 1978) configurations are the singu-
lar points of the configuration space (C-space) of a mechanism. The
C-space is the set of all possible configurations, i.e., the feasible arrays of
joint-parameter values. For a closed-loop kinematic chain, the C-space
is a subset of the joint-space manifold, but not necessarily a submani-
fold; it may have points with no Euclidean neighbourhoods. These C-
singularities are associated with what can be described as “branching”
or “self-intersection” of the C-space. A motion starting at such a point
can end up in any one of the meeting C-space “sheets”. The behaviours
of the mechanism in bordering nonsingular regions can be quite differ-
ent. At a constraint singularity the adjoining regions of the C-space can
be expected to sometimes allow different systems of platform freedoms
and, therefore, result in distinct modes of operation of the mechanism.

This paper studies how constraint and IIM singularities connect neigh-
bouring C-space regions. The example used is a parallel chain that un-
dergoes fascinating transformations when moving through a constraint
singularity from one 3-dof part of its C-space to the next.
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Figure 1. The equal-length four-bar mechanism, the C-space and its singularities.

2. C-space Singularities as Branching Points
Possibly the simplest interesting example of a C-space singularity is

a flattened four-bar linkage. As it was pointed out in (Zlatanov et al.,
2002), this IIM configuration is a constraint singularity if the output
link (the end-effector) is the coupler (since it has two transitory dof).

When all four bars have different lengths, the C-space is homeomor-
phic to the figure eight, i.e., topologically it may be described as two
circles joined by a single common point (the flattened configuration).
The C-space has two disjoint open connected nonsingular parts, and the
mechanism can switch from one to the other (only) by passing through
the IIM singularity. The two regions correspond to two different 1-dof
sets of poses of the coupler. However, in both regions the allowed in-
stantaneous coupler motion will be of the same type—an instantaneous
rotation. (The screw system of the output freedoms remains the same.)

When all four bars are equal (Fig. 1), there are three constraint singu-
larities, where the coupler has two instantaneous dof. The C-space of a
four-bar can be easily illustrated since it has a faithful projection on a
torus, a configuration being defined in a unique way by (α, β), the base
joint angles. Three smooth curves on the torus (α = 0, β = π, and
α = β) form the C-space; their intersection points are the singularities.
These three points divide the C-space into six non-singular regions.

In Fig. 1, two distinct regions of the C-space may allow completely
different coupler motions. While on one of the curves, α = β, (i.e., in two
of the C-space regions) the coupler remains parallel to the base, on each
of the other two curves (four regions) the coupler rotates about a point



fixed in the base. At two singularities the mechanism has the options of
entering two translational and two rotational regions, while at the third
point the four-bar can choose among four rotational regions. We could
say that the mechanism can be used both as a translational and as a
rotational device and the transition between the two modes of operation
may occur when the device goes through a constraint singularity.

Such “multi-functionality” is not limited to four-bars.

3. The DYMO Parallel Mechanism
The mechanism in Figs. 2–4 is a parallel chain with three URU legs.

The centres (A, B, C) of the three platform U-joints form an equilateral
triangle and so do the base U-joint centres. For each leg, we denote the
revolute-joint screws by %P

i , i = 1, . . . , 5, P = A,B,C. The three base
joint axes, %P

1 meet (to form a “Y”) at the base centre, O, and so do the
last R-axes, %P

5 , at the platform centre, Q. The three intermediate R
joints in each leg are parallel. The base frame is at O with a (vertical)
z axis normal to the base plane πb. We will refer to the manipulator as
the 3-URU Double–Y Multi-Operational (DYMO) parallel mechanism.

Since there are 15 joints, all revolute, the C-space is a three-dimensional
subset of a 15-torus. To avoid unnecessary complexity, we will not dis-
tinguish between configurations with the same pose of the platform and
directions of the axes of %P

3 (recall that %P
2 ‖ %P

3 ‖ %P
4 ). Given a generic

platform pose, there are 4 different solutions for the posture of each
leg, and hence 64 different configurations of the mechanism as a whole.
The distinction between these will not be essential for our purposes.
Therefore, we assume that the ambient manifold, where our C-space is
embedded, is the Cartesian product of SE(3) and 3 copies of the pro-
jective line, RP 1. (We do not distinguish between %P

5 -joint angles that
differ by 180◦, hence the C-space of the joint is RP 1 rather than a circle.)

