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Abstract—Video-based face screening is essentially a detection
problem where faces captured in video sequences are matched
against the facial models of individuals of interest. This problem
is associated with several operational challenges, from lighting
and pose changes, to natural aging of target individuals, and
to the limited availability of reference samples from changing
environments to design facial models. Some matchers proposed in
literature may be employed to adapt facial models of individuals
enrolled to the system in response to new reference samples. This
paper reviews and compares the performance of these matchers,
focusing on their ability for adapting to new data. An experi-
mental methodology is proposed to assess their performance for
video surveillance applications. This methodology is focused on
transactional and subject-based performance, and considers the
imbalance of positive and negative samples. Experiments are then
performed with the Canegie Mellon University Face in Action
video dataset, according to matching accuracy and resource
requirements. Results indicate that ensemble-based matchers
outperform traditional monolithic approaches, maintaining a
higher level of accuracy over time when adapting to new reference
samples.

I. INTRODUCTION

Video surveillance networks are comprised of a growing
number of digital IP cameras, providing massive quantities
of data. It is very difficult for human operators to analyze all
captured video sequences, even in moderately cluttered scenes.
Video-based systems for face recognition (FR) may be used for
the automated screening of faces captured in sequences against
a restrained list of target individuals, providing an important
function for decision support in enhanced surveillance and
security systems. These systems store a facial model for each
individual enrolled to the system, and a matcher compares fa-
cial regions to these models. The matcher produces a score for
each comparison between a facial region and acquired during
operations and a facial model, which is used on the decision
making process. A biometric model (BM) consists of a set
of one or more templates (genuine reference facial samples
acquired during enrollment process) or the set of parameters
of a neural or statistical classifier trained on reference samples.

Assuming that video streams are captured using one or
more cameras, a FR system performs segmentation to locate
and isolate facial regions of interest (ROIs) in each frame.
Invariant and discriminant features of each ROI are then
extracted and assembled into a feature pattern for matching

against the facial model of target individuals. Local feature-
based approaches apply a transformation on image pixels to
extract specific features from facial regions. Commonly used
local characteristics are features as eyes, ears, nose, and mouth.
On the other hand, holistic approaches consider all pixels of
the normalized ROI as features for FR, and data dimension
corresponds to the number of pixels of the ROI. To avoid
dealing with large feature patterns, holistic approaches (e.g.,
Eigenfaces or Fisherfaces) commonly use some techniques like
Principal Component analysis (PCA) or Linear Discriminant
Analysis (LDA) for dimension reduction.

Several challenges are present in FR for video surveillance
applications. Imbalanced data is representative of the presence
of considerable amount of negative samples. Biometric models
for target individuals are also not representative, because they
are designed using limited and incomplete data captured from
uncontrolled environments. Facial captures are then subject to
considerable variations due to limited control over operational
conditions when acquiring images from unconstrained scenes
(e.g., illumination, pose, facial expression, orientation and oc-
clusion). Moreover, physiology of the individuals may change
over time, either gradually (aging) or abruptly (illumination).
New informations, such as input features and output classes,
may suddenly emerge and previously acquired data may even-
tually become obsolete in dynamically changing environments.

In this paper, holistic based matchers available in the
literature are compared for video-to-video face screening ap-
plications that are subject to changing environments. Match-
ers are distance based template matching, Open Set TCM-
kNN (Transduction Confidence Machine- k-NN), Probabilistic
Fuzzy ARTMAP (in batch and incremental modes), Learn++
and Ensemble of Detectors (EoD). These matchers are em-
ployed to adapt facial models over time, in response to
newly acquired reference samples. The experimental method-
ology adapted for video surveillance applications relies on
the Carnegie Mellon Faces in Action (FIA) video data [1]
that mimics a passport checkpoint scenario. Performance is
compared both in terms of transaction and subject-based
evaluation. Finally, the methodology discusses imbalanced
class distributions and accounts for the availability of abundant
negative samples in the test environment.

The rest of the paper is organized as follows. Section II
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presents a brief overview of FR in video, including specific
challenges in video surveillance applications. In Section III
different matching techniques for adaptive biometrics are dis-
cussed. The experimental methodology for surveillance appli-
cations (data set, protocol and metrics) is depicted in Section
IV. Finally, simulation results are presented and discussed in
Section V.

II. FACE RECOGNITION IN VIDEO SURVEILLANCE

Assume that 2D images are captured in one or more video
cameras. FR in video involves several processing steps. First,
the segmentation process isolates the ROIs corresponding
to face appearing in each frame. Among a wide range of
techniques in literature, appearance-based methods for image
segmentation like the Viola-Jones algorithm, have been shown
to efficiently detect facial ROIs in video streams.

Next, the tracking function follows the movement or ex-
pression of faces across video frames, while the classification
function seeks to match input feature patterns to the face mod-
els of individuals enrolled to the system. Feature extraction
module then extracts specific characteristics. Kalman filters
or particle filters tracking features are typically the position
in frames, speed, acceleration, and track number assigned to
each ROI in the scene. On the other hand, classification relies
on invariant and discriminant features extracted from ROIs:
classification features are often image-based (e.g., LBP) or
pattern recognition-based (e.g., PCA).

