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APPROCHE HIERARCHISEE APPLIQUEE AU CONTROLE DES TAUX DE 
PRODUCTION ET DE MAINTENANCE DES SYSTEMES 

MANUFACTURIERS 
 

JEAN-PIERRE KENNE 
EL-KÉBIR BOUKAS 

 
SOMMAIRE 

Les systèmes de production sont en général constitués de plusieurs machines 

interconnectées qui produisent simultanément plusieurs types de pièces. Ces machines 

sont sujettes à des pannes et réparations aléatoires. La dynamique des pannes de ces 

machines dépend de leurs âges et leur disponibilité dépend des stratégies de maintenance 

adoptées. Dans ce contexte, le problème de planification de la production et de la 

maintenance de ces types de systèmes de production peut être formulé comme un 

problème d'optimisation stochastique de grande dimension. Cette dimension croît de 

façon exponentielle avec le nombre de machines et de types de pièces considérées. Les 

problèmes d'optimisation stochastique associés à une telle dimension sont complexes et 

très difficiles à résoudre de nos jours. 

L’objectif de cette recherche est de déterminer une loi de commande sous optimale, 

constituée des taux de production et de maintenance, qui approxime la loi de commande 

de ces problèmes complexes. Pour formuler le problème d’optimisation à résoudre, nous 

proposons une approche de commande hiérarchisée à deux niveaux. Cette approche 

consiste à utiliser les méthodes des perturbations singulières pour transformer le 

problème de commande stochastique initial en un problème de commande déterministe 

équivalent.  L'approche de Kushner est par la suite appliquée au problème déterministe 

pour obtenir un problème de décision markovien. En résolvant ce problème de faible 

dimension à l'aide des méthodes numériques, nous obtenons une loi de commande à 

partir de laquelle nous construisons la loi de commande recherchée pour le problème 

d'optimisation stochastique initial. Une méthode heuristique est proposée pour une telle 

construction. Des modèles de simulation sont enfin utilisés pour valider l'approche de 
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commande proposée dans cette recherche. Les résultats de la recherche sont appliqués 

sur un exemple de système de production constitué de deux machines produisant deux 

types de pièces. 
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HIERARCHICAL CONTROL OF PRODUCTION AND 
MAINTENANCE RATES IN MANUFACTURING SYSTEMS 

 
JEAN-PIERRE KENNE 
EL-KÉBIR BOUKAS 

 
ABSTRACT 

This paper deals with the production and preventive maintenance planning control 

problem for a multi-machine flexible manufacturing system (FMS). A two-level 

hierarchical control model is developed according to the discrepancy between the time 

scale of the discounting cost event and the one of the machines states process. The 

proposed model extends the classical singular perturbation approach by considering age 

dependent machines failure rates and controlling both production and preventive 

maintenance rates. We replace the stochastic optimal control problem by a deterministic 

control problem called limiting control problem. With this approach, we compute an age 

dependent near-optimal control policy of the stochastic initial control problem from the 

optimal solution of the equivalent limiting control problem. A numerical example is 

used to illustrate the procedure and to show the reduction of the control problem size. 

Key words : Production Control, Preventive Maintenance, Hierarchical Control, Singular 

Perturbations, Flexible Manufacturing Systems. 
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1 INTRODUCTION 

Today’s manufacturing systems have more sophisticated and dynamic nature than the 

ones in the past. Most of them are large dynamic systems characterized by several 

machines and a large number of different products. Moreover, such systems are subject 

to discrete events such as machine failures and repairs, demand fluctuations, etc. Thus, 

in many instances, manufacturing systems are unreliable systems. Over time, their 

dynamics moves from one mode to another according to various kinds of discrete 

events. The control policies of such systems must be able to react to these events and to 

minimize a given criteria index. The related control problem is and extremely complex 

one. This complexity is mainly due to the unreliability of the systems and the large 

number of machines and products involved. 

The problem of controlling manufacturing systems with unreliable machines was 

formulated as a stochastic control problem by Older and Suri (1980). The failures and 

repairs processes were supposed to be described by homogeneous Markov processes. 

The related optimal control model fails in the category of problems studied previously 

by Rishel (1975). Investigation in the same direction gives rise to the analytical solution 

of the one-machine one-product manufacturing system obtained by Akella and Kumar 

(1986). In the case of non-homogeneous Matkov processes, the control problem 

becomes more complex. In this sphere, Boukas and Haurie (1990) considered the fact 

that the failure probabilities of a machine depend on its age and they added to the 

existing models the possibility to do preventive maintenance. The related age dependent 

set of dynamic programming equations were solved numerically for the two-machine 

one-product manufacturing system. However, with the numerical scheme presented by 

Boukas and Haurie (1990), it remains difficult to obtain the optimal control of a large 

scale FMS (more than two machines). The only way to cope with such a difficulty is to 

develop heuristical methods based on the reduction of the size of the considered control 

problem. Hence, different approaches have been proposed in the literature in order to 

derive simple near-optimal control policies in manufacturing. 
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The concept of hedging point policy, introduced by Kimemia and Gershwin (1983), is 

one of the simple ways of finding suboptimal control policies in manufacturing. For 

further details on this concept, we refer the reader to the age dependent hedging point 

concept presented by Boukas et al. (1995b), Kenne et al. (1997) and Kenne and Gharbi 

(2000). For large scale FMS, the derivation of suboptimal policies based on this concept 

seems to be difficult due to the computation of the threshold levels. 

