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Abstract: 

We investigate the preventive maintenance and inventory control problem of a one-machine, one-
product manufacturing system subject to random breakdowns. Both preventive and corrective 
interventions have random and non-negligible durations during which an excess of final products 
inventory is necessary to fulfill demand. The objective of this study is to find the production rate 
and the preventive maintenance schedule that minimize the total cost of maintenance and 
inventory/backlog in the case of periodic preventive maintenance. A near-optimal policy 
characterization with a simple structure is carried out using a numerical approach. Such a policy 
is a combination of a hedging point policy and a modified periodic preventive maintenance 
strategy, under which preventive maintenance actions are performed only if the inventory level 
exceeds a sufficient level. A simulation-based experimental approach is adopted to achieve a 
close approximation of the optimal control parameters. It is concluded from a sensitivity analysis 
and a comparative analysis that the near-optimal control policy leads to a significant cost 
reduction as compared to the combination of a hedging point policy and a classical periodic 
preventive maintenance policy. 
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1. Introduction 

Operations planning is critical for the proper functioning of a firm (Karen et al., 2003). Planning 
requires making decisions based on a large amount of information concerning customer demand, 
the production process, raw material supply, failures and preventive maintenance, which may be 
sources of uncertainties that the system must deal with in order to enhance profitability. This 
paper aims to present a better insight of the interaction between failures and preventive 
maintenance with inventory in a manufacturing system in which repair and maintenance 
durations are random and non-negligible. 

Barlow and Hunter (1960) and Barlow and Proschan (1965) introduced the basis of the two 
main preventive maintenance (PM) strategies: the age replacement policy (ARP), which consists 
in performing PM whenever the age of the unit reaches a predefined age threshold, and the block 
replacement policy (BRP), which calls for PM to be performed at regular intervals. Under both 
the ARP and the BRP, units are replaced as failures occur (corrective maintenance, CM). The 
above authors showed that the ARP is better than the BRP from an economic point of view, in the 
sense that the BRP can result in the replacement of relatively new units. However, the ARP is 
more difficult to implement and manage than the BRP because the ARP requires tracking the 
ages of units and involves modifying PM planning after each maintenance action. An interesting 
improvement of these policies proposed by Berg and Epstein (1976) and Archibald et al. (1996) 
is based on the BRP, but involves the skipping PM of components whose age falls below a 
certain threshold. This policy retains the advantages of both the BRP and the ARP and results in 
maintenance costs that are slightly higher than with the ARP. These maintenance models assume 
that CM and PM are performed instantaneously. In most cases, maintenance durations are non-
negligible and production interruptions due to maintenance require times to repair that may lead 
to inventory shortages and penalty costs. With respect to these close interactions, it would be 
interesting to address such control problems through combined preventive maintenance and 
inventory policies. 

Several authors have broached the problem of preventive maintenance and buffer inventory 
control. The evolution of the inventory level during a maintenance cycle with non-zero 
maintenance times has been analysed in order to determine and minimize the exact overall cost. 
The mathematical models used in the literature to control maintenance activities are based either 
on a BRP (Ki Ling et al. 1997; Chelbi and Ait-Kadi, 2004) or on an ARP (Gharbi et al. 2007; 
Rezg et al. 2008). These preventive maintenance strategies are combined with an inventory 
control policy that consists in building up and maintaining a buffer stock to respond to demand 
during maintenance operations. However, the optimality of the structure of such joint control 
policies has not been established, and the authors’ works are limited by restrictive assumptions, 
such as the absence of breakdowns during stock build-up periods, the loss of unmet demands 
during repair periods, or inventory levels being set to zero after maintenance activities, as 
mentioned in Rezg et al. (2008) and stipulated in references herein. As well, this approach is 
limited by the calculation of convolution products  representing the sum of random variables (i.e., 
time between failures plus CM duration), which are hard to express for most probability 
distributions (Chelbi and Ait-Kadi, 2000). 

Markov decision models have also proved successful in solving the maintenance control 
problem of a deteriorating machine, inspected at discrete time epochs, that provides a 
downstream buffer. For a predefined inventory policy, similar to that previously mentioned, Van 
der Duyn Schouten and Vanneste (1995), Kyriakidis and Dimitrakos (2006) and Dimitrakos and 
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Kyriakidis (2008) showed the optimality of control-limit type policy, such that PM is performed 
if the degree of deterioration exceeds a critical level that depends on the buffer content. 

Joint consideration of production planning and corrective maintenance problems in flexible 
manufacturing systems has been tackled using the optimal control theory (Rishel, 1975; Kimemia 
and Gerschwin, 1983), which has culminated in the hedging point policy (HPP) concept (Akella 
and Kumar, 1986). Within such a policy, a finished goods inventory surplus is maintained during 
times of excess capacity in order to deal with future interruptions and possible shortages due to 
machine breakdowns. The optimality of the HPP has been demonstrated for failure and repair 
times described by homogeneous Markov processes (i.e., constant transition rates), and therefore, 
for a failure replacement maintenance strategy. For general machine up and down times, several 
extensions have been proposed in order to increase the system capacity with either CM or PM – 
or both (Kenné and Nkeungoue, 2008). On the one hand, CM has been considered by controlling 
the repair rate, with failure models which are not age dependent (Kenné et al. 2003; Pellerin et al. 
2007). On the other, PM has been introduced, in the case of an increasing failure rate, with age-
dependent control policies derived from the HPP and the ARP (Boukas and Haurie, 1990; Kenné 
and Gharbi, 1999; Gharbi and Kenné, 2000). More specifically, PM is skipped if the inventory 
level is below the hedging point in Kenné and Gharbi (1999) and in Gharbi and Kenné (2000). 
An interesting way to proceed would be to control PM interventions with BRP instead of ARP, 
since BRP does not require a tracking of the deterioration of the machine, and is easier to control. 