We will now proceed to examine the C-space of the kinematic chain
in a way similar to the analysis of the folding four-bar in Section 2.
The goal is to identify the C-space singularities and the non-singular
C-space regions. We want to know which C-singularities are constraint
singularities, what end-effector motions are possible in each non-singular
region and what forms of transition exist between these regions.

4. Two Translational Mechanisms
It is no surprise that the mechanism can be translational in part of

its C-space (Fig. 2a). Translational manipulators of this type are well
known (Appleberry, 1992, Tsai, 1996). Their singularities were studied
by Di Gregorio and Parenti-Castelli, 1998.
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Figure 2. The DYMO chain in (a) translation mode and (b) orientation mode.

When a leg, P , is nonsingular (%P
i are linearly independent) it imposes

one constraint, ζP , on the platform. The wrench ζP is either a force, ϕP ,
parallel to %P

3 and passing through the intersection of %P
1 and %P

5 , or, if
%P

1 ‖ %P
5 , a pure moment, µP , perpendicular to all %P

i . The total con-
straint system is W = Span (ζP |P = A,B,C) and the platform freedom
system is T = W⊥. If a leg is singular, it imposes additional constraints.
A constraint singularity occurs when dimW < 3. A C-singularity also
occurs when there are singular legs leading to d instantaneous dof in
the legs with a fixed platform and dimW < 3 + d. We will not consider
configurations where a leg is fully extended or folded, but will examine
cases with %P

1 = %P
5 (for exactly one or all three P ) where a singular leg

can freely spin when the platform is fixed.
Let the platform have zero orientation (parallel Ys), and no leg be

singular, Fig. 2a. Then, ζP = µP , ∀P . It can be shown that the three
moments µP will remain linearly independent unless one of two things
happens: (a) Q ∈ Oz; or (b) the platform plane, πp,coincides with the
base, πp ≡ πb, i.e., Q ∈ πb. The intersection of (a) and (b) must be
treated as a separate case (c) Q ≡ O. We can conclude that once the
platform is assembled with zero orientation this will not change until a
configuration defined by conditions (a) or (b) is reached.

Case (a) corresponds to a constraint singularity described in (Zlatanov
et al., 2002). It is an IIM configuration where both the platform and
the mechanism as a whole have five instantaneous dof; T includes all
translations and the rotations with horizontal axes.

In case (b) (πp ≡ πb), µP , P = A,B,C, become coplanar and the
platform acquires the capability to rotate about any vertical axis. The
mechanism as well as the platform will generally have 4 dof. If Q ∈ %P

3

for one P , then the mechanism will still have 4 dof but the platform



will have only 3 dof. Indeed, when Q is on the base Y, but not at O,
∞1 configurations for a fixed platform are obtained while the leg spins.
However, only one of those configurations, where %P

3 ‖ Oz, ∀P , is a C-
space singularity. In this case the mechanism has 4 dof but the platform
only three, two horizontal translations and a vertical rotation.

Case (c), when the two Ys coincide, corresponds to infinitely many
translation-mode configurations. Indeed, all legs can spin while base
and platform coincide forming a 3-torus of C-space points. Not all are
adjacent to translation-mode regions—these points form a 2-surface on
T 3. This situation is further addressed in Section 7.

Note that there are C-space singularities, of cases (b) and (c), for all
positions of Q in πb. Yet, this does not disconnect the set of nonsingular
zero-orientation translation-mode configurations. There exist paths that
avoid C-space singularities and join configurations on both sides of the
base plane. For such paths, Q passes through πb in a point along the base
Y (but not O). As we pointed out above, such configurations are not
C-space singularities as long as the single singular leg is not in the base
plane. Moreover, note that each such configuration has a neighbourhood
of non-singular C-space points. Hence, the non-singular C-points with
zero platform orientation form a connected open set.

It is now time to observe that everything written since the beginning
of the present section is valid if “zero orientation” becomes “180◦-yaw
orientation”. Hence, there are two translation-mode regions (with dif-
ferent orientations). They have no common boundary points but, as we
will see, there are continuous C-space paths between them.

5. An Orientational Mechanism
In (Zlatanov et al., 2002) we discussed a 3-UPU parallel wrist pro-

posed by Karouia and Hervé (2000) and analyzed by Di Gregorio (2001).
The link-geometry condition is that the base R joints intersect in a com-
mon point and so do the platform R joints. DYMO satisfies this condi-
tion, therefore it has an orientation mode of operation (Fig. 2b).