Another approach is to develop hierarchical control methods based on the particular 

structure of the system. This can be done by using the singular perturbation approach. 

The main idea of this approach is to simplify the complexity of a large system control 

problem according to the discrepancy between the time scales of different events. By 

replacing fast processes by their mean values, one can construct a deterministic limiting 

problem, which is computationally more tractable. Details on this approach can be found 

in Lehoczky et al. (1991), Sethi and Zhang (1994b) and Soner (1993). 

In this paper, we will extend the production rate control model presented in Lehoczky et 

al. (1991), Soner (1993) and Sethi et Zhang (1994a) to the case where the capacity of the 

system is age dependent and some jump rates are influenced by the control policy. The 

production and maintenance rates of the FMS will be derived from the numerical 

solution of the equivalent limiting problem. The purpose of the paper is to show how 

some large-scale stochastic control problems involving different time scale processes 

can be approximated in such a way that they become numerically tractable. Our main 

contribution is the derivation of a FMS age dependent control policies using the singular 

perturbation approach. We will illustrate our approach on a numerical example, which 

consists of two machines producing two part types. 

The paper is organized as follows. In section 2, we present the problem formulation of 

the production and maintenance rates control of a FMS subject to different time scale 

processes. Section 3 is devoted to the related optimal control problem. We develop the 
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limiting control problem and the construction of the suboptimal solution of the original 

problem in section 4. The proposed numerical algorithm is presented in section 5. In the 

last section, we apply the proposed method to a numerical example to illustrate the 

effectiveness of the method. 
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2 PROBLEM STATEMENT 

In this section, we present an explicit singular perturbation form of the control model for 

a multiple identical machines system. Thus, a hierarchical approach for solving the 

control problem of the FMS is the main frame of the proposed formulation. The system 

under study consists of m identical machines producing n different part types. The 

operational mode of the machine i can be described by a stochastic process ( )tiζ  

( )mi1 ≤≤ . such a machine is available when it is operational ( )( )1ti =ζ  and unavailable 

when it is under repair ( )( )2ti =ζ  or under preventive maintenance ( )( )3ti =ζ . We then 

have ( ) { }3,2,1t ii =Β∈ζ . We can describe the operational mode of the FMS by the 

random vector ( ) ( ) ( )( )t,,tt m1 ζζ=ζ   with values in m1 Β××Β=Β  . 

Let ( )′= m1 a,,aa   and ( )′ωω=ω m1 ,,  denote the vector of machines ages and the 

vector of preventive maintenance rates respectively. The process ( )tζ  is modelled by a 

continuous time Markov chain defined by machines ages and control dependent 

transition rates matrix ( ) ( )[ ]ωλ=ω αβ ,a,aQ  with ( ) 0,a
1

=ωλαβ
Μ

=β , M,,1=α , with 

( )Β=Μ card . The transition rates ( ).αβλ  are derived from the combination of those of 

the dependent processes ( ) m,,1i,ti =ζ . One can describe ( )tiζ  statistically by the 

following state probabilities: 

 ( ) ( )[ ] ( ) ( )
( ) ( )





δο+δλ+
δο+δλ

=α=ζβ=δ+ζΡ
αβ

αβ

tt.1

tt.
ttt i

i

ii      
β=α
β≠α

if

if
 (1) 

where 

 ( ) ( ) ( ) ( ) ( )
0

t

t
limand,..0.

0t
i

iii =
δ
δοΒ∈βαλ−=λ≥λ

→δβα
α≠β

αααβ  
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For the example of two machines, the set of possible values of ( )tζ  can be determined 

from the values of ( )t1ζ  and ( )t2ζ  as illustrated in table I. 

Table I. Modes of a two-machine manufacturing system 

( )t1ζ  1 1 1 2 2 2 3 3 3 

( )t2ζ  1 2 3 1 2 3 1 2 3 

( )tζ  1 2 3 4 5 6 7 8 9 

 

Our approach is used when the rate of change in the machine states is much larger than 

the rate at which the cost is discounted. In this paper, we assume a constant demand rate 

without any loose of generality. Two time scales are then considered: the discounting 

cost event and the machines states process time scales. When the difference between the 

two time scales is very large, one can split the time. Thus, the transition rates for the 

system, ( ).αβλ , can be expressed as ( ).q1
αβ

−ε  where ( ).qαβ  and the discount rate have the 

same magnitude. We can describe the behaviour of the system by a process ( )tεζ  

associated to the infinitesimal generator ( ).Qε  defined as follows: 

 ( ) ( )[ ] Β∈βα
ε

= αβ
ε ,.q

1
.Q  (2) 

The singular perturbation parameter ε  is used here to express the hierarchical structure 

of the proposed approach. With ,1<<ε  one can derive, from the formulation of the 

initial stochastic problem, an equivalent deterministic problem. The related control 

approach is illustrated in figure 1. Both control problems (stochastic and deterministic) 

are described by dynamic programming equations (DPE) presented in sections 3 and 4. 

