
On the Correlation Between Genotype and Classifier Diversity

Jean-François Connolly, Eric Granger and Robert Sabourin
Laboratoire d’imagerie, de vision et d’intelligence artificielle
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Abstract

Diversity is a key element in the success of classi-
fier ensembles, and has attracted much recent atten-
tion. It is typically measured by directly computing
the amount of disagreement between ensemble classi-
fiers at the decision level. This costly process usually
involves evaluating output predictions of each classi-
fier over some validation data set. Since most statis-
tical and neural network classifiers can adjust inter-
nal learning dynamics by varying their hyperparameter
values (corresponding to genotype values), this infor-
mation can also provide an estimate of diversity. This
paper measures the correlation between genotype and
classifier diversity among an ensemble of fuzzy ART-
MAP neural network classifiers applied to video face
recognition. It is empirically shown that as genotype
diversity increases within an ensemble, classifier diver-
sity also significantly increases. This correlation can
then be exploited to measure the diversity among base
classifiers during ensemble design with a significantly
lower computational cost.

1. Introduction

In pattern recognition systems, neural or statistical
classifiers define class models using data samples de-
fined in a RI input feature space, and map those models
to a decision space to perform predictions (see Figure
1). In this context, exploiting several different views
of a same problem with classifier ensembles has been
shown to improve the overall accuracy and reliability
for a wide range of applications. Recently, several au-
thors have attempted to incorporate classifier diversity
measures during the design of classifier ensembles, e.g.,
[6, 8, 9]. Indeed, through bias-variance error decompo-
sition, it has been empirically shown that considering
diversity for ensemble selection improves the general-

ization capabilities of multiple classifiers systems [1].
In previous work on video-based face recognition,

the authors have used representation space traversal [1]
to maintain diversity when generating and adapting a
pool of incremental-learning classifiers over time [3].
As illustrated in Figure 1, the adaptive multi-classifier
system is then defined according to two environments.
A classification environment that maps an RI input fea-
ture space (also referred to as hypothesis space in [1])
to a decision space, respectively defined by feature vec-
tors a, and a set of class labels Ck. Since the learning
dynamics of a base classifier is governed by a genotype
value, a vector h of hyperparameters (with components
like, e.g., the learning rate), changing the latter when
learning the some data set (circles and triangles) leads to
different decision boundaries in the feature space (limit
between shades of gray) and decisions. When adapting
hyperparameters to maximize some performance mea-
sure, such as accuracy in [3], the classification environ-
ment interacts with an optimization environment, where
each value of h indicates a position on an objective
function defined in a search space.

A diversified ensemble is composed of base classi-
fiers that present different inter-class decision bound-
aries in the feature space. Since these bounds are either
explicitly defined functions (as with SVMs, MLPs, etc.)
or implicitly defined (as with kNNs, ARTMAPs, etc.),
diversity in the classification environment is mostly
measured by computing disagreement between classi-
fiers in the decision space, over several predictions. As-
suming a correlation between the two environments,
this costly process could be avoided by focusing instead
on computing diversity in the search space.

In this paper, the relationship between classifier di-
versity (in the classification environment) and genotype
diversity (in the optimization environment) is studied.
Using the fuzzy ARTMAP neural network classifier and
different diversity indicators, this paper verifies the hy-
pothesis under which these two types of diversity are
correlated. More precisely, it is shown that, as genotype
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Figure 1. Environments involved in a pattern recognition system.

diversity in the search space increases, diversity in the
decision space also increases significantly. The exper-
imental methodology is described in the next section,
followed in Section 3 by the results and a discussion on
how this correlation can be applied to adaptive ensem-
ble methods.