Assume that Q ≡ O and no leg is singular, Fig. 2b. For each P , the
constraint ζP = ϕP is a force through O parallel to %P

3 . When ϕP , P =
A,B,C, are linearly independent, the freedom system, T , is the 3-system
of all rotations about O. When the forces ϕP become coplanar the
platform also acquires the freedom to translate in a direction orthogonal
to the plane of the constraints. Such a configuration will then be a
constraint singularity since the platform will have at least 4 dof (if all
three forces are parallel, which can happen only if πp ≡ πb, the platform
acquires two horizontal translations for a total of 5 dof).



Careful analysis reveals that the C-space singularities adjacent to the
orientation mode are the configurations with zero-yaw platform orien-
tation, i.e., they are obtained from orientation zero by a single (finite)
rotation with a horizontal axis (a tilt in the vertical plane of some az-
imuth). All such orientations correspond to C-space singularities.

However, if the axis of the finite (non-zero) tilt is along %P
1 , then

there are infinitely many configurations (due to leg spinning) and not
all of them lead to coplanar constraints and singularity. Only one of
the orientations of the spinning leg (for every half-turn) is a constraint
singularity, while for any other the configuration is non-singular.

The exact singularity identification for this mode was performed using
the modified Euler angles as introduced in (Bonev and Ryu, 1999).This
formulation yields simpler symbolic expressions and also helped to estab-
lish that the IIM singularities divide the set of non-singular orientations
of the platform into two disjoint connected components (with positive
and negative yaw angle, respectively). However, the C-singularity sur-
face does not disconnect the set of non-singular configurations in the
orientation mode. This is in close analogy to the translation mode and
its singularities with Q ∈ πb. There are non-singular orientation-mode
paths that cross the singularity surface from positive to negative yaw via
any configuration where the tilt axis is one of the base R-joints. Thus,
the non-singular orientation-mode C-space points form a connected set.

We can now resolve one transition question from the previous section.
Assuming that the leg length is sufficient, it is possible to move contin-
uously between two translation-mode configurations with opposite yaw
angles via the orientation mode.We will see later that this is not the only
route between the two translation modes.

6. Two Mechanisms for Planar Motion
In translation mode, we saw that if the platform is put in πb it acquires

as a fourth dof a vertical-axis rotation. In orientation mode, when ϕP ,
P = A,B,C, are vertical, the platform gains the horizontal translations.

In both cases, T includes as a subsystem the planar motions, E . It is
obvious that the capacity for planar motion is not transitory and that
finite planar motions can originate from the described configurations.
Indeed one glance at the mechanism should suffice to immediately rec-
ognize the features of a 3-RRR planar parallel manipulator (Fig. 3a).

If πp ≡ πb and no leg is singular, %P
i , i = 2, 3, 4, P = A,B,C are

vertical. Therefore, each ζP is either a vertical force or a horizontal
moment, and T ⊃ E = E⊥ ⊃ W. It must be observed that the above
is true not only when the platform is in πb “face up” but also “face
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Figure 3. The planar mode: (a) face up; (b) C-singularities face down.

down”, although then the 3-RRR planar parallel mechanism will be less
recognizable since the base and platform attachment points will be in
reverse circular order. So there are two planar modes, which obviously
do not have common adjacent configurations, yet it is still possible to
go with a continuous motion from one to the other via the orientation
mode. We will see later that there is another route as well.

If O 6≡ Q, W degenerates when either: (a) ζP = ϕP , ∀P , and the
two Ys intersect in three collinear points; (b) ζP = µP , ∀P (the Ys are
parallel); (c) say ζA = µA and the other two are forces whose plane is
perpendicular to µA. Cases (a) and (c) require the two Ys to be mirror
images and occur only when πp is face-down, (b) is possible only face-up.

Therefore, the face-up C-singularities occur when: (i) the platform
orientation is ψ = 0 or ψ = ±π, (constraint singularities adjoining
the translation mode if no pair (%P

1 ,%
P
5 ) is aligned); (ii) O ≡ Q, (C-

singularities adjoining the orientational mode). The C-singularities di-
vide the face-up planar mode into two regions (ψ < 0 and ψ > 0).

It can be shown that the face-down singularities correspond to the
following platform poses. For every orientation, the singular locations of
Q are given by a pair of perpendicular lines through the origin. Fig. 3b
shows such a cross at O and two singular poses (AbBbCb is the base).
The orientation of this cross changes with the orientation of the platform,
only twice slower. The singularity surface formed by the rotating cross
divides the face-down planar mode into four component regions. In both
(a) and (c) the platform acquires a rotation about a horizontal axis. This
is both the line of the application points of the constraint forces and the
axis of symmetry of the two Ys (the dash-dot lines for each pose, Fig. 4b).
These singularities border neither translational nor orientation regions.
They allow the mechanism to escape into a mixed mode of operation.