The significance of the structure depicted in figure 1, for the decision-making hierarchy, 

is that the planning level management can ignore the day-to-day fluctuations in 

machines capacities, or generally, the details of shop floor events. This is given by the 
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limiting problem formulated at l. The operational level management can then derive 

approximate optimal policies for running the actual (stochastic) manufacturing system. 

We will provide the control for this level, namely level 2 of the proposed hierarchy, by 

construction a near-optimal control policy from the one of the limiting problem (level 1). 

Initial stochastic
Problem

(Stochastic D.P.E)

Deterministic limiting
Problem

(Deterministic D.P.E)

Singular
perturbation

Asymptotically optimal
control (heuristical)

Level 2

Level 1

 

Figure 1. Hierarchical control approach 

 

In order to increase the system capacity or the availability of the machines, we assume 

that the transition rate from the operational mode to the preventive maintenance mode 

for each machine is a control variable called ( ) m,,1i,ti =ω . The inverse of the control 

variable ( )tiω  represents the expected delay between the call for the technician and his 

arrival as defined by Boukas and Haurie (1990). 

Let ( ){ } Β∈α≥Ζα ,0t,t , be a finite-state stochastic process corresponding to the number 

of operational machines at time t with values in { }m,,1,0 =ε . Let ( )′= n1 u,,uu   

denotes the vector of production rates. The set of the feasible control policies ( )zΚ , with 

( )tz αΖ= , depend on the process ( )t∈ζ , and is given by: 
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 ( )
( ) ( )( ) ( ) ( )

( )
mz0

t0and

uu,ztu,0tu,t,tu
zK

maxj

ip

m

1i
ppp

n

1
i

mn

≤≤
















ω≤ω≤

=≤γ≥ℜ∈ω
= 

==ρ

+

 (3) 

where pγ  is the processing time of the part-type p and maxω  is the maximal preventive 

maintenance rate of each machine. 

The system behaviour is described by a hybrid state comprising both a discrete and a 

continuous component. The discrete component consists of the discrete event stochastic 

process ( )t∈ζ . The continuous component consists of continuous variables 

( )′= n1 x,,xx   and ( )′= m1 a,,aa   corresponding to the inventory/backlog of products 

and the cumulative ages of machines. These state variables are described by the 

following differential equations: 

 ( ) ( ) ( ) 00xdtutx =−=  (4) 

 ( ) ( )( ) ( ) a0atufta ==  (5) 

where x, a and d are given initial surplus or backlog, initial machines ages and demand 

rates vectors respectively. Let ( )a,xx~ =  and ( )ω= ,uu~ . 

Let ( )u~,x~,G α  be the cost rate defined as follow: 

 ( ) ε∈α∀++=α α−−++ ,cxcxcu~,x~,G  (6) 

where c+ and c- are costs incurred per unit produced parts for positive inventory and 

backlog respectively, ( ) ( )( )′=+
n1 x,0max,,x,0maxx  , 

( ) ( )( )′−−=− 0xmax,,0xmaxx n1   and αc  are given constants. 
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Our objective is to control the production rate u(t) and the preventive maintenance rate 

( )tω  (or the control policy ( )tu~ ) so as minimize the expected discounted cost given by : 

 ( ) ( ) ( ) ( ) ( ){ }α=Ζ==αΕ=α ε−∞ε  0,a0a,x0xdtu,x~,Geu,x~,J pt

0
 (7) 

subject to constraints given by equations (1) to (6). The value function of such a problem 

is : 

 ( )
( )

( ) ε∈α∀α=αυ ∈

αΚ∈

∈ u~,x~,Jx~, inf
u~

 (8) 

In the next sections, we present the elementary properties of the value function ( ).∈υ  and 

the derivation of the limiting control problem as ε  goes to 0. 
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3 PROPERTIES OF THE VALUE FUNCTION 

In this section, we present some properties of the value function ( ).∈υ  by using the 

method of viscosity solution of HJB equations. The dynamic programming equations, 

known as HJB equations, associated with the optimal control problem under study can 

be written formally as follows : 

 ( )
( )

( ) ( ) ( ) ( ) ( ) ( )








βυ
∈

+α+αυ+αυ−=αρυ ∈
αβ

=β

∈∈

αΚ∈

∈  x~,q
1

u~,x~,Gx~,ufx~,duminx~,
m

0
ax

u~
 (9) 

for all ε∈α . In what follows, we show that the value function ( ).,αυ∈  is locally 

Lipschitz and is the viscosity solution of the HJB equations. 