Input pattern a is then compared to the facial model of
individual i stored within a biometric database, producing
a similarity score Si(a). A decision module then uses an
application specific threshold to produce a decision di = 1
if Si(a) ≥ γ, otherwise di = 0. Biometric matching may be
implemented using a statistical or neural network classifier
trained on reference data. With neural network classifiers,
for instance, the BM of individuals is defined by the neural
architecture and the synaptic weights. Finally, over a sequence
of video frames, the decision module may combine and
accumulate the responses from the tracking and classification
modules.

Several powerful techniques have been proposed for FR
in static 2D images [2]. A common approach to recognize
faces in video is to extend static image based techniques,
exploiting only spatial information on face images obtained
through segmentation on individual frames. The predominant
techniques are appearance-based methods like Eigenfaces, and
feature-based methods like Elastic Bunch Graph Matching [2].

FR systems for video may exploit spatio-temporal infor-
mation on the appearance and motion of faces detected in
a scene. The advantages of video FR include an increase in
contextual knowledge and data in video [3]. For example,
track-and-classify systems may combine spatial information
with information on motion and appearance of faces in a
scene [4]. Given a video sequence, the ROIs corresponding
to an individual may be tracked, and the responses may be
accumulated over time for improved performance. Regardless,

the performance of these techniques may degrade considerably
when applied in real-world video surveillance applications.

The collection and analysis of labeled biometric data from
individuals is often difficult given that the presence of the
individual is required, and older still images may not accu-
rately represent his current physiology. Classifiers are designed
during an a priori enrollment phase using sparse and unbal-
anced reference samples collected according to an unknown
data distribution. BMs are often poor representatives of faces
to be recognized during operations [5]. The underlying data
distribution corresponding to individuals enrolled to the system
is complex mainly due to inter- and intra-class variability, to
changes that occur during operations, to variations in capture
conditions, to the large number of input features and indi-
viduals, and to limitations of cameras and signal processing
techniques [6].

The performance of biometric systems may decline consid-
erably because state-of-the-art neural and statistical classifiers
employed for matching depend heavily on the availability
of sufficient representative reference data and relevant prior
knowledge, and such information is difficult to obtain in real
applications. In addition, new information may emerge over
time, and underlying data distributions may change gradually
or abruptly in the classification environment. Performance
may decline over time as BMs deviate from the actual data
distribution [5], [6]. However the capacity to adapt in response
to new reference data is not addressed in face recognition for
video surveillance.

Video surveillance problems are addressed as an open-set or
open-world problem, where individuals of interest are greatly
outnumbered by other unknown individuals in a scene. During
operations, the probability of seeing an individual of interest
in scenes may be quite low. Li and Wechsler [7] proposed
the Open Set TCM-kNN (Transduction Confidence Machine-
k-NN) for surveillance applications, which considers training
patterns from different classes to tune a global rejection thresh-
old. Tax and Duin propose a multi-classifier composed of one
class classifiers per person, in which posterior probabilities
are normalized to apply a common rejection threshold across
all people, but adapted to each distribution [8]. Ekenel et
al. progressively combine confidence scores of distance-to-
model and distance-to-second-closest schemes to estimate the
identity of individuals entering to a door [9]. Kamgar and
Parsi propose an approach based on the identification of the
decision region(s) in the feature space of individual specific
faces, by generating borderline images and projecting inside
and outside the decision region. In their approach they use a
dedicated classifier for each individual [10].

In other biometric applications like speaker recognition,
the use of a “Universal Background Model” is widely used
for better discrimination between target voice from all other
sounds [11]. It is built by selecting samples of the background
sound that characterizes a recording environment, and is used
to discriminate between the individual (speaker) of interest and
other sounds. In the same manner, the cohort model is a set of
samples selected from non-target samples from already known



voices to discriminate known individuals from other known
speakers. These cohort and universal models constitute an
important source of reference information to design matchers.

Data from individuals that are not in the cohort may improve
the system’s ability to detect individuals of interest, as well as
to reject the unknown individuals. In video surveillance ROIs
from several individuals may used in the construction of the
Universal Model (UM) for system design, which guarantees
the representation of unknown individuals during matcher
design.

III. ADAPTIVE BIOMETRIC MATCHERS

For accurate and timely screening of faces in video, it
is important to efficiently adapt facial models over time in
response to new training data from a changing pattern recog-
nition environment. Adaptive biometric systems in literature
traditionally incorporate newly-acquired reference samples to
update the selection of a user’s template from a gallery
via clustering and editing techniques. These systems seek to
improve representation of intra-class variations with a single
template [12]. Others have performed on-line learning of
genuine reference samples over time to update each user’s
single super template [13].

Biometric models maintained with self-adaptive or semi-
supervised learning strategies are initially designed during
enrollment using labeled training data, and then updated with
highly confident unlabeled data obtained during operations.
These strategies are, however, vulnerable to outliers, dispersion
and overlap in class distributions. Highly confident data should
be selected to minimize the probability of introducing imposter
data into updated BMs.

In this paper, supervised learning strategies for adaptation
in face based video surveillance are considered, and new data
samples are assumed to be analyzed and labeled by an operator
with expert knowledge of intra-class variations. If labeled data
becomes available, for instance, over multiple re-enrollment
sessions, or when operational videos from different cameras
are analyzed off-line, they can allow an operator to gradually
refine facial BMs.