Primarily, this paper addresses joint maintenance and inventory control problems in the case 
of periodically scheduled PM (BRP) during which maintenance can be skipped. This is motivated 
by the ease with which a BRP is planned and managed. Furthermore, the idea of skipping PM is 
based on the modified BRP proposed by Berg and Epstein (1976) and Archibald and Dekker 
(1996) in order to avoid consecutive failures and PM, which lead to a waste of components and a 
risk of shortage. We also relax the restrictive assumptions commonly used in preventive 
maintenance and buffer inventory control with regards to the occurrence of breakdowns during 
stock build-up periods, the loss of unmet demand, and the periodicity of the inventory trajectory. 
The problem is addressed as an optimal control problem, and our main contribution lies in 
providing a near-optimal joint control policy. First, the characterization of the near-optimal joint 
control policy is obtained through a numerical approach. A close approximation of the associated 
control parameters is then achieved using a flexible simulation-based experimental approach. A 
near-optimal joint control policy is thus completely determined, and a comparison is made with 
the combination of the HPP and classical BRP. 

The paper is organized as follows: Section 2 states the preventive maintenance and inventory 
control problem. Numerical methods are then used in Section 3 to carry out a characterization of 
the near-optimal policy with a simple structure described by several control parameters. The 
optimal control parameters and the incurred cost are obtained through a simulation-based 
experimental approach described in Section 4 and illustrated in Section 5 using an example. 
Subsequently, a sensitivity analysis of the control policies obtained with regards to the cost 
parameters is presented in Section 6. The control policies are compared in Section 7 for a wide 
range of time and cost configurations, and finally, concluding remarks are given in Section 8. 

 

2. Control problem statement 

We consider the simultaneous control of the production and maintenance activities of a failure-
prone facility producing one part type. There is a transition from operational mode (OP) to PM 
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each T units of time, while the transition from OP to a failure mode (CM) randomly depends on 
the increasing failure rate distribution of the considered production system. In the corresponding 
transition diagram, a PM can be performed right after a CM, given that PM activities are 
scheduled at fixed time periods (i.e., at each kT, k = 1, 2, 3 …). From a practical point of view, a 
machine may have multiple operational states, as illustrated in Figure 1, where the operational 
mode, OP, is considered as a set of N sub-states (i.e.,  NNiOPOP i ,1,...,2,1,  ). The 

dynamic of the machine is characterized by transitions from mode OPi to mode OPi+1 for various 
stages of degradation, and from OPi to CM or to PM. 

 
 

  
 

Figure 1 States transition diagram with multiple operational sub-states 
 
 

In such a model, the transition rates from OPi to PM were considered to be the control 
variables, ωi, i = 1, 2, …, N, which allow for the possibility of operation-dependent or time-
dependent PM actions. Hence, the PM frequency increases in time when going from operational 
modes OPi to OPi+1. The discrete dynamics of the system (machine states) is described by a 
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The continuous dynamics of the inventory/backlog level, x(t), is given by:  

  dtutx
dt

d
 )()( , 0)0( xx   (1)

where u(t) is the production rate at time t, d is the demand rate and x0 is the initial stock level.  
The set of admissible decisions  ωu,  is given by: 
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  maxmax 0,0|,)( ωωuuωuα i   (2)

where umax and maxω  denote the maximum production rate and the PM rate, respectively.  

The instantaneous maintenance and inventory total cost, g(.), is given by the following 
equation: 

)()()()(),( 21 tIctIctxctxcαxg PMCM
  , 

where c+ is the inventory holding cost per time unit per item, c- is the backlog cost per time unit 

per item, c1 is the CM cost, c2 is the PM cost,  )(,0max)( txtx  ,  0),(max)( txtx   and 
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The overall infinite horizon discount cost, J(.), is given as: 









 


 ααxxtgeEωuαxJ tρ )0(,)0(|)(),,,(

0
 (3)

where ρ is the discount rate and (x, α) are the initial conditions on the state variables. 
The value function ),( xv , given the initial state of the system (x, α), is: 

 ωuαxJαxv
αωu

,,,inf),(
)(),( 

  (4)

Based on the state transition diagram in Figure 1, it can readily be shown, under appropriate 
regularity conditions imposed on the control, similar to those in Akella and Kumar (1986), that 

),( αxv is the solution of the following HJB equations: 

 ),())(,(),()(min),(
)(),(

αxgαxvQαxvduαxvρ x
αωu




, Rx , Bα  (5)

where ),( αxvx is the partial derivative of the value function and Q is the infinitesimal generator 

(or matrix of transition rates) of the stochastic process α(t).   
Note that for a large number of modes (i.e., N  ), it is impossible to solve these equations 

either analytically or numerically in order to obtain the value function and the associated control 
policy. 
 

3. Approximated structure of the optimal control policy 

For a finite number of modes, the numerical methods based on Kushner’s approach are used to 
solve HJB equations (Kushner and Dupuis, 1992). The solution of the numerical approximation 
of the function ),( αxv may be obtained either by successive approximation or using policy 
improvement techniques (Boukas and Haurie, 1990; Kushner and Dupuis, 1992). The 
approximation consists in bounding the state variables space with a large domain and meshing 
this space with a finite grid of discrete values of the state variables. If vh(x,α) is an approximation 
of v(x,α), its partial derivative and equations (5) can then be expressed as a function of vh(x,α) and 
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of the step of the grid h. Subsequently, vh(x,α)  is obtained by solving the modified HJB equations 
with the appropriate boundary conditions (Kenné et al., 2003). 
From the structure of the HJB equations and their corresponding solutions for N = 10, we obtain 
the control policy illustrated in Figure 2. To ensure a clear characterization of the control policy, 
the production and maintenance policies are each observed separately. The production rate is 
illustrated in Figure 2(a) and 2(b), and the PM rate in Figure 2(c) and 2(d), for two different 
values of the backlog cost. Specifically, Figure 3 shows the corresponding production 
and PM rates at operational modes OP3 and OP7 with umax = 1, d = 0.9 and ωmax = 0.75,   
MTTCR = 10 (mean time to perform  CM), MTTPM = 1 (mean time to perform PM), c+ = 1, 
c1 = 20, c2 = 10 and c- = 10 (for Figures 2(a), 2(c), 3(a) and 3(c)) and c- = 200 (for Figures 2(b), 
2(d), 3(b) and 3(d)). 
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Figure 2 Production and PM rates 
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Figure 3 Production and PM rates at operational modes 3 and 7 