The reader is referred to Sethi et al. (1998) for some results concerning convex 

functions. Before we move on, we give some definitions. For any function 

( )⋅f  : RR → , the super differential ( )x~fD+  and the sub differential ( )x~fD−  are defined 

respectively as follows : 

 

( ) ( ) ( )

( ) ( ) ( )












≥−−+∈=













≤−−+∈=

→

+−

→

++

0
h

r.hx~fhx~f
inflim:Rrx~fD

0
h

r.hx~fhx~f
suplim:Rrx~fD

0h

mn

0h

mn

 

Definition 3.1.  The value function ( ).∈υ  is a viscosity solution of (9) if the following 

conditions hold : ( ).∈υ  is continuous and ( ) ( )kC
x~1Cx~,0 +≤αυ≤ ∈ ; 

 

( ) ( ) ( )[ ]{ }
( )

( )
( ) ( ) ( )









βυ
∈

+α+≤αρυ

≤−αυ−+αυ∈=αυ∈∀

∈
αβ

=β
α∈

∈

−∈∈
→

+∈+

 x~,q
1

u~,x~,Gr..fminx~,

0hr.h
~

x~,hx~,suplim:Rrx~,Dr

m

0
Ku~

1

0h
nm
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( ) ( ) ( )[ ]{ }
( )

( )
( ) ( ) ( )









βυ
∈

+α+≥αρυ

≤−αυ−+αυ∈=αυ∈∀

∈
αβ

=β
α∈

∈

−∈∈
→

+∈−

 x~,q
1

u~,x~,Gr..fminx~,

0hr.h
~

x~,hx~,inflim:Rrx~,Dr

m

0
Ku~

1

0h
nm

 

where ( ) ( )( )′−= uf,du.f . 

A similar definition can be found in Clarke (1983). For more information and 

discussions on viscosity solutions, we refer the reader to Sethi et Zhand (1994a) and 

references therein. 

Theorem 3.1.  The value function ( ) ε∈ααυ∈ ,x~, , defined in (8), is the only viscosity 

solution of the dynamic programming equations (9). 

Proof.  The proof of this theorem can be found in Kenne (1987) and Sethi and Zhang 

(1994b). 

Let us now present a verification theorem that provides a sufficient condition for optimal 

control. 

Theorem 3.2.  (Verification Theorem) Let 

 ( ) ( )( ) ( ) ( ) ( ) ( )x~,q
1

u~,x~,Gx~,du,u,,x,,x,x,H
m

0
xx βυ

∈
+α+αυ−=ωαυ⋅υα ∈

αβ
=β

ε  

with ( )x,αυ  denoting the differentiable solution of the HJB equations (9) such that : 

 ( ) ( )kC
x1C,x0 +≤αυ≤  

Then 

i) ( ) ( ) ( ) ( ) ( )( ) ( )( )α∈⋅ω⋅⋅ω⋅α≤αυ K,uallfor,u,,xJ,x  
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ii) If ( ) ( )( )αωα ∗∗ ,x,,xu  is an admissible feedback control such that : 

( ) ( )
( ) ( )( ) ( ) ( ) ( ) ( )( )αωααυυαωαυυα

αω
,,,,,,,,,,,,,,,,min

,
xxuxxxHuxxxH xx

Ku
∗∗

∈
⋅=⋅  

then : 

 ( ) ( )( ) ( )αυ=⋅ω⋅α ∗∗ ,x,u,,xJ  

with ( ) ( )( ) ( ) ( )( ) ( ) ( )( )( )⋅α⋅ω⋅α⋅=⋅ω⋅ ∗∗∗∗ ,x,,xu,u  

Thus ( ) ( )( )⋅ω⋅ ∗∗ ,u  is optimal 

Proof.  The proof of this theorem can be found in Boukas et al. (1995a). 

The optimal control policy ( ) ( )( )⋅ω⋅ ∗∗ ,u  is the solution of HJB equations described by 

(9). Given the large size of (9) for multiple-machine, multiple-part-type manufacturing 

system, one need here to proceed to the reduction of the system size through the limiting 

control problem. 
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4 LIMITING CONTROL PROBLEM 

We derive here two equivalent formulations of the limiting problem in order to show 

that the value function of the initial stochastic problem converges to one of the related 

deterministic control problem. Let ( ) ( )x~,limx~ 0 αυ=υ ∈
∈→ . The proposed approach is 

based on the stationary distribution of the stochastic process, computed here in terms of 

the mean values of the machines ages and preventive maintenance rates. 

Let Ma  and ω  denote the mean values of the machines ages and preventive 

maintenance rates respectively. If ia  and m,,1i,i =ω , are replaced in the model by 

Ma  and ω , one obtain a constant transition rates matrix ( )ω,aQ M . The finite state 

Markov chain associated to such a matrix is then homogeneous with stationary or 

limiting probabilities ( )′ννν=ν M21 ,,,   given by : 

 ( ) 1and0.Q i

M

1i
=ν=ν

=
 (10) 

With these probabilities, the convergence property of the initial stochastic control 

problem to the limiting problem when 0→ε  is established in Soner (1993). Let us now 

discuss on the meaning and determination of the mean value of a machine. 