In literature, some promising neural and statistical clas-
sifiers and multi-classifier systems have been proposed for
supervised incremental learning of new data, and provide the
means to maintain an accurate and up-to-date face model of
individuals [14]. For example, the ARTMAP and Growing
Self-Organizing families of neural network classifiers, have
been designed with the inherent ability to perform incremental
learning. In addition, some well-known pattern classifiers,
such as the Support Vector Machine (SVM), the Multi-Layer
Perceptron (MLP) and Radial Basis Function (RBF) neural
networks have been adapted to perform incremental learning.
FR in video surveillance corresponds to a series of detection
problems, one per person of interest, and this section reviews
classification systems for screening of faces appearing in video
feeds.

A. One-class classifiers

Classification algorithms that are designed using only sam-
ples from the positive class are called one-class classifiers. For
instance, template matching algorithms employ pixel intensity
values of an ROI as templates, and typically match using
the Euclidean distance to a single template (representing the
whole face) [15]. A single template (reference sample from the
individual of interest captured during enrollment) is commonly
stored to perform matching. For improved performance, sev-
eral templates per individual may be added incrementally to a
gallery, affecting a trade-off between accuracy requirements
and resources. The distance from the input pattern to the
closest template is then used to compute a score. When new
data becomes available, this approach updates the BMs by
storing the new templates in the database.

B. Two-class classifiers

Matchers may take advantage of negative samples (tem-
plates from other unknown individuals) to refine decision
boundaries between positive and negative templates. For in-
stance, training two-class statistical or neural network clas-
sifiers on both positive and negative reference samples may
allow to design more robust and compact matchers. A well
known incremental learning classifier is the ARTMAP family
of neural networks. In particular, Fuzzy ARTMAP integrate
a Fuzzy ART model to process analog and binary valued
inputs to the ARTMAP architecture. The probabilistic variant
proposed by Lim and Harrison in [16], combines the Fuzzy
ARTMAP learning to encode category prototypes and update
centers of mass of estimated class distributions. In this way, the
output prediction for an input pattern a for each category j is
represented as a hyper-spherical Gaussian probability density
function

p(a|Cj) = gj(a) =
1
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where the variance σj is the ratio of the squared minimum
Euclidean distance between wa−c

j and any other center M -
dimensional pattern, to the value of an overlap parameter r >
0. Then, the probabilistic neural network is used for probability
estimation of posterior probabilities using Equation 2.

P̂ (Cj |a) =
p(a|Cj)P (Cj)∑c
j=1 p(a|Cj)P (Cj)

(2)

where P (Cj) is estimated based on the training set. When
new data becomes available, PFAM learn it incrementally by
adapting its weights and architecture, as well as the parameters
of p(a|Cj) and P (Cj).

C. Multi-class classifiers with rejection option

A multi-class classifier designed to address the open set
problem in video face recognition is the Open Set TCM-kNN
proposed by Li and Wechsler in [7]. This matcher takes ad-
vantage of transductive inference to generate a class prediction



based on randomness deficiency. For an input pattern a, the
outputs (p-values) associated to each class y are estimated as

py(a) =
f(α1) + f(α2) + ...+ f(αl) + f(αynew)

(l + 1)f(αynew)
(3)

where f is a monotonic non-decreasing function with f(0) =
0, e.g., f(α) = α. The measure of strangeness α for a pattern
a against the k closest training samples is given by

α(a) =

∑k
j=1 d

y
j (a)∑k

j=1 d
¬y
j (a)

(4)

where y is the prediction label from the sample a, ¬y
represents all labels different from y, dj(a) is the distance
measure between samples j and a, and k is the parameter
for the number of nearest neighbors. The rejection rule for
unknown individuals is based on the peak-side-ratio (PSR)
given by

PSR =
pmax − pmean

pstdev
(5)

where pmax is the maximum p-value, and pmean and pstdev
are the mean and standard deviation for the distribution of p-
values for a sample a, without considering pmax. The a priori
rejection threshold is given by Θ = PSRmean+3×PSRstdev ,
where PSRmean and PSRstdev are characteristic of the PSR
distribution for presumed impostors. Samples are rejected if
PSRtest < Θ, otherwise are recognized as belonging to the
class with maximum predicted value.

D. Ensembles of two-class classifiers

A well-known ensemble-based technique for incremental
learning is Learn++, proposed by Polikar et al. in [17]. This
technique is inspired in the AdaBoost algorithm, and allows for
incremental learning by incorporating a new set of classifiers
to the ensemble every time new data becomes available (see
Fig. 1). The classical MLP was originally used as the base
classifier, with its parameters adjusted to preserve resources
and not necessarily produce a high accuracy. However different
classification algorithms like PFAM or SVM may be used as
base classifiers. The generation of the pool of classifiers each
time a new dataset Dt becomes available, is performed using
a bagging strategy, by training distinct instances of MLPs
on bootstrap replicates of the training set. Selection criteria
integrate a fixed size set of classifiers, in which every classifier
produces an average error lower than random selection (ε <
1/2), and newly added classifiers do not increase the overall
classification error over random selection (εglobal < 1/2).

Another alternative for adaptive ensembles is the modular
architecture proposed in [18]. Fig. 2 presents this adaptive
multi-classifier system (MCS) that allows for update facial
models in response to new reference samples. It is composed
of a long term memory (LTM), an ensemble of binary two-
class classifiers or detectors (EoDs) Pi per individual, and a
dynamic optimization module.