 
 

From Figures 2 and 3, it follows that the production policy divides the plan (x, α) into three 
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highlight both the fact that αZ1  and αZ2  increase when the degree of degradation increases, just as 

was observed in (Hu et al. 1995), and that αZ1  and αZ2  can not be deemed to be different in this 
example. If PM is scheduled at fixed periods Tα at mode α, the control policy could be defined by 

three parameters (Tα,
αZ1 , αZ2 ), or by two parameters (Tα, 

αZ1 ), if αα ZZ 21  . 
Let us define a binary variable Ω(.) from equation (6) as follows:  

 


 


otherwise0

),( if1
),( maxωαxω
αx  

At each kTα, k = 1,2,3…, PM is either executed (Ω(x,α) = 1) or skipped (Ω(x,α) = 0). Using 
average values of these parameters (steady state), and for an infinite number of modes, the 
control policy could be approximated by a combination of a modified BRP (for the maintenance 
part) and an HPP (for the production/inventory part), and may thus be defined either by  
(T, Z1, Z2) or (T, Z1), such that: 

- PM  strategy:     PM scheduled at fixed time periods ...3,2,1,  kTk  and  

                              executed if 1 and ) (resp.)( 12  ξZZx  (i.e., ( , ) 1x   ); 

- Inventory policy:  
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u ; 

with 12 ZZ   

(7)

where ξ takes value in  3,2,1 , such that ξ = 1 when the machine is operational, ξ = 2 when the 
machine is under CM, and ξ = 3 when the machine is under PM. 

For the sake of convenience, the two- and three-parameter policies are hereinafter denoted 
HPBJ1 and HPBJ2 (i.e., for “hedging point and block-replacement policies with jumps”), 
respectively. As a point of comparison, the classical policy that combines HPP and BRP without 
skipping any PM (Ki Ling et al. 1997) will also be considered and denoted by HPB (i.e., for 
“hedging point and block-replacement policies”). Note that the HPB and the HPBJ1 policies 
represent special cases of the generalized structure HPBJ2, where Z2 is equal to Z1 for HPBJ1, 
whereas Z2 has a very low value (i.e., such that PM is never skipped) for HPB.    

The stock trajectory for several maintenance cycles  TkkT )1(,   under the proposed joint 
control policies is illustrated in Figure 4. Since the HPBJ1 and HPB policies are based on two 
parameters (T, Z1), they are both presented in Figure 4(a) in order to facilitate their comparison, 
whereas the stock trajectory under the HPBJ2 is depicted in Figure 4(b). Each maintenance cycle 
has the same duration, and begins with PM (if not skipped), and ends at the next scheduled PM 
with the possibility of one or more machine breakdowns. During a maintenance intervention, the 
production is stopped and the inventory level decreases at rate -d, which results in backlogs and 
incurs shortage costs when it drops below 0. Once the system is operational, production resumes 
and the inventory level increases at rate umax - d (build-up period). If the machine does not fail 
during the build-up period, the inventory level will reach Z1 and remain there, with a production 
rate set at d until the next maintenance event. 

With our formulation, more than one failure may occur in the same maintenance cycle, and 
failures may occur during the build-up periods, unlike model formulations in other papers that  
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(a) HPBJ1 and HPB control policies 
 

 
 

(b) HPBJ2 control policy 
 

Figure 4 Stock trajectories under the proposed control policies 
 

also look at PM and buffer stock control (Ki Ling et al. 1997; Chelbi and Ait-Kadi, 2004; 
Rezg,2004; Salameh et al. 2001). We also propose a relaxation of the assumption that the 
inventory level is periodic and null after PM (i.e., x(kT) = 0), unlike in Chelbi and Ait-Kadi 
(2004), Salameh et al. (2001), Gharbi et al (2007), Rezg (2008). 

The following maintenance cycles can be observed in Figure 4(a) and 4(b):  
-  TT 2, : Since x(T) = Z1, PM is performed under the three policies ((1a) and (1b)). The 

system does not fail before the next scheduled PM, while the inventory increases ((2a) 
and (2b)), and then is maintained at Z1;  

-  TT 3,2 : Another PM is performed at time 2T ((3a) and (3b)). A failure occurs and 
triggers a CM action, which is completed before the end of the maintenance cycle. 
Production resumes not long before 3T, such that the inventory is not completely full at 
3T ((4a) and (4b)). In Figure 4(a), x(3T) < Z1 for both the HPBJ1 and HPB policies, 
while Z1 < x(3T) < Z2 for the HPBJ2 policy (Figure 4(b)); 

-  TT 4,3 : Under the HPBJ1 policy, PM is skipped, whereas PM is performed at 3T 
under the HPBJ2 and HPB policies ((5a) and (5b)). In this scenario, the trajectory under 
the HPBJ1 and HPB policies splits into two different directions. Production resumes 
and the machine operates long enough for the inventory levels to reach the hedging 
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point level ((6a) and (6b)), after which a failure occurs, and the inventory level at 4T is 
below Z2 for the HPBJ2 policy, and below Z for the HPBJ1 and HPB policies; 

-  TT 5,4 : The HPBJ1 and HPBJ2 policies both skip the scheduled PM, whereas PM is 
performed at 4T as planned under the HPB policy ((7a) and (7b)). In this case, the HPB 
policy leads to a fall in x(t) below 0 and to the wastage of a practically new component 
((8a)). A breakdown does not occur until the next scheduled PM in 5T, and thus the 
inventory levels increase ((9a) and (9b)) and reach the maximum level Z1; 

-  TT 6,5 : PM is performed at the beginning of the maintenance cycle at 5T under the 
three policies ((10a) and (10b)). The system is then subject to several failures that occur 
in fairly quick succession ((11a) and (11b)), and the inventory never reaches Z1. The 
last failure occurs before 6T and ends after 6T. As a result, PM is skipped under the 
three policies ((12a) and (12b)). 