In early works we have proposed models for the planning of the production and 

maintenance problem (see Kenne et al. (1997), Kenne and Gharbi (1999) and Gharbi and 

Kenne (2000)) related to small size manufacturing systems. In all the models proposed, 

we used the fact that the stock level, ( )⋅x , and the aging, ( )⋅a , are described by 

differential equations of the types given by (4) and (5) respectively. Based on those 

models, we obtained that there exist two critical age value Ai and Bi, for a machine i, 

,m,,1i =  defined as follow : 
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Ai The age of the machine i at which it is necessary to stock parts. Before this age, 

the machine is assumed to be new, and a production at the demand rate is 

suggested if the other machines are new. 

Bi The age at which the machine i is sent to preventive maintenance when a 

comfortable level of inventory is achieved. In such a situation, the machine will 

be sent to preventive maintenance randomly (i.e., there is a random delay from 

the machine age Bi to the maintenance time). 

By assuming that the jump rates are functions of the age ( )⋅a , we model correctly the 

fact that the more we use a machine, the more its probability to failure will increase with 

age. Hence, we assume herein that the mean value of a machine age aM is between Ai 

and Bi. 

This assumption has been verified through off-line simulation experiments. Note that 

negative inventories are minimised by setting aM to Ai. However, this is not necessary 

the best way to select such a value. We usually resort to simulation modelling as in 

Pritsker et al. (1997) to determine the mean age value for a given machine. 

By using equation (10) and multiplying both side of (9), at i=α , by ( ).iν  and sum over 

ε∈i , we have : 

 ( )
( )
( ) ( ) ( ) ( ) ( ){ }i

a
i

x
i

iKu~
i

m

0i
i

m

0i
u~,x~,iGx~,iufx~,iduminx,i

M
+υ+υ−ν=υνρ ∈∈

∈=

ε

=
 (11) 

Let 0→∈ , one have 

 ( )
( )
( ) ( ) ( ) ( ) ( ){ }i

a
i

x
i

iKu~
i

m

0i
u~,x~,iGx~ufx~duminx~,i

M
+υ+υ−ν=ρυ ∈∈

∈=
 (12) 

Let us define a deterministic control process U(t) in a control space A0 given by : 
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( ) ( ) ( )( )( ) ( ) ( )( ) ( ) ( )( ) ( )

( ) 











ω≤ω≤

≤γ=≤ωωω=
= =

max
i

i
pp

n

1p

mm1100
0

t0

,itup0:t,tu,,t,tu,t,tutU
A


(13) 

We define the control problem P0 as follows : 

 ( )( ) ( ) ( )( )dttu~,tx~,iGeE.U,x~Jmin i
i

m

0i

t

0

0 ν=
=

ρ−∞

  (14) 

subject to 

 ( ) ( ) x0xdtux i
i

m

0i
=−ν=

=
  (15) 

 ( )( ) ( ) MM
i

i

m

0i
M a0atufa =ν=

=
  (16) 

with the value function given by 

 ( )
( )

( )( ).U,x~Jinfx~ 0

A.U 0∈
=υ  

The structure of (12) suggests us another formulation of the limiting problem. This is 

done by replacing ( ) ( ) ( )[ ] ( ).it,akby,ior,t i
m

0iM ν=ΖΕ=ωΒ∈Ζ =
∈∈ . For any 1mRr +∈ , 

we then have 

 
( )

( ) ( ){ }
( )( ) ( ) ( ){ }u~,x~Gru~fminu~,x~,iGru~fmin
.k

~
Ku~

ii

iKu~
i

m

0i
+⋅=+⋅ν

∈∈=
 (17) 

with ( ) ( ) ( )ω=ν= =
,uu~andu~,x,iGu~,xG i

m

0i
 where ( )tuu i

i

m

0i
ν= =

. The equation (17) 

is derived with the conjecture of the linearity of f(.) on u. The equation (12) can then be 

written as 
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 ( )
( )( )
( ) ( ) ( ) ( ){ }u~,x~Gx~ukx~duminx~

Max
.kKu~

+υ+υ−=ρυ
∈

 (18) 

The alternative formulation of the limiting problem, 0P
~

, can then be defined by : 

 ( )( ) ( )dtu~,x~Ge.u~,x~J
~

min t

0

0 ρ−∞

=  (19) 

subject to 

 ( ) ( ) x0xdtux =−=  (20) 

 ( ) MMM a0auka ==  (21) 

with the value function given by 

 ( ) ( )( ).u~,x~J
~

infx~~ 0

A
~

u~ 0∈
=υ  (22) 

The value function ( )x~~υ  is equivalent to ( )x~υ  and can be shown to be the only viscosity 

solution of (18) (cf. theorem 3.1). It is interesting to note that the obtained limiting 

problem does not depend on the explicit form of Q(.), only on ( )ω,ak , which is the 

mean machine availability. This makes the limiting problem very simpler to solve. 