The EoD (PFAM) used to update the ensemble of classifiers
in each module Pi, 1 ≤ i ≤ k, works as follows. When

Fig. 1. Architecture of Learn++ system that incorporates a pool of weak
classifiers every time a new data block Dt becomes available.

a new data block Dt is available, a training subset Dt
t is

randomly selected according to a uniform distribution, and
the remaining data is stored in the LTM for validation. Data
in Dt is used to generate a new pool of PFAMs. Three
independent validation sets are maintained within the LTM,
De
t to stop the training epochs of classifiers, Df

t for fitness
evaluation (PFAM parameter optimization) and Dc

t to estimate
the fusion function and thresholds using Iterative Boolean
Combination (IBC) [19]. A learning strategy is based in the
dnPSO optimization algorithm [20]. It generates a diversified
pool of PFAM classifiers, and the global best solution pt
is selected and added to the ensemble Pi. The combination
function for Pi is then updated using IBC and validated on
Dc
t .

Fig. 2. Adaptive MCS for FR in video surveillance. Dotted arrows indicate
pathways for enrollment/update with validation data.

The EoD approach uses IBC to combine previously-trained
classifiers with those trained on new data. Given an ensemble
of classifiers Pi = {p1, . . . , pt} ranked according to AUC,
IBC starts by combining all pairs of operating points (ROC
space vertices) for two classifiers with the two highest AUC
values. The convex hull of the newly generated operating
points are successively combined with operating points of the



remaining classifiers, one at a time, until all classifiers have
been combined to provide an overall convex hull.

IV. EXPERIMENTAL METHODOLOGY FOR SURVEILLANCE
APPLICATIONS

In video screening applications, the fundamental task of
FR systems is detecting the presence of an individual from
a restrained group or cohort [11], in potentially dense
and moving crowds. The set of individuals to be detected
corresponds to the cohort of individuals populating a pre-
established list of interest. Systems and technologies for FR in
video surveillance should be evaluated in terms of their ability
to accurately and efficiently detect an individual’s face under
various uncontrolled conditions.

A. Video dataset

The FIA database [1] has been used to evaluate the perfor-
mance of the different approaches. The FIA database consists
of 20 second videos of face data from 214 individuals mimick-
ing a passport checking scenario. Grayscale ROIs are extracted
from video sequences for training and testing. Indoor images
are used from both focal lengths (4-mm and 8-mm), taken
from three different horizontal angles (−72.6o, 0o, 72.6o). All
images are resized to the highest possible resolution of the
smallest face obtained after face detection with the well known
Viola-Jones algorithm: 70×70 pixels. MSLBP (Multi Scale
Local Binary Patterns) [21] is used as a feature extractor with
three different block sizes (3×3, 5×5 and 9×9), along with the
original pixel intensities. Resulting features are concatenated
and vectorized, and PCA allows selecting 32 features with the
highest eigenvalues.

Ten individuals of interest are randomly selected to form
the cohort (labeled as 2, 3, 72, 82, 136, 140, 179, 188,
190 and 201). The classification module for individual i,
e.g. Pi, is trained using a balanced set of samples: 50% of
positives samples from individual i, and the remaining 50%
of negative samples are drawn uniformly from the cohort
model (CM, other 9 individuals in the list of interest) and
universal model (UM, samples from 88 random unknown
individuals outside the list of interest). Other individuals are
considered unknown individuals, and their samples appear
only in the test set. Training samples for each module are
randomly distributed in three blocks, DF , DL and DR, each
preserving the proportion of data from frontal, left and right
cameras respectively. Each data block Dt, t = {F,L,R}, has
a fixed size, where |Dt

t| = 40 (20 positive and 20 negative )
and validation data sets De

t , Df
t and Dc

t all have 10 samples
per class. The test set Dtst contains a total 138,717 samples,
from which x, 611 ≤ x ≤ 1636 samples are from the positive
class. The difference in the number of test samples for each
individual relies in the face detection process: the face of
each individual is detected a different number times by the
Viola-Jones algorithm. Negative class samples in Dtst are as
follows: 12, 869 − x samples from the cohort model, 26,179
samples from the universal facial model and 99,669 samples
from individuals never seen by the system.

B. Experimental protocol

Given the limited positive samples, proof-of-concept simu-
lations follow a 2×5-fold cross-validation process for 10 inde-
pendent trials. After replication 5, the 5 folds are regenerated
after a randomization of the sample order for each individual.
The first step of a simulation scenario is the generation of the
Dt dataset, which is used for system design. Dt is then divided
into the following subsets, based on the 2×5 cross-validation
methodology: Dt

t or training dataset used to represent facial
models for different individuals, and Dval

t or validation dataset
used to set system parameters, most notably the decision
threshold.

After each design phase, Dtst is presented to the system
under evaluation, and performance metrics are computed.
Unlike Dt

t , the testing data set Dtst remains constant over all
experiments. Variability in samples from both training and test
sets are due to variations in capture conditions, e.g., different
lighting and pose, aging, occlusion, camera angle, etc.

C. Transaction-based analysis

A crisp detector outputs a class label while a soft detector
assigns scores or probabilities to the input samples, which
can be converted to a crisp detector by setting a decision
threshold on the scores. Given the responses of a crisp
detector on a validation set, the true positive rate (tpr) is
the proportion of positives correctly classified over the total
number of positive samples. The false positive rate (fpr) is
the proportion of negatives incorrectly classified over the total
number of negative samples. Accuracy is commonly used to
measure the frequency of correct binary decision, however it
is prone to biased performance evaluations with imbalanced
class distributions.