Berg and Epstein (1976), as well as Archibald and Dekker (1996), established that skipping 
periodic PM to avoid the wastage of relatively new equipment enhances the performances of the 
BRP. When combined with an inventory control policy, skipping PM if x(t) < Z2  should also 
reduce the risk of shortage due to consecutive CM and PM interventions. Moreover, this 
condition is indirectly equivalent to allowing a certain time for the inventory to build up before 
any PM intervention, and thus can be thought of as a condition on the machine age. 
Consequently, the HPBJ1 and HPBJ2 policies are expected to be doubly cost-effective as 
compared to the HPB policy. When comparing the HPBJ1 policy with the HPBJ2 policy, it is 
important to note that PM is skipped more often with the HPBJ1 policy than with the HPBJ2 
policy since Z2 < Z1, and the higher Z2 is, the more often PM is skipped. 

From the preceding discussion, it follows that once the control parameters are known (i.e.,  
(T, Z1, Z2) or (T, Z1)), the near-optimal policies are completely defined. The numerical methods 
provide the structure of a near-optimal control policy. However, implementation difficulties and 
irregularities in the boundary of the numerical results make the approximation of the control 
parameters challenging. Furthermore, the accuracy of the value function and of the related control 
parameters obtained with the numerical methods depends on how fine the grid step is (Kenné et 
al. 2003). A satisfactory approximation would be too time-consuming to be applicable at the 
operational level, which is one of our objectives. In the next section, we propose an alternative 
approach based on simulation in order to approximate the optimal control parameters and the 
associated cost. The simulation-based approach is also more flexible and better suited to 
thoroughly compare the control policies in a wide range of time and cost configurations. 
 

4. Estimation of the optimal control policy 

4.1. Control approach 

In the previous sections, the problem was analytically presented, and the structure of the optimal 
policy was obtained through a numerical approach. This section introduces the framework of an 
overall resolution approach that could easily be applied at an operational level. This approach, 
which is based on Kenné and Gharbi (1999) and Gharbi and Kenné (2000), combines both 
analytical and simulation models, an experimental design, and a statistical analysis. This 
approach is applied to the control problem proposed in the previous sections, and is described 
through the following six steps: 

https://www.researchgate.net/publication/3152127_Modified_block-replacement_for_multiple-component_systems?el=1_x_8&enrichId=rgreq-7abe370d-b124-4845-8304-78086020b148&enrichSource=Y292ZXJQYWdlOzIyNzQyMDY1MDtBUzoxNjU2ODE4Njk4OTM2MzJAMTQxNjUxMzA0NDA3NA==
https://www.researchgate.net/publication/229674978_A_Modified_Block_Replacement_Policy?el=1_x_8&enrichId=rgreq-7abe370d-b124-4845-8304-78086020b148&enrichSource=Y292ZXJQYWdlOzIyNzQyMDY1MDtBUzoxNjU2ODE4Njk4OTM2MzJAMTQxNjUxMzA0NDA3NA==
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- Step 1: Machine (u*, ω*) = ?: This step describes the objective of the study, which is to 
find the optimal production and maintenance control variables u(.) and ω(.) that 
minimize the total incurred maintenance and inventory cost. 

- Step 2: Control problem formulation and analytical approach: Through an analytical 
approach (Section 2), and using numerical methods (Section 3), the structure of the 
optimal control policy is derived. Such a control policy is parameterized by the 
factors, (T, Z1, Z2) or (T, Z1), and is taken as the input of the simulation model. 

- Step 3: Simulation model: The simulation model evaluates the behaviour and the 
performance of the manufacturing system (i.e., the overall cost) for given values of 
the factors. Readers are referred to Section 4.2 for a detailed description of this 
simulation model. 

- Step 4: Experimental design: The experimental design determines how the input factors 
should be varied using a minimal set of simulation runs. In order to obtain the 
effects of the main factors and their interactions on the incurred cost, a Pareto 
analysis is conducted on the data collected by simulation. 

- Step 5: Response surface methodology: A regression analysis of significant factors and their 
interactions, in conjunction with a response surface methodology, provides the 
relationship between the cost and the input factors, and an estimation of their 
optimal values, called (T*, Z1*, Z2*) or (T*, Z1*). 

- Step 6: Selection of the best joint control policy: The three near-optimal control policies are 
then analyzed and compared for a wide range of cost and time parameters, from 
which we deduce the best control policy.  

4.2. Simulation model 

A simulation model was developed for each proposed control policy using the Visual SLAM 
simulation language with C sub-routines, and then executed through the AWESIM software 
application (Pritsker and O’Reilly, 1999). This model consists of several networks and user 
routines, each of which describes a specific task or event in the system (demand, failure and 
maintenance times, control policy, states of the system, threshold crossing of inventory 
variables…, etc.). We adopt a block diagram representation of the maintenance strategy and of 
the inventory control policy to facilitate understanding, as depicted in Figure 5 and Figure 6, 
respectively. The simulation model is detailed below. 

State equations (C language insert) 

The state equation (1) is defined as a C language insert. It describes the evolution of the inventory 
level x(t) as a function of the demand rate and of the production rate, set by the control policy. 
 
HPP block-diagram 

In Figure 5, a detect node raises a signal whenever the hedging point Z1 is crossed by x(t) 
(SIGNAL block). Considering the state of the system, (x, ξ), the production rate, u(.), is then set 
according to the HPP.  
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Figure 5 The HPP block-diagram of the simulation model 
 
 

 
 

Figure 6 The maintenance control block-diagram of the simulation model 
 
 
Maintenance policy block-diagram  

The maintenance policies under the HPB, HPBJ1 and HPBJ2 policies are illustrated in Figure 6. 
The block diagram provides the system state changes (discrete events) and involves an additional 
variable, Trem, which denotes the remaining time before the next scheduled PM. After each 
maintenance action (PM or CM), the “UPDATE Tb, TCM, TPM” block samples the time to fail and 
the CM and PM durations from their respective probability distributions. Under the HPB policy, 
the maintenance policy is a simple BRP, which entails that the machine is instantaneously 
withdrawn and repaired during a delay, TCM (CM), when a failure occurs before the next 
scheduled PM (if Tb < Trem), and periodically maintained with a delay, TPM, every T units of time 
(if Tb > Trem). A block test checks the proposition “Trem < Tb + TCM”, which means that “a failure 
begins before and ends after the scheduled PM”. If the proposition is true, the scheduled PM is 
skipped and the scheduled PM considered in Trem would be the next PM, T units of time later. 
The “UPDATE Trem” block calculates the new value of Trem after a maintenance action or if PM 
is skipped. Under the HPBJ2 policy (respectively, HPBJ1), an additional branch is added to the 
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block diagram in order to test whether the inventory level is below Z2 (respectively, Z1), and thus 
whether PM should be skipped. After any stoppage and resumption of production, the production 
block diagram updates the inventory level and the incurred cost. 
 