Given that the previous equations was obtained for given ω , the overall optimization 

problem can be described by the following deterministic HJB equations : 

 ( )
( )( )
( ) ( )[ ] ( ) ( )







 ω+υ






+υ−=ρυ

=∈ω≤ω≤
,x~Gx~dk

m

1
x~duminminx~

M
max

ajj

n

1j
x

.kKuk0
 (23) 

Based on the structure of the stochastic control presented in Boukas and Haurie (1990) 

and Kenne (1997), we provide a machine age dependent control policy through the 

solution of (23). The following method is applied to build such a policy. 
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• Consider an equivalent machine and let ma  be its age mean value, called here 
equivalent machine mean age. 

• Select δ and Ma  to define the following set of equivalent machine mean age 
values. 

 
 { }δ+≤≤δ−=Ω MmMm aaa:a  (24) 

• How to determine machine age dependent preventive maintenance and 
production rates 

 

(i) For any ( ) m,,1i,ta i =Ω∈ , set the maintenance rate to the one of the 

limiting problem if there is a significant stock level. The production rate 

is then set to its maximal value. 

(ii) For any ( ) m,,1i,ata Mi =δ−< , the machine i is supposed to be new. 

Hence, the preventive maintenance rate is set to zero and the production 

rate is set to the demand rate. 

(iii) For any ( ) m,,1i,ata Mi =δ+> , the machine i is supposed to be old. 

The preventive maintenance and production rates are set to their maximal 

values. 

Such a method is used in the next section to determine the age dependent control policy 

for the limiting problem. 
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5 HEURISTICAL OPTIMAL FEEDBACK CONTROL 

From the solution of the limiting problem, it has been shown in Lehoczky et al. (1991) 

how to construct a near-optimal control policy of the original stochastic control problem 

in the case of homogeneous Markov processes. With such a process, the control policy 

consists of the production rate and is approximated in Lehoczky et al. (1991) by the 

following theorem : 

Theorem 5.1.  If ( ).u∗  is the optimal production rate of the limiting problem related to 

the homogeneous Markov process, one can approximate the optimal production rate 

related to the stochastic original problem by the following equation : 

 ( ) ( )
( ) ml0
.

x~u
ll,x~u ≤≤
ν

=
∗

 (25) 

where l is the number of operational machines. The production rate of the operational 

machine i at mode α  is given by : 

 ( ) ( )
m0

l,x~u
,x~ui ≤α≤

α
=α  (26) 

Proof.  The proof of this theorem is presented in Lehoczky et al. (1991). 

This theorem states that the production rate of a FMS is equally distributed to 

operational machines at a given time. The proposal of this paper is mainly based on the 

machine age and control dependent dynamics of the machines modes (i.e., non 

homogeneous Markov process). Thus initial identical machines become different while 

producing due to the fact that their age’s trajectories are obviously different. With such 

an observation, theorem 5.1 cannot be generally valid for the construction of a stochastic 

near-optimal control when the age is introduced in the model. 
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Given that the control policy is age dependent in the case considered herein, we first 

proceed with the numerical solution of (23) for a two-machine, one-product system 

( )1nand2m == , to illustrate the structure of the optimal stochastic control policy. 

From such a structure, we will next derive and heuristical method for the construction of 

a near-optimal control policy for a large class of FMS. The solution of (23) for large 

systems can be easily determined, as in section 6, using numerical techniques. From the 

control policy of the two-machine, one-product FMS, derived from a numerical solution 

of equation (23) and the related age dependent control policy, it is interesting to observe 

the following : 

• When there is a backlog (i.e., the surplus ( ) 0tx < ), the production rates are set to 
their maximal values and the preventive maintenance rates are set to zero for 
both machines; 

 
• When ( ) 0tx = , the production rate of the FMS is either equal to the demand rate 

for small machines age’s values or greater than the demand rate for large 
machines age’s values. 

 
• When there is an inventory (i.e., ( ) 0tx > ), the machine with a higher age is 

frequently used compared with the new one. We note that the preventive 
maintenance domain decreases when the machines ages increase. 

 

Based on these results, we propose the following heuristical method for the construction 

of near-optimal control policy for the original stochastic control problem. 

Step 1.  Consider a q-finite partition C0, C1, …, Cq which consists of q + 1 sets of 

machines ages values such that the dynamics of a machine age moves from Ci to Ci+1 

and from Ck, ( )0k ≠  to C0 after each intervention on the machine (repair or 

maintenance). The partition is such that : 

  
1q

0i

1q

0i
ii 0CandC

+

=

+

=

/=∧=  (27) 
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where ( ){ }aii h1ia:a −==∧ , i = 1, …, Na for given Na and ha. Note that ∧  is a one-

dimension grid of Na points generated by ha. An example of partition is illustrated in 

figure 2 for q = 1 in the case of two-machine FMS. 