The receiver operating characteristic (ROC) curve is com-
monly used for evaluating the performance of detectors at
different operating points, without committing to a single
decision threshold. A ROC curve is a plot of tpr against
fpr. A crisp detector produces a single data point in the ROC
plane, while a soft detector produces a ROC curve by varying
the decision thresholds. In practice, an ROC plot is a step-
like function which approaches a true curve as the number
of samples approaches infinity. For equal priors and cost of
errors, the optimal decision threshold corresponds to the vertex
that is closest to the upper-left corner of the ROC plane.

The area under the ROC curve (AUC) or the partial AUC
(over a limited range of fpr values) is largely known as a
robust scalar measure of detection accuracy over the entire
range of true positive rate (tpr) and false positive rate (fpr).
The AUC is equivalent to the probability that the classifier
will rank a randomly chosen positive sample higher than a
randomly chosen negative sample. The AUC assesses ranking
in terms of class separation – the fraction of positive-negative
pairs that are ranked correctly. For instance, with an AUC =
1, all positives are ranked higher than negatives indicating a
perfect discrimination between classes. A random classifier has
an AUC = 0.5, and both classes are ranked at random. When
the ROC curves cross, It is possible for a high-AUC classifier



to perform worse in a specific region of ROC space than a low-
AUC classifier. In such case, restraining the detection rate (tpr)
for a fixed fpr gives a performance measure for the specific
requirements in the application.

Receiver Operating Characteristic (ROC) and Detection
Error Trade-off (DET) curves (which plot fpr versus fnr)
are well-accepted graphical representations to express the
performance of 1:1 classification. However there are others
to evaluate detection quality at the transaction-level, such as
ROC isometrics, Precision-Recall curves, Cost Curves, Lift
Charts, etc.

D. Precision-recall curves and imbalanced data distributions

Open-set FR in video surveillance translates imbalanced
settings, where the prior probability of the positive class (πp)
is significantly less than that of the negative class (πn). Perfor-
mance may also be measured as the proportion of the correctly
predicted positive samples out of the total number of samples
predicted to belong to a given individual. Otherwise, when
processing highly imbalanced data, and the minority (positive)
samples are of interest, a detector may outperform others
by predicting a very large number of samples as minority,
resulting in an increased tpr at the expense of an increased
fpr. Accuracy is inadequate as a performance measure since
it becomes biased towards the majority (negative) class. That
is, as the skew (λ = πp/πn) increases, accuracy tends
towards majority class performance, effectively ignoring the
recognition capability with respect to the minority class [22].

In this situation, using an estimate of precision (in conjunc-
tion with recall) is more appropriate, as it remains sensitive
to the performance on each class. In these applications recall
only makes sense when combined with precision, as the prior
class probabilities are unknown or highly variable. In these
situations, end-users relate to precision-recall curves as they
indicate how many true positives are likely to be found in a
typical search.

The Precision-Recall Operating Characteristic (PROC) [22]
space allows to represent detector performance graphically
with data skew in mind. Performance measures are derived
in a similar way to conventional ROC analysis, yet PROC
curves rely on an inter-class measure, the precision between
the positive and negative decisions, defined as:

precision =
TP

TP + FP
, (6)

In general, the tpr (or recall) increases with the number
of samples of the minority class , while the precision de-
creases. Thus, an increase of the geometric mean indicates
that the achieved increase in recall is beneficial since it is not
accompanied by a large decrease of precision. Another scalar
metric that can be retrieved from the PROC space at a specific
operating point is the Fβ-measure (Eqn. 7).

Fβ = (1 + β2) · precision · recall
(β2 · precision) + recall

(7)

The Fβ measure combines the precision and recall values,
usually with β = 1.

In this paper, systems are evaluated by estimating the,
precision, recall (seen in precision-recall curves), F1-
measure, and compression. When the 10 trials of the experi-
ment are completed, the average values and confidence interval
of these estimates are computed.

E. Subject-based analysis

It has been investigated that performance of FR systems may
vary drastically from one person to the next, which is known
as the ’Doddington zoo’ effect [23]. In subject-based analysis,
the error rates are assessed with different types of individuals
in mind, rather than with the overall number of transactions.
An analysis of these individuals and their common properties
can expose fundamental weaknesses in a biometric system,
and allows to develop more robust systems.

It characterizes positive populations as being composed of
sheeps and goats. According to this characterization, the sheep,
for whom FR systems tend to perform well, dominate the
population, whereas the goats, though in a minority, tend
to determine the performance of the system through their
disproportionate contribution to fnr. Goats are characterized
by consistently low classification scores against themselves.
In negative populations, some individuals – called wolves –
are exceptionally successful at impersonating many different
targets, others, called lambs, are easy to impersonate and
thus seem unusually susceptible to many different impostors.
Lambs, on average, tend to produce high match scores when
being matched against by another user. Similarly, wolves
receive high scores when matching against others. For both
of these user groups, the match score distributions are signif-
icantly different than those of the general population.

V. EXPERIMENTAL RESULTS

Concerning transaction-based analysis, the average perfor-
mance of the six different matchers over 10 trials and 10
individuals is shown in Table I. The first column presents the
blocks of data that have been learned by different matchers,
going from DF to DL and DR, with samples from by the
frontal, left and right cameras respectively. The compression
achieved by the classifiers is defined as the ratio between
the number of training patterns and the prototypes stored by
the algorithm. This measure ranges from 1 for approaches
that store all the training set in the biometric database, to
a maximum value of |Dt

t|. The detection performance is
presented using recall, precision and the F1 measure, ranging
from 0 to 1, being 1 the best performance (perfect detection).