Production block 

The production rate, set by the HPP block, and the machine state, set by the maintenance strategy 
block, are brought together. The inventory level and the overall cost are updated according to 
equations (1) and (3) after the duration of a time step, which depends on discrete event 
scheduling (failures and maintenances), continuous threshold crossing events and time step 
specifications. For more details, the reader is referred to Gharbi and Kenné (2000). Once the 
simulation time reaches the predefined simulation horizon, the simulation run is stopped and the 
incurred cost for the given control parameters is obtained. 

4.3. Statistical analysis 

For each joint maintenance and inventory policy, two or three independent variables ((T, Z1) for 
the HPB and HPBJ1 policies, (T, Z1, Z2) for the HPBJ2 policy) and one dependent variable (the 
overall cost) are considered in the data collection. Assuming that the value function in  
equation (4) is convex, a second-order model is considered to fit the cost function. Complete 32 
(for the HPB and HPBJ policies) and 33 (for the HPBJ2 policy) experimental designs are 
selected. Each combination of factors is replicated four times, requiring 36 (32 x 4) and 108 (33 x 
4) simulations runs, respectively. 

First, a multifactorial analysis of variance (ANOVA) or a Pareto analysis is performed using a 
statistical software application (STATISTICA) in order to quantify the effects of the factors, their 
interactions and their quadratic effects on the incurred cost. Non-significant factors are eliminated 
with a level of significance set at 0.05. This analysis also provides the proportion of the observed 
variability explained by the model and denoted by the R-squared adjusted value. 

A response surface methodology is subsequently carried out in order to optimize the response 
(i.e., the incurred cost) as a function of the significant variables. We assume that there exists a 
continuous function Ψ, called the response surface, which provides the value of the cost 
corresponding to any given combination of T and Z1 (respectively, T, Z1 and Z2). The following 
functions are considered: 

εZTαZαTαZaTααZTψHPB  12
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11231210212 ),,( ZγZγTγZγZγTγγZZTψHPBJ 

εZZγZTγZTγ  2123213112   
(10)

where (α0, αi, αij,), (β0, βi, βij), (γ0, γi, γij),  3,2,1),( ji  are unknown parameters and ε is the 
residual error. Note that non-significant effects, third-order interactions and all other effects are 
ignored or are added to the error, ε. 

Once the unknown parameters are estimated, the corresponding response surfaces are 
computed to give the coordinates of the optimal points for each control policy. For more details 
on the statistical analysis, readers are referred to Montgomery (2005).     
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5. Numerical example 

The determination of the optimal control parameters for the three policies is detailed in a step-by-
step manner with a numerical example using the data parameters presented in Table 1 (basic 
case). The manufacturing system considered here is designed to address demand with a 
maximum production rate 20% higher than the nominal demand rate. The stochastic variables 
that describe the failure and maintenance times follow lognormal distributions (the values within 
parentheses indicate the mean and the standard deviations). Note that any probability 
distributions can be implemented in the simulation model. CM and PM differ in their costs and 
their durations, such that CM is twice as long and costs three times as much as PM. Backlogs are 
penalized by a cost ten times as high as the holding cost.  
 
 

Table 1 Data parameters of the basic case 
 

umax D c1 c2 c+ c- Tb TCM TPM 

24 20 7500 2500 0.1 1 Lognormal (200,100) Lognormal (20,2) Lognormal (10,1) 

 
 

A new variable is introduced, z2 ( 10 2  z  and 122 ZzZ  ), in order to ensure that 12 ZZ  . 
For each replication, the simulation horizon is set to 5,000,000 units of time to ensure that the 
steady state is achieved.  

The quantified effects of the main factors, interactions and quadratic effects (with standardized 
factors), and the R-squared adjusted value for each control policy, are shown in Figure 7. This 
figure indicates that all factors are significant. The variability of the simulation model for the 
HPB, HPBJ1 and HBBJ2 policies (i.e., the R-squared adjusted values) explains 98.98%, 98.29% 
and 97.89% of the variability observed in the overall costs, respectively. It also confirms that the 
overall costs are convex and can be fitted by second-order models. A residual analysis was used 
to verify the adequacy of these models. 
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Figure 7 Pareto chart under the three policies 
 
 

The corresponding second-order models are given by: 

εZTZZTTψHPB  1
2

11
2 2540.15516.24201.10661.48709.2302.51  

(11)
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εZTZZTTψHPBJ  1
2

11
2 8240.03755.218723.09888.10642.0346.48  (12)

2
2

11
2

2 4567.04398.201309.00024.23714.0335.47 zZZTTψHPBJ   

εzZzTZTz  2121
2

2 1693.03402.08203.05031.0  
(13)

The projection of the cost response surfaces onto two-dimensional planes is presented in  
Figure 8 for the HPBJ2 policy. The minimum total cost is, JHPBJ2* = $47.20, and is located at  
T* = 92.71, Z1* = 200.14 and z2* = 0.25 (Z2* = 50.11). These values represent the best 
parameters of the near-optimal control policy, which should be applied to control both the 
maintenance and inventory of the manufacturing system. Similarly, the control parameters that 
minimize the cost response surface of the HBP and HPBJ1 policies are computed. 
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Figure 8 Cost response surfaces under the HPBJ2 policy 

5.4. Comparison of the performances of the control policies 

Table 2 indicates several relevant measures that complete the measure of the total cost. They 
were obtained with the values of the control parameters presented in the last section.  