 

Figure 2. Classes of operational machines 

 

Step 2.  At a given time, group operational machines in classes and apply theorem 5.1 

(equations (25) and (26)) for machines in the same class. A class here correspond to a set 

Ck, qk0 ≤≤ , of the partition mentioned in step 1. It is assumed here that machines in 

the same class are identical. 

Step 3.  Use frequently old machines such that the sum of production rates remains close 

to the solution of the limiting problem when the involved machines are in different 

classes. The production rates ( )x~,u α  of the FMS still given by the equation (25). When 

( ) ( ) 0.u~and0tx ≠> , one can distribute ( )x~,u α  to operational machines using the 

following steps : 
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(i) For a given mode α , classify the operational machines through a 

decreasing order (beginning with the oldest machine, followed with the 

closely second, and so on).  Let O denote the set of ordered machines. 

(ii) Set a maximal value to the production rate of the oldest machine and 

assign sequentially the maximal production rate or the demand rate to 

other machines until the sum of assigned production rates reaches the 

production rate ( )x~,u~ α . Assign zero to the production rates of the 

remaining machines. 

(iii) Repeat steps (i) and (ii) for all { }m,,1∈α . 

Step 4.  At the mode m=α  (i.e., all machines are operational), the preventive 

maintenance policy of the stochastic problem can be approximated by assigning 

maximal preventive maintenance rate to the oldest machine and compare the sum of 

assigned preventive maintenance rates to ( )x~,αω . Continue with the assignment process 

until the sum of assigned rates reaches ( )x~,αω  and then assign 0 to the preventive 

maintenance rates of the remaining machines. 

We will use this method in the next section in order to construct a near-optimal control 

policy for the numerical example developed in that section. 
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6 EXPERIMENTATION OF THE PROPOSED APPROACH 

We give a two-machine two-part-type model as an example for the numerical 

experiment (m = 2 and n = 2). With such a model, we have : 

 ( ) ( ) ( ) 2,1j,x0xdtutux jjjj2j1j ==−+=  (28) 

 ( ) ( )( ) ( ) 2,1i,a0atutuka iij2i1iai ==+=  (29) 

In this case we have ( ) { }9,,2,1t =Β∈ζ∈  and ( ) { }2,1,0t =ε∈Ζ . The transition rates i
12q  

depend on the machine age and are approximated by the equation : 

 ( ) ( ) 2,1i,taqq.q iao
i
12 =×+=  (30) 

for given qo and qa. The average number of operational machines is given by : 

 ( ) ( )[ ] 210 p2p1p0t. ×+×+×=ΖΕ=ν  (31) 

with 117432198650 pandp,p ν=ν+ν+ν+ν=ν+ν+ν+ν= . The considered control 

problem is feasible if the following condition holds : 

 ( ) 0d. ≥−ν  (32) 

The average cost function derived from equation (6) is given by : 

 ( ) ( ) ( )98763
3

86542
2 2c2cxcxc,u,sG ν+ν+ν+ν+ν+ν+ν+ν+ν+ν++=ω −−++  (33) 

where c2 and c3 represent repair and maintenance cost activities respectively. 

Equation (19) is subject here to the following state constraints : 
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 ( ) ( ) ( ) 11111 x0xdtutx =−=  (34) 

 ( ) ( ) ( ) 22222 x0xdtutx =−=  (35) 

 ( ) ( ) MM2211M a0aakak
2

1
ka =+=  (36) 

where aM is the mean value of the machines ages and k1 and k2 are given constants. The 

HJB equations (23) can be rewritten as follows : 

 

( )
( )

{ ( ){ ( ) ( ) ( )

( ) ( ) ( ) }


ω+υ++

υ−+υ−=ρυ
∈ω≤ω≤

,a,xGx~dkdk
2

1

x~dux~duminminx~

Ma2211

2x221x11
kKuk0

M

max

 (37) 

Let us now apply numerical methods to equation (37) in order to define the control 

policy of the limiting problem ( )( )ω,u,u.,e.i 21 . 

By approximating partial derivatives in equation (37), we obtain, after a couple of 

manipulations, the following equation : 

 ( )

( ) ( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( ) 
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∈ω≤ω≤

aM21haMh

M2x21h2x2h
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0

Guk0
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a,hx,xhx,x~
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a,x,hxhx,x~

.Q
1

1

.Q
1.Q

cxcxc

minmina,x,x

a

2x

1x

2x

1x

h
kmax

 (38) 
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where a2x1x handh,h are discrete increments associated to state variables m21 aandx,x  

respectively. 