(a) (b)

Figure 4. The DYMO chain in (a) lockup mode and (b) mixed mode.

7. Two Lockup Poses
Let Q ≡ O and the platform be horizontal, face-up, and with ψ = 0

or ψ = π (Fig. 4a). Since all legs can spin independently, there are
two 3-tori of such configurations. For most of them, the mechanism
has 3 dof but the platform cannot move. Each T 3 has ∞3 dead-point
configurations where the platform is “stuck.” We can say that the tori
are two separate “modes of operation,” with T = 0.

In this mode, there are C-space singularities where the platform ac-
quires a freedom and can escape the lockup pose. Each leg imposes two
constraints, a force, ϕP , and a moment, µP . There are two types of
IIM singularities: (a) the three µP are co-planar and the platform can
escape into orientation mode; (b) the ϕP are coplanar and the platform
can translate in the z direction and switch to translation mode. There
are two singularities where the platform acquires 3 dof, the mechanism
as a whole has 6 dof and both (a) and (b) are satisfied. When all %P

3 are
vertical, the platform has 3 dof and it can escape with any planar mo-
tion. When %P

3 are horizontal, the platform also has 3 dof: the rotations
with axes in πb and the vertical translation.

8. A New Mechanism with Mixed Freedoms
At several occasions we described singularities where DYMO has in-

stantaneous motions which do not lead into the so-far listed operation
modes. In Section 4, case (a) (Q ∈ Oz,Q 6≡ O, zero orientation), the
singularity allows two rotational freedoms but it is not adjacent to the
orientational mode. Similarly, an orientation-mode constraint singular-
ity allows translations with non-zero tilt of the platform (Section 5). In
fact, these freedoms can be part of finite motions into C-space regions



with Q 6≡ O and πp ∦ πb, where the mechanism works as a new manipu-
lator with three mixed freedoms, Fig. 4b. (Yet, a similar chain appears
in (Hunt, 1973) as a constant velocity shaft coupling.)

It has been possible to describe completely the configurations in the
mixed mode. The process is very interesting but the description cannot
be made within the limits of this paper. Below we present an overview
of the results and invite the reader to visit the ParalleMIC website, where
a more detailed analysis as well as video demonstrations can be found
(http://www.parallemic.org/Reviews/Review008.html).

A key in the analysis of the mixed mode is the observation that for any
feasible configuration with Q 6≡ O and πp ∦ πb the translation along OQ
is a platform freedom. This is a finite freedom and it provides a route
of entry from mixed into orientation mode. The freedom and constraint
systems in a mixed-mode configuration are given by the same 4th special
screw 3-system. It is composed of all zero-pitch screws in the plane
bisecting πp and πb, as well as the infinite pitch screws perpendicular to
it and parallel to OQ.

The mixed-mode configuration set is axisymmetric with respect to Oz.
For every azimuth, there are configurations with arbitrary tilt between
0◦ and 180◦. For all configurations with given azimuth and tilt (φ, θ), Q
is along a ray from O with azimuth and tilt (φ, θ/2).

Thus, along the vertical axis we have tilt zero; along rays inclined at
45◦ are the configurations with tilt 90◦, i.e., with vertical platform facing
away from the central axis; and along rays in πb the tilt angle is 180◦, i.e.
the platform is face down and entering the face-down planar mode. This
construction can be performed both starting with zero orientation and
with a platform yawed at 180◦ (about the platform normal). In other
words for every feasible configuration of the mixed mode there is another
with a platform rotated at 180◦ about its normal axis. Furthermore,
there are poses on both sides of πb.

The mixed-mode C-space singularities occur for: (a) Q ∈ Oz, adja-
cent to the two translation modes; (b) Q ≡ O, on the orientation mode
boundary; and (c) Q ∈ πb, common with the face-down planar mode.
Those in (c) disconnect the mixed-mode C-space into four adjacent re-
gions. The mixed mode provides connecting paths between the two
translation modes, as well as the face-up and face-down planar modes.

9. Conclusions
The analyzed mechanism has a configuration space with multiple 3-

dimensional regions separated by surfaces of C-space singularities. These
regions allow for five dramatically different types of platform motion, yet



transition between the modes of operation is possible without disassem-
bly. There is little doubt that this type of behaviour is exhibited by
many other mechanisms with reduced freedoms.
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