When learning the initial data, Eigenfaces (template match-
ing), PFAM (batch and incremental) classifiers and EoD
have no significant performance differences. However, as the
system incrementally learns new data blocks, the EoD (PFAM)
approach performs better than the other matchers. After incre-
mentally learning the data blocks from left and right cameras,
it seems to better capture the intra-class variability compared
to all other approaches. The Eigenfaces approach initially
provides a slightly better precision and recall performance,
but the F1 measure decreases as more data is learned. This



TABLE I
AVERAGE PERFORMANCE OF THE SYSTEM AT THE OPERATING POINT OF 5% fpr.

Block Matcher Compression Recall Precision F1 measure

DF

Eigenfaces 1.000(±0.000) 0.454(±0.034) 0.078(±0.007) 0.133(±0.011)
OS TCM k-NN 1.000(±0.000) 0.109(±0.044) 0.020(±0.009) 0.034(±0.016)
PFAMbatch 10.741(±1.397) 0.447(±0.056) 0.076(±0.009) 0.129(±0.016)
PFAMinc 10.741(±1.397) 0.447(±0.056) 0.076(±0.009) 0.129(±0.016)
Learn++ (PFAM) 10.903(±1.373) 0.281(±0.067) 0.049(±0.011) 0.083(±0.019)
EoD (PFAM) 10.506(±1.298) 0.427(±0.058) 0.073(±0.010) 0.124(±0.017)

DF → DL

Eigenfaces 1.000(±0.000) 0.357(±0.031) 0.062(±0.007) 0.105(±0.011)
OS TCM k-NN 1.000(±0.000) 0.129(±0.050) 0.024(±0.011) 0.039(±0.018)
PFAMbatch 4.652(±0.469) 0.394(±0.045) 0.068(±0.009) 0.116(±0.015)
PFAMinc 7.114(±0.696) 0.318(±0.063) 0.054(±0.011) 0.092(±0.018)
Learn++(PFAM) 6.794(±0.725) 0.249(±0.065) 0.044(±0.011) 0.074(±0.019)
EoD (PFAM) 6.292(±0.675) 0.459(±0.054) 0.078(±0.009) 0.133(±0.016)

DF → DL → DR

Eigenfaces 1.000(±0.000) 0.357(±0.029) 0.061(±0.005) 0.103(±0.008)
OS TCM k-NN 1.000(±0.000) 0.209(±0.120) 0.037(±0.022) 0.061(±0.036)
PFAMbatch 4.034(±0.326) 0.358(±0.060) 0.060(±0.010) 0.102(±0.016)
PFAMinc 6.246(±0.720) 0.219(±0.049) 0.037(±0.008) 0.063(±0.014)
Learn++ (PFAM) 5.647(±0.550) 0.208(±0.055) 0.038(±0.010) 0.064(±0.017)
EoD (PFAM) 5.568(±0.570) 0.477(±0.050) 0.081(±0.009) 0.138(±0.015)

problem may be related to the sensitivity of the template
matching algorithm to noisy data. The higher level of per-
formance shown for modular systems with one-class and two-
class classifiers over the multi-class Open Set TCM-kNN is
directly related to the way the last approach establishes a single
rejection threshold for all the individuals. On the opposite, the
other approaches use positive and negative samples from the
cohort and universal models to establish individual specific re-
jection threshold and classification parameters. Regarding the
compression values, incremental learning techniques require
less data to represent models when new data is learned (higher
compression values). This implies in more efficient usage of
computational resources, as smaller models are faster to test
unknown samples and require less memory than large models.

A subject based analysis demonstrates that system aver-
age performance is not an indication of individual subjects
performance for individuals in the cohort of this application
(see Table II). Although Open Set TCM-kNN is a multi-
class classifier, its performance has been issued per individual.
The rejection threshold was applied to the test set before
recognition, and a ROC curve for each individual was es-
timated by ranging the threshold over the outputs produced
for that individual. The tpr performance is shown for each
matcher as it evolves when a new block of training data is
added: DF → DL → DR. For example, it can be seen that
individual 72 is hard to detect by most matchers and tpr values
are lower than the average performance. This corresponds to
a goat like individual in Dodington’s zoo terminology. The
opposite happens with individual 188, which achieves a higher
detection accuracy for EoD (PFAM), making it a sheep-like
individual for that matcher. It is also interesting to notice that
individuals like 3 or 201 for instance, can present a sheep-

like behavior for one classifier (EoD (PFAM)), and behave
as a goat or a wolf for other (Eigenfaces or Open Set TCM-
kNN). These results illustrate the difficulties faced in video-
based face screening applications, and may provide important
information concerning the fine tuning of the decision module
that supports the human operator of such systems.

VI. CONCLUSION

In this paper the performance of adaptive matchers is
compared for face recognition in video surveillance. An
experimental methodology to asses the performance of the
matchers for face screening applications in the context of a
changing environment. The methodology employs a real video
data set that incorporates changing condition. Comparison
is performed in terms of transaction-based analysis, using
precision-recall space metrics, and subject-based analysis to
better understand system performance for different individuals,
based on Doddington’s zoo effect.