In addition, we have : 

 ( )
2x

22

1x

11

a

2211
h h

du

h

du

h2

dkdk
.Q

−
+

−
++=′  

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( ).Qh2

dkdk
ha,x~

otherwise0

0dusi
.Qh

ud
hx,x~

otherwise0

0dusi
.Qh

ud
hx,x~

otherwise0

0dusi
.Qh

du
hx,x~

otherwise0

0dusi
.Qh

du
hx,x~

ha

2211
aMh

22
h2x

22

2x2h

11
h1x

11

1x1h

22
h2x

22

2x2h

11
h1x

11

1x1h

a

2x

1x

2x

1x

′
+=+Ρ





 <−

′
−

=−Ρ





 <−

′
−

=−Ρ





 ≥−

′
−

=+Ρ





 ≥−

′
−

=+Ρ

 

Equation (38) is solved numerically using the following values : 

1) [ ] [ ] .1uand6,0a,2,2x,x,2,0hhh ij
maxM21a2x1x =∈−∈===  

2) Instantaneous cost (see table II) 

Table II.  Instantaneous cost parameters (two machines, two products) 

+
1c  −

1c  +
2c  −

2c  0c  1c  2c  3c  54 c,c  6c  7c  8c  9c  1k  2k  

1 10 1.1 10.2 0 10 1 20 10 1 11 11 2 2 2 
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3) ,6,1dd 21 == ,005,0=ρ ( )( ) ( ),taKAtaq ia0i12 +=

005,0Kand0001,0Awith2,1i a0 ===  

4) 25,0qand1,0q 3121 ==  

With those data, the obtained control policy ω,u,u 21  is presented by figures 3, 4 and 5. 

It is interesting to observe from the production policy that when ( )−−++ >> 1212 ccandcc , 

machines are assigned to product 0xif 21 ≥Ρ  (see figure 3). From figure 4, the 

production of 2Ρ  is maximal for .0x2 <  A production at the maximal rate is 

recommended for 0x2 ≥ . This is also valid near 0x,0x 12 >=  in order to built an 

inventory. The production rate of 2Ρ  is then set to the demand rate for 

2,0xand1x 21 =≥ . 

Note that for ,04,0and2.3am =ω=  the average of the maximal capacity of the system 

is 1,84 (see figures 3 and 4). Figure (5) shows that the preventive maintenance rate of 

the limiting problem is different from zero for significant stock levels 

( ).6,0xet6,0x.,e.i 21 >>  

Let us now apply the heuristic method presented in section 5 to construct a machine age 

dependent control policy for the limiting problem. Figures 6 and 7 show that, for new 

machines, there is no need to built inventory. Conversely, significant stock levels are 

recommended for old machines (see figures 8 and 9). 

From figure 10, note that the preventive maintenance rate is set to zero for small 

machine age values such as 1a1 =  (i.e., the machine is supposed to be new). The 

situation is different for 5a = , given that a preventive maintenance must be done for 
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comfortable stock levels such as .6,0xet8,0x 12 >>  This is clearly explained by 

figure 11. 

The previous age dependent control policy of the limiting problem has been successfully 

used to construct the stochastic optimal control of the original problem through the 

procedure described in section 5. We provide here a set of  figures to illustrate the main 

properties of the control policy related to the state variables 2121 xandx,a,a  (see figures 

12 to 17). Such a policy is the expansion of the machine age dependent limiting control 

policy obtained from the proposed heuristical control approach. It appears from the 

obtained control policy (figure 12 to 17) that, for a machine age greater than iA , the 

structure of the optimal production policy could be given by : 

 ( )
( )
( )
( )








>
=
<

=

jj

jjj

jj
j
max

j

Xtxsi0

Xtxsid

Xtxsiu

x~u  (39) 

where jX  is the threshold value of product j and ij
max

m
1i

j
max uu == with ij

maxu  describing 

the maximal production rate of product j on machine i. Recall that iA  is the age of the 

machine I at which it is necessary to stock parts. The optimal machine age dependent 

preventive maintenance policy depends on a machine a iB  at which machine I is sent to 

preventive maintenance when threshold values ,n,,1j,X j =  are achieved. 



 

33 

 

 



 

34 

 

 



 

35 

 

 



 

36 

 

 



 

37 

 

 



 

38 

 

 



 

39 

 

 



 

40 

 

 



 

41 

 

7 CONCLUSION 

In this paper, we present the singular perturbation formulation of the production and 

preventive maintenance rates planning problem in manufacturing systems. We consider 

two times scale processes related to the rate at which the cost is discounted and the one 

at which machines failures occur. The obtained limiting problem has been shown to be 

more tractable numerically. This result can be very useful because of the large 

dimension of control problem in real world flexible manufacturing system. In such a 

system one can use the proposed approach to approximate the solution of the stochastic 

problem through the limiting problem concept. The quality of the results (their 

precision) achieved with the proposed heuristical method depends on the choice of the 

partition. A best approximation of the stochastic optimal control is ideally given by a 

partition with a large number of sets. But there is a practical limit with such a number. 

With a suitable number of partition sets, the proposed heuristical method, combined with 

the proposed hierarchical control approach extend the application of the singular 

perturbation method to non-homogeneous Markov processes (machine age and control 

dependent). The usefulness of the proposed approach is illustrated by the numerical 

example presented in this paper. 
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