2. Methodology

2.1 Classifier and data base

This study is part of a project that aims to evolve en-
sembles of incremental-learning classifiers in response
to new reference data, in order to adapt systems for
video-based face recognition [3]. In this project, clas-
sification is performed using the fuzzy ARTMAP neu-
ral network [2]. This self-organizing neural network is
capable of stable, on-line, unsupervised or supervised
incremental learning, and provides a unique solution to
the stability-plasticity dilemma [2]. The internal learn-
ing dynamics of fuzzy ARTMAP is set using four hy-
perparameters in vector h = (α, β, ε, ρ̄).

The data base used for this empirical study was col-
lected by the Institute for Information Technology of the
Canadian National Research Council (IIT-NRC) [5] for
user identification in secured computer login. It is com-
posed of 22 video sequences captured from eleven indi-
viduals positioned in front of a computer. For each indi-
vidual, two color video sequences of about fifteen sec-
onds are captured with a web cam at a rate of 20 frames
per seconds – one dedicated to classifier design and the
other for testing. The number of facial regions detected
with the Viola-Jones algorithm varies from person to
person, ranging from 40 to 190 per video sequence, for
a total of 1527 design and 1585 test samples.

2.2 Experimental protocol

The hypothesis under which diversity in the opti-
mization and classification environments are correlated
is verified with the experiment depicted in Figure 2. It
is performed in two steps: (1) optimization during su-
pervised batch learning of the whole IIT-NRC data base
with a learning strategy based on particle swarm opti-
mization presented in [3], and (2) particles expansion.

As shown in Figure 2, prior to optimization of hyper-
parameters, the search space is normalized and bound
by a constraint of 0.2. Once the hyperparameter vec-
tor h that maximizes accuracy is found, an ensemble
is formed with 17 classifiers. They are each associated
with a solution h and organized into a hypercube cen-
tered around the global optimum in the R4 (fuzzy ART-
MAP hyperparameters) search space. To vary diversity
in the optimization environment, all solutions are ini-
tially situated on the global optimum. The size of the
hypercube is then linearly expanded up to the value of
the constraint to form different ensembles. During this
expansion, genotype diversity varies linearly, affecting
the corresponding ensemble of classifiers.

In total, ten trials are performed using ten-fold cross-
validation. Out of the ten folds, eight are dedicated to
training, one fold is used to validate and determine the
number of training epochs, and the remaining fold used
to estimate the accuracy of each solution during opti-
mization [3]. Between successive epochs, the presenta-
tion order of training patterns is changed randomly.

2.3 Diversity indicators

Diversity in both environments is measured with
pairwise indicators between ensemble members e1 and
e2. In the optimization environment, the pairwise indi-
cator for two classifiers is defined as the the Euclidean



Figure 2. An example of the position of so-
lutions for an objective function in a R2

hyperparameter search space.

distance between their hyperparameter values in the
normalized search space [4, 7]. genotype diversity for
the entire ensemble is the average value of all pairwise
combination such as:

δe1e2 =
2

E(E − 1)

E−1∑
e1=1

E∑
e2=e1+1

δe1e2 , (1)

where δe1e2 is the Euclidean distance between two solu-
tions e1 and e2 in the search space and E is the number
of networks in the ensemble. Although this genotype
diversity indicator has a time complexity of O(N2), it
was revealed to be the most accurate [7].

On the other hand, diversity in the classification envi-
ronment is measured in through correlation indicators:
the Q statistic and the correlation coefficient [9]. As
with most measures present in literature, they rely on
classifier disagreement (in the decision space) to com-
pute correlation among classifiers. For two ensemble
classifiers e1 and e2, and a given data set (in our case the
test data set), each indicator is computed as followed:
The Q statistic:

Qe1e2
∈ [0, 1] =

N11N00 −N10N01

N11N00 +N10N01
, (2)

where N11, N00, N10, and N01 are, for each combina-
tion, the number of correct and incorrect predictions by
classifiers e1 and e2 on the test data set (see Table 1).