 
 

Table 2 Complementary performance indices measured by simulation 
 

Policy T* Z1*  z2* X  X
No. of 

CM 
No. of 

PM 

No. of 
skipped 

PM 
A (%) L J i J m J* 

HPBJ2 92.71 200.14 0.25 126.80 4.96 2941 50739 1104 88.61 82.60 17.42 29.78 47.20

HPBJ1 90.14 202.03  128.87 5.53 3671 49301 4038 88.67 83.70 18.22 30.12 48.34

HPB 83.55 209.95  128.78 6.10 1793 58382  87.61 72.79 18.69 32.01 50.70

where X and X denote the average positive and negative inventory levels, A is the average availability, L is the 
average machine lifetime, J i , J m and J* are the incurred inventory, maintenance and total cost, respectively. 
 
 

- Maintenance performance: Table 2 shows that the performances of the HPBJ1 and 
HPBJ2 policies in terms of availability, average lifetime and maintenance costs are 
almost the same. Both the HPBJ1 and HPBJ2 policies outperform the HPB policy with 
respect to maintenance performance, because the HPB policy leads to the wastage of 
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relatively new components. Relatively few PM are skipped under the HPBJ1 and 
HPBJ2 policies, as compared to the amount of PM realized. However the availability 
and the average lifetime of the machine are enhanced.  

- Inventory performance: Since skipping PM enables the spacing of maintenance actions 
and prevents a significant decrease in the inventory level due to consecutive inactive 
periods, the inventory costs observed under the HPBJ1 and HPBJ2 policies are better 
than those seen under the HPB policy. The optimal value of Z1 and T required to avoid 
failures and backlogs are respectively higher and smaller with the HPB policy. In 
addition, it can be seen that the simplification of Z2 = Z1 with the HPBJ1 policy leads to 
more skipped PM, but also to more failures, more backlogs and a higher inventory cost 
than in the case of Z2 ≠ Z1, which is proposed in the HPBJ2 policy. 

 
The main conclusion to be drawn from this analysis is that the HPBJ2 policy provides a better 

approximation of the real optimal policy than the HPBJ1 policy in this example, since Z1* and 
Z2* are different, and the incurred cost is 2.82% better than that under the HPBJ1 policy. The cost 
difference is derived from both the inventory and the maintenance costs. 

When studying the availability of the system through an ANOVA analysis, the availability 
under the HPB and HPBJ1 policies is shown to be a function of T, and is independent of Z1. 
Concerning the HPBJ2 policy, an ANOVA analysis reveals that z2 is also significant. Though z2 
does affect the number of PM breaks, its effects on the availability are however small as 
compared to those of T. Figure 9 shows availability as a function of T under the three proposed 
policies. 

 

 
 

Figure 9 Availability as a function of T under the three policies 
 
 
Figure 9 highlights the fact that the availability of the system increases when T increases or 

when more PM are skipped (i.e., if PM are performed less often). Consequently, the availability 
under the HPBJ2 policy is slightly lower than that for the HPBJ1 policy, and better than that for 
the HPB policy for a given T. Figure 9 also shows the feasibility limit of the system  
(A > d / umax), which is equivalent to imposing a minimal value for T (i.e., T > 56 for the HPB 
policy). However, if T tends to infinity, the availabilities tend to the same asymptotical limit  
(MTTF / (MTTF + MTTCR), where MTTF is the mean time to failure), which is the availability 
under a failure replacement strategy. 
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6. Sensitivity analysis and comparative study 

A sensitivity analysis of the control policies is conducted with respect to cost parameters. Its 
objective is to compare the incurred costs of the control policies for different cost combinations 
derived from the basic case and presented in Table 3. The results are summarized in Table 4, 
where the consistency between the variation of each cost parameter and the optimal costs and 
control parameters is highlighted. 
 
 

Table 3 Combination of cost parameters of the sensitivity analysis 
 

Case c1 c2 c+ c- 
1 7500 2500 0.1 1 
2 5000 2500 0.1 1 
3 10000 2500 0.1 1 
4 7500 2000 0.1 1 
5 7500 3000 0.1 1 
6 7500 2500 0.05 1 
7 7500 2500 0.15 1 
8 7500 2500 0.1 0.5 
9 7500 2500 0.1 1.5 

 
 

Table 4 Sensitivity analysis for different cost parameters 
 

 T Z1 Z2 Total cost Costs difference (%) 

Case HPB HPBJ1 HPBJ2 HPB HPBJ1 HPBJ2 HPBJ2 HPB HPBJ1 HPBJ2 
HPBJ1 
/ HPB 

HPBJ2 
/ HPBJ1 

1 83.55 90.14 92.71 209.95 202.03 200.14 5.01 50.70 48.34 47.20 -4.65 -2.43 
2 86.04 96.65 99.44 211.48 204.85 202.62 4.72 49.73 46.36 45.58 -6.77 -1.72 
3 81.30 85.32 87.40 208.57 199.94 198.17 4.89 51.56 50.02 48.47 -2.98 -3.21 
4 79.13 82.74 84.39 207.24 198.82 196.91 5.23 44.67 43.16 41.79 -3.37 -3.27 
5 87.36 96.62 99.50 212.29 204.84 202.59 3.93 56.40 53.07 52.07 -5.91 -1.92 
6 86.29 93.90 96.50 234.96 228.72 226.06 6.31 43.69 41.25 40.22 -5.58 -2.56 
7 80.36 85.58 88.03 186.69 177.18 176.03 3.94 56.52 54.18 52.94 -4.14 -2.33 
8 89.01 96.24 99.82 172.48 160.83 159.69 0.38 46.62 44.54 43.68 -4.47 -1.96 
9 80.71 86.12 88.04 223.52 216.73 214.33 6.69 53.19 50.54 49.05 -4.98 -3.04 

 
 
Both the HPBJ1 and HPBJ2 policies outperform the HPB policy (the total cost under the 

HPBJ1 policy is 2.98% to 6.77% better than under the HPB policy). The HPBJ2 policy 
outperforms the HPBJ1 policy (1.72% to 3.27% better), and the PM threshold Z2* is significantly 
lower than the hedging point Z1* in all cases. The optimal parameters evolve in the same 
directions, and with the same magnitude, in response to any variations in cost parameters. 
Furthermore, the optimal values of the hedging points, Z1*, under the HPB policy are higher than 
those observed under the HPBJ1 and HPBJ2 policies, which are almost equal (since their 
maintenance performances are almost the same). The reason for this is that the system tends to 
protect itself against backlogs due to consecutive CM and PM. The variations in the cost 
parameters illustrated in Table 4 are examined and are compared to the basic case as follows: 
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- Variation in the CM cost, c1 (cases 2 and 3): When the CM cost increases, the interval 
between scheduled PM, T* (and the PM threshold Z2*) decrease to give preference to 
PM interventions and to avoid breakdowns. Consequently, the risk of breakdown and 
shortage decreases (i.e., MTTPM < MTTCR), and inventory control requires a lower 
hedging point, Z1*. 