Experiments carried out with several adaptive matchers
indicated that the ensemble of detectors (EoD) approach
outperforms others on the FIA data. Transaction-based anal-
ysis performed with a 5% false alarm rate show that scalar
precision-recall metrics for the EoD are significantly higher
than others when the system is adapted to new data. With
the compression achieved by incremental PFAM classifiers is
higher, its accuracy is low. EoDs provide a good trade off
between detection performance and resources. Subject-based
analysis demonstrate that system performance per individual
differs considerably from the average. This information can
be used to fine tune the system’s decision module to provide
better support to human operators of these security systems.



TABLE II
DETECTION RATE (tpr) OF EACH INDIVIDUAL OF INTEREST FOR A fpr OF 5%, AFTER INCREMENTAL LEARNING OF BLOCKS DF → DL → DR .

2 3 72 82 136
• Eigenfaces
0.49
±0.01

→ 0.45
±0.01

→ 0.35
±0.01

0.45
±0.01

→ 0.19
±0.01

→ 0.23
±0.01

0.40
±0.01

→ 0.23
±0.00

→ 0.24
±0.00

0.32
±0.00

→ 0.36
±0.01

→ 0.51
±0.02

0.72
±0.01

→ 0.47
±0.02

→ 0.43
±0.01

• Open Set TCM kNN
0.12
±0.00

→ 0.14
±0.01

→ 0.23
±0.03

0.12
±0.01

→ 0.15
±0.01

→ 0.22
±0.01

0.04
±0.00

→ 0.06
±0.00

→ 0.10
±0.01

0.08
±0.00

→ 0.12
±0.01

→ 0.30
±0.04

0.13
±0.01

→ 0.13
±0.01

→ 0.18
±0.02

• PFAMbatch
0.40
±0.03

→ 0.41
±0.02

→ 0.34
±0.03

0.62
±0.03

→ 0.35
±0.04

→ 0.33
±0.06

0.27
±0.03

→ 0.31
±0.05

→ 0.26
±0.03

0.35
±0.02

→ 0.38
±0.03

→ 0.53
±0.04

0.64
±0.04

→ 0.49
±0.05

→ 0.31
±0.09

• PFAMinc
0.40
±0.03

→ 0.24
±0.05

→ 0.20
±0.04

0.62
±0.03

→ 0.16
±0.06

→ 0.08
±0.01

0.27
±0.03

→ 0.20
±0.05

→ 0.18
±0.05

0.35
±0.02

→ 0.38
±0.03

→ 0.38
±0.06

0.64
±0.04

→ 0.48
±0.07

→ 0.12
±0.03

• Learn++ (PFAM)
0.16
±0.03

→ 0.15
±0.03

→ 0.17
±0.03

0.34
±0.08

→ 0.34
±0.08

→ 0.17
±0.06

0.18
±0.05

→ 0.18
±0.05

→ 0.18
±0.05

0.14
±0.03

→ 0.12
±0.03

→ 0.10
±0.03

0.42
±0.08

→ 0.42
±0.08

→ 0.37
±0.07

• EoD (PFAM)
0.31
±0.03

→ 0.33
±0.02

→ 0.35
±0.01

0.63
±0.03

→ 0.65
±0.01

→ 0.65
±0.01

0.23
±0.03

→ 0.27
±0.03

→ 0.28
±0.03

0.29
±0.02

→ 0.30
±0.02

→ 0.34
±0.02

0.51
±0.05

→ 0.63
±0.02

→ 0.66
±0.01

140 179 188 190 201
• Eigenfaces
0.37
±0.01

→ 0.36
±0.01

→ 0.36
±0.01

0.37
±0.00

→ 0.43
±0.01

→ 0.34
±0.00

0.43
±0.01

→ 0.43
±0.01

→ 0.47
±0.00

0.51
±0.01

→ 0.35
±0.01

→ 0.35
±0.01

0.47
±0.00

→ 0.30
±0.02

→ 0.28
±0.02

• Open Set TCM kNN
0.16
±0.01

→ 0.20
±0.01

→ 0.32
±0.04

0.12
±0.01

→ 0.13
±0.01

→ 0.19
±0.03

0.17
±0.01

→ 0.18
±0.02

→ 0.33
±0.05

0.09
±0.00

→ 0.09
±0.00

→ 0.13
±0.02

0.07
±0.00

→ 0.08
±0.01

→ 0.09
±0.01

• PFAMbatch
0.35
±0.05

→ 0.40
±0.06

→ 0.20
±0.02

0.41
±0.01

→ 0.46
±0.02

→ 0.46
±0.03

0.68
±0.04

→ 0.48
±0.04

→ 0.55
±0.05

0.31
±0.05

→ 0.36
±0.05

→ 0.40
±0.06

0.43
±0.03

→ 0.30
±0.03

→ 0.21
±0.05

• PFAMinc
0.35
±0.05

→ 0.27
±0.05

→ 0.21
±0.04

0.41
±0.01

→ 0.40
±0.04

→ 0.23
±0.05

0.68
±0.04

→ 0.41
±0.09

→ 0.33
±0.07

0.31
±0.05

→ 0.26
±0.06

→ 0.23
±0.04

0.43
±0.03

→ 0.37
±0.04

→ 0.23
±0.03

• Learn++ (PFAM)
0.17
±0.05

→ 0.15
±0.05

→ 0.14
±0.05

0.36
±0.02

→ 0.34
±0.03

→ 0.34
±0.03

0.59
±0.06

→ 0.41
±0.09

→ 0.26
±0.08

0.22
±0.05

→ 0.21
±0.05

→ 0.21
±0.05

0.23
±0.05

→ 0.18
±0.04

→ 0.15
±0.04

• EoD (PFAM)
0.43
±0.03

→ 0.43
±0.03

→ 0.44
±0.03

0.42
±0.00

→ 0.42
±0.00

→ 0.43
±0.00

0.73
±0.02

→ 0.73
±0.02

→ 0.73
±0.02

0.26
±0.05

→ 0.36
±0.04

→ 0.42
±0.03

0.47
±0.03

→ 0.47
±0.03

→ 0.50
±0.02
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Educación Pública in México (PROMEP/103.5/094294).