Table 1. Contingency table used to com-
pute pairwise diversity between two en-
semble classifiers e1 and e2 with the Q
statistic and correlation coefficient.

e1 correct e2 incorrect
e1 correct N11 N10

e2 incorrect N01 N00

Correlation coefficient:

ρe1e2 ∈ [0, 1] =

N11N00 −N10N01√
(N11+N10)(N01+N00)(N11+N01)(N10+N00)

,
(3)

As with genotype diversity, overall ensemble classi-
fier diversity (or correlation) is the average value of all
pairwise combination [9]. They are respectively noted
Qe1e2

and ρe1e2 .

3. Results and discussion

Figure 3 presents the value of the two ensemble
correlation indicators as a function of particle diver-
sity in the search space when training on the IIT-NRC
data base. As mentioned earlier, fuzzy ARTMAP per-
forms on-line learning. That is, it defines its decision
boundaries by learning patterns sequentially. Although
all solutions are initially trained with the same hyper-
parameter values, they are trained with different ran-
dom pattern presentation orders, leading to a minimal
amount of diversity (or correlation). When all parti-
cles are initially positioned at the global best position,
this yields correlation indicators that are lower than one:
Qe1e2

= 0.80± 0.01 and ρe1e2 = 0.47± 0.01.
As the hypercube expands, genotype diversity in-

creases linearly. By computing diversity in the deci-
sion space with indicators based on ensemble disagree-
ment, classifier diversity (correlation) follows the same
trend by increasing (decreasing) constantly. Depend-
ing the indicator used, diversity in the classification en-
vironment changes significantly for different levels of
genotype diversity: the Q statistic and correlation co-
efficient differ for respective genotype diversities 0.26
(Qe1e2

= 0.7± 0.1) and 0.25 (ρe1e2 = 0.41± 0.06).
These results thus confirm the initial hypothesis

that genotype diversity in the optimization environment
does indeed translates to diversity among classifiers in
the classification environment. Measuring classifier di-
versity would then necessitate only computing simple
Euclidean distances, rather than relying on costly clas-
sifier diversity indicators. When adapting multiclassi-
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Figure 3. Ensemble diversity in the clas-
sification environment as a function of
genotype diversity in the optimization en-
vironment. Diversity is shown using the
classifier correlation indicators Qe1e2

and
ρe1e2 . A decrease in correlation signifies
an increase in diversity; each indicator is
shown with its 90% confidence interval.

fier systems, diversity among a pool of classifiers can
then be maintained simply by controlling solutions in
the optimization space through their genotype values.
Moreover, with an overproduce and choose ensemble
design strategy, genotype information can also be used
to efficiently select a diversified set of classifiers among
the most accurate in the pool. For instance, accuracy
and genotype diversity of solutions in a pool of classi-
fiers has been successfully used for selection of robust
ensembles in [3].

When guiding several classifiers according to per-
formance with a population-based optimization algo-
rithms, properties of the latter to preserved genotype di-
versity should be considered so that classifier diversity
is maintained. In the search space, this means being
able to detect multiple local minima that would yield
accurate, but diverse classifiers. An optimization algo-
rithm used to generate ensembles should also be able
to maintain diversity among each local minimum such
as diversity is still maintained if there are but few local
optimum in the search space.

4. Conclusion

Using the fuzzy ARTMAP neural classifier and dif-
ferent diversity indicators, empirical results presented
in this paper indicate that there is indeed a correlation
between diversity in the classification and optimization
environments. Diversity in hyperparameter space can
therefore be used during generation of a pool of clas-

sifiers and during selection of ensembles among that
pool, instead of evaluating output predictions of each
classifier over some validation data set, as required to
compute classifier diversity measures. While this study
only considers overall ensemble diversity, future work
should focus on local diversity around each optima in
the search space, to provide insight on properties of
an optimization algorithm needed when adapting clas-
sifiers. Moreover, a comparison of different genotype
diversity indicators [4, 7] should also be considered to
isolate ones most correlated with classifier diversity.
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