- Variation in the PM cost, c2 (cases 4 and 5): The variation in the PM cost has the 
opposite effect when compared to that of the CM cost because both cost variations 
influence the optimal balance between PM and CM in different directions. 

- Variation in the inventory cost, c+ (cases 6 and 7): When the inventory cost increases, 
lower average inventory must be kept on hand, and thus the hedging point, Z1*, 
decreases for the three control policies. To avoid the risk of shortage when the average 
inventory level decreases, the system reacts by reducing the period between scheduled 
PM, T*, and the PM threshold, Z2*. 

- Variation in the backlog cost, c- (cases 8 and 9): When the backlog cost is higher, 
higher stock levels must be kept and long inactive periods due to breakdowns avoided. 
To protect the system from shortages, the hedging point, Z1*, is increased for the three 
control policies, and PM are performed more frequently.  

To confirm the cost differences observed in the sensitivity analysis, a Student’s t-test is 
conducted on the cost difference between the HPB and HPBJ1 policies and between the HPBJ1 
and HPBJ2 policies with the parameter data shown in Table 3. The confidence interval of 
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The control policies are simulated with their optimal control parameters as inputs for each 
combination of cost parameters. The confidence intervals of the incurred cost differences 

*
1

*
HPBJHPB JJ   and *

2
*

1 HPBJHPBJ JJ   are presented in Table 5 and Table 6.  

 
Table 5 Cost difference confidence interval (95%) for HPBJ1 and HPB policies 

 
*

1
*

HPBJHPB JJ   

Case 1 2 3 4 5 6 7 8 9 
Lower bound 2.193 3.027 1.894 2.014 3.004 2.208 2.412 1.584 2.851 
Upper bound 2.356 3.189 2.041 2.151 3.170 2.346 2.566 1.722 3.023 
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Table 6 Cost difference confidence interval (95%) for HPBJ2 and HPBJ1 policies 
 

*
2

*
1 HPBJHPBJ JJ   

Case 1 2 3 4 5 6 7 8 9 
Lower bound 1.064 0.800 1.293 1.444 0.794 0.063 1.439 0.322 1.176 
Upper bound 1.261 0.963 1.507 1.640 0.994 0.242 1.665 0.489 1.427 

 
 
Since the lower bound of the confidence intervals of *

1
*

HPBJHPB JJ   and *
2

*
1 HPBJHPBJ JJ   is 

positive in all cases at a 95% confidence level, it can be concluded that both the HPBJ1 and the 
HPBJ2 policies outperform the HPB policy for the case studied ( **

1
*

2 HPBHPBJHPBJ JJJ  ). 

Furthermore, the HPBJ2 policy is as easy to manage in practice as the HPB policy, which is a 
combination of an HPP with a classical periodic PM strategy, and only requires that the inventory 
level be checked at the scheduled PM times.  

 

7. Effects of cost and time parameters on the selection of the best 
control policy 

7.1. Effects of cost parameters on the control policies 

The previous section showed that the overall costs under the HPBJ1 and HPBJ2 policies are 
relatively equal. The objective of this section is to conduct a more thorough examination of the 
effect of each cost parameter, separately or in pairs, on the joint control policies. Since the HPB 
policy has been used in the literature to study the joint inventory and maintenance control policies 
(Ki Ling et al. 1997), the objective is to compare the relative cost differences between the HPBJ1 

and HPBJ2 policies and the HPB policy (i.e., 
*

**
1

HPB

HPBHPBJ

J

JJ 
 and 

*

**
2

HPB

HPBHPBJ

J

JJ 
) for a wide 

range of cost configurations, and to verify how the proposed control policies evolve in relation to 
one another. The effects of the inventory and of the backlog costs, c+ and c-, are depicted in 
Figures 10(a) and 10(b), respectively. Similarly, Figures 11(a) and 11(b) present the effects of the 
CM and of the PM costs c1 and c2 on the incurred costs. All other cost parameters remain 
constant at values given in the basic case. 

Keeping in mind that skipping PM becomes less attractive when the holding cost increases (as 
indicated in Table 4), the cost differences with the HPB policy decrease (Figure 10(a)).  
Figure 10(b) shows that increasing c- will penalize the HPB policy more and more, because it 
results in consecutive CM and PM periods, and thus in more shortages. Nevertheless, as more 
PM are skipped under the HPBJ1 policy than under the HPBJ2 policy, the HPBJ1 policy triggers 
more failures (refer to Table 2), and leads to more shortages. The HPBJ1 policy will become less 
and less profitable in comparison with the HPBJ2 policy. When c- = 10, the HPBJ2 policy and 
the HPBJ1 policy are nearly 25% and 12% better than the HPB policy, respectively. When  
c- = c+ = 0.1 (i.e., if backlogs are not penalized), skipping PM will only influence the wastage of 
relatively new components under the HPB policy, hence the HPBJ1 and HPBJ2 policies will be 
close in terms of cost and both slightly better than the HPB policy (nearly 3% better). 
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(a)       (b) 

Figure 10 Cost comparison of the control policies with different holding and backlog costs 
 

 
(a)       (b) 

Figure 11 Cost comparison of the control policies with different CM and PM costs 
 
 
Since the HPBJ1 and HPBJ2 policies lead to more failures than does the HPB policy, a 

significant increase in CM cost makes PM breaks less attractive, and may lead to situations where 
the HPBJ1 becomes less cost-effective than the HPB policy (Figure 11(a)). In that case, the 
incurred penalty costs from breakdowns (under the HPBJ1 policy) become greater than the 
benefits gained from avoiding the wastage of relatively new components (under the HPB policy). 
However, for large values of c1, the HPBJ2 policy is still nearly 5% better in terms of cost than 
the HPB policy. If c1 = c2 = 2500, breakdowns will only be penalized by MTTCR > MTTPM and 
the HPBJ1 policy becomes almost as good as the HPBJ2 policy, and nearly 10% better than the 
HPB policy. Figure 11(b) confirms that the variation in PM costs has the opposite effect when 
compared with the variation in CM cost which was observed in Table 4. 