REFERENCES

[1] R. Goh, L. Liu, X. Liu, and T. Chen, “The CMU Face In Action (FIA)
Database,” in Analysis and Modelling of Faces and Gestures, 2005, pp.
255–263.

[2] W. Zhao et al., “Face recognition: A literature survey,” ACM Computing
Surveys, vol. 35, no. 4, pp. 399–458, December 2003.

[3] F. Matta and J.-L. Dugelay, “Person recognition using facial video
information: a state of the art,” Journal of Visual Languages and
Computing, vol. 20, no. 3, pp. 180–7, 2009.

[4] J. Connolly, E. Granger, and R. Sabourin, “An adaptive ensemble of
fuzzy artmap neural networks for video-based face classification,” IEEE
WCCI, 2010.

[5] A. Rattani, “Adaptive biometric system based on template update
procedures,” Ph.D. dissertation, University of Cagliari, 2010.

[6] J. N. Pato and L. I. Millett, Biometric Recognition: Challenges and
Opportunities, Whither Biometrics Committee, Ed., 2010.

[7] F. Li and H. Wechsler, “Open set face recognition using transduction,”
IEEE Trans. on PAMI, vol. 27, no. 11, pp. 1686 – 97, 2005.

[8] D. Tax and R. Duin, “Growing a multi-class classifier with a reject
option,” Pattern Recognition, vol. 29, no. 10, pp. 1565 – 70, 2008.

[9] H. K. Ekenel, J. Stallkamp, and R. Stiefelhagen, “A video-based door
monitoring system using local appearance-based face models,” Comput.
Vis. Image Underst., vol. 114, no. 5, pp. 596–608, May 2010.

[10] B. Kamgar-Parsi, W. Lawson, and B. Kamgar-Parsi, “Toward devel-
opment of a face recognition system for watchlist surveillance,” IEEE
Trans. on PAMI, vol. 33, no. 10, pp. 1925 – 37, 2011.

[11] A. Brew and P. Cunningham, “Combining cohort and ubm models in
open set speaker detection,” in Proceedings on Multimedia Tools and
Applications, vol. 48, no. 1, Van Godewijckstraat 30, Dordrecht, 3311
GZ, Netherlands, 2010, pp. 141 – 159.

[12] F. Roli, L. Didaci, and G. L. Marcialis, Adaptive biometric systems that
can improve with use. Springer, 2008, pp. 447–471.

[13] A. K. Jain and A. Ross, “Learning user-specific parameters in a
multibietric system,” Int. Conf. on Im. Proc., September 2002.

[14] J.-F. Connolly, E. Granger, and R. Sabourin, “Supervised incremental
learning with the fuzzy artmap neural network,” Artificial Neural Net-
works in Pattern Recognition. Third IAPR Workshop, ANNPR 2008, pp.
66–77, 2008.

[15] R. Brunelli and T. Poggio, “Face recognition: features versus templates,”
IEEE Trans. on PAMI, vol. 15, no. 10, pp. 1042 – 52, 1993.

[16] C. P. Lim and R. F. Harrison, “Probabilistic fuzzy artmap: An au-
tonomous neural network architecture for bayesian probability estima-
tion,” Artificial Neural Networks, pp. 148–153, June 1995.

[17] R. Polikar, L. Udpa, S. S. Udpa, and V. Honavar, “Learn++: An
incremental learning algorithm for mlp networks,” IEEE Trans. on SMC,
vol. 31, no. 4, pp. 497–508, 2001.

[18] M. De-la Torre, E. Granger, P. V. W. Radtke, R. Sabourin, and D. O.
Gorodnichy, “Incremental update of biometric models in face-based
video surveillance,” in Proceedings of IJCNN, 2012.

[19] W. Khreich, E. Granger, A. Miri, and R. Sabourin, “Iterative boolean
combination of classifiers in the roc space: An application to anomaly
detection with hmms,” Pat. Rec., vol. 43, no. 8, pp. 2732 – 52, 2010.

[20] A. Nickabadi, M. M. Ebadzadeh, and R. Safabakhsh, “Evaluating the
performance of dnpso in dynamic environments,” in Proceedings on
IEEE ICSMC, Singapore, Singapore, 2008, pp. 2640 – 2645.

[21] T. Ojala, M. Pietikainen, and T. Maenpaa, “Multiresolution gray-scale
and rotation invariant texture classification with local binary patterns,”
IEEE Trans. Pat. Anal. Mach. Intell., vol. 24, no. 7, pp. 971 – 87, 2002.

[22] T. C. W. Landgrebe et al., “Precision-recall operating characteristic (p-
roc) curves in imprecise environments,” in Proceedings of ICPR, 2006,
pp. 123 – 127.

[23] G. Doddington, W. Liggett, A. Martin, M. Przybocki, and D. Reynolds,
“Sheep, goats, lambs and wolves: A statistical analysis of speaker per-
formance,” in International conference on spoken language processing,
1998, pp. 1351–1354.