Finally, Figure 12(a) and 12(b) illustrate the variations in the incurred costs when varying the 
relative weight of the inventory costs (i.e., backlog and holding costs) and the maintenance costs 
(i.e., CM and PM costs). If the relative weight of the inventory cost in the overall cost increases 
(respectively, if the weight of the maintenance cost decreases), the HPBJ2 and HPBJ1 policies 
are still superior to the HPB policy, which confirms that the concept of skipping PM is profitable. 
In the absence of the inventory costs, the HPBJ1 and HPBJ2 policies are equivalent, and skipping 
PM is motivated solely by the desire to avoid the wastage of relatively new components (Berg 
and Epstein, 1976; Archibald and Dekker, 1996). When the inventory costs increase, the 
influence of the backlog cost increases and the cost differences between the three joint control 
policies increases. 
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(a)       (b) 

Figure 12 Cost comparison of the control policies with different 
inventory costs-to-maintenance costs ratio 

 
 
The main conclusion is that the HPBJ2 policy constitutes a better approximation of the 

optimal control policy. It confirms that choosing to have two different inventory thresholds, Z1 
and Z2, instead of only one, is more profitable. However, for lower values of the backlog, when 
CM and PM costs are relatively close, or when the relative weight of the inventory costs is lower, 
the overall costs of the HPBJ1 and HPBJ2 policies are similar.  

7.2. Effects of the CM duration on the control policies 

The influence of the mean and standard deviations of the time to perform a CM (MTTCR and 
SDC) and of the mean and standard deviations of the time to perform a PM (MTTPM and SDP) 
on cost differences are presented in Figures 13(a) and 13(b) and Figures 14(a) and 14(b), 
respectively. The cost parameters and all time parameters, except the considered time parameters, 
are set to their values defined in the basic case. 
Figure 13(a) shows that when MTTCR decreases and tends to MTTPM = 10, CM will only be 
penalized by the maintenance cost (c1 > c2). In this situation, the system allows more PM breaks 
to occur, and the HPBJ2 and HPBJ1 policies are equivalent (Z2 = Z1), and both better than the 
HPB policy. When MTTCR increases, the HPBJ1 policy becomes less attractive than the HPB 
and HPBJ2 policies since this policy causes the most machine breakdowns amongst the three 
policies. For large MTTCRs, Z2* takes lower values, and fewer scheduled PM are skipped, but 
just enough to enhance the performance compared to the HPB policy. In Figure 13(b), skipping 
PM is not necessary for lower values of MTTPM, and the HPB and HPBJ2 policies are equivalent 
and both are better than the HPBJ1 policy. If MTTPM increases and tends to MTTCR = 20, the 
system adapts itself, avoiding most of the PMs under the three policies. As none of the PM 
interventions are skipped under the HPB policy, the best HPB policy will be a failure 
replacement maintenance policy (T* tends towards infinity). Since the HPBJ1 and HPBJ2 
policies selectively skip PM, both these policies become better than the HPB policies. Though the 
optimal value of Z2* is high, it however differs from that of Z1*, still leaving the HPBJ2 policy 
better than the HPBJ1 policy. 

Figure 14(a) and 14(b) show that the control policies are affected by the variability of the 
maintenance durations, such that the more scattered the maintenance durations, the more 
attractive skipping PM becomes. It can also be noted that if the PM duration is highly variable, 
then Z2* tends to Z1* and the HPBJ and HPBJ2 policies become equivalent. 
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(a)  (b) 

Figure 13 Cost comparison of the control policies with different 
 mean times to perform CM and PM 

 

     
 (a)      (b) 

Figure 14 Cost comparison of the control policies with different 
standard deviations of the time to perform CM and PM 

 

8. Conclusion 

In this paper, the interactions between maintenance and production control in a manufacturing 
system are investigated in the case of non-negligible and random maintenance durations and with 
periodic preventive maintenance. To our knowledge, none of the inventory control policies with 
periodic PM proposed so far in the literature are optimal. These models are also limited by 
restrictive assumptions concerning the occurrence of breakdowns during stock build-up periods, 
loss of unmet demand and the periodicity of the inventory trajectory. We relax these restrictive 
assumptions and determine the approximated structure of the optimal joint maintenance and 
inventory control policy using numerical techniques. This policy consists of a classical HPP, to 
control the production rate, and a modified periodic PM strategy, in which the scheduled PM 
interventions are performed only if the inventory is at a sufficient level. This leads to a three-
parameter joint control policy. A simplification of the joint control policy is also proposed, by 
considering that the inventory threshold that triggers the execution of PM and the hedging point 
are both at the same level. As a point of comparison, the classical control policy that combines 
HPP with a periodic PM strategy without skipping any PM is also considered. The optimal values 
of the corresponding control parameters for the three control policies are then determined through 
a simulation-based experimental approach.  
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This approach is applied on a wide range of time and cost parameter configurations in order to 
evaluate their effects on the system under the proposed control policies. The main conclusion is 
that the joint control policy with three parameters is better than the simplified policy with two 
parameters, and leads to significant cost reduction as compared to the classical control policy 
composed of an HPP and a BRP strategy. In addition, this policy is as easy to implement and to 
manage in practice as the classical HPP and BRP strategy, because it only requires that the 
inventory level be checked at the scheduled PM times. 
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