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Abstract- An original and innovative approach to assess the 
risks associated to engineered nanoparticles is presented. The 
primary observations from the literature review are discussed 
and point out the interdependency of most risk factors. This 
sole fact justifies the need for an adequate analytical model to 
ensure a proper risk management for the development of an 
adaptive decision-making tool. With this objective, 
optimization-based modelling tests were first conducted in 
order to validate the feasibility of the method. 
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1. Introduction 

Engineered nanoparticles (ENPs) present new 
chemical, physical or biological properties that could be 

used in numerous applications. They hold the promise of a 
new medical and industrial revolution. Lux Research reports 
that the value added by nanotechnologies to manufactured 
products is expected to reach $3.4 trillion U.S. in 2015 (Lux 
Research 2009). In 2011, all sectors taken together, 
Nanowerk (Web-1) listed 1,168 commercial organizations in 
nanotechnologies in the US and 86 in Canada. This means 
that, while the market is growing, the risk of unintentional 
or accidental contact of nanomaterials with workers is 
increasing as well. Still many uncertainties surround the 
risks posed by ENPs (Kandlikar et al. 2007). 

The list of factors that make ENPs harmful to humans 
has not been completed yet. We do not know all the 
mechanisms that could make them toxic, or which of their 
chemical and physical characteristics are involved in such 
mechanisms (Hansen 2009 and European Commission 
2007). Considerable knowledge is rapidly being developed 
to understand these aspects by interdisciplinary teams. 
However these teams are using different methodological 
approaches and materials derived from various sources, 
making it very difficult to use their combined results to 
guide risk management strategies. Indeed, testing and 
standards classification are lacking (Balbus et al. 2006). Only 
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recently were standard criteria proposed by the European 
Commission to define nanomaterials (Web-2). Meanwhile, 
organizations, such as the Environmental Protection Agency 
(Web-3), the World Health Organization (Web-4) with 
resolution II/4, or the European Commission with the 
REACH framework (REACH 2006), have begun to propose 
safety recommendations for the use and production of  
nanomaterials. 

Given the speed at which nanotechnologies are 
developing, new risk assessment and management methods 
are required (Nadeau et al. 2012). As emphasized by Aitken 
et al. (2004), actual risk evaluation methods are inadequate 
and require better use of the data available as well as the 
acquisition of new data. Recently, Nadeau et al. (2012) 
clearly expressed the need for an adaptive or flexible risk 
management strategy. As a continuation of our objectives to 
manage the risks posed by ENPs in the workplace 
environment, we are currently studying a prototype model 
to address the questions raised by their manipulation by 
prioritizing several risk factors. By using this model to 
develop an adaptive decision-making tool, it seems essential 
that the stakeholders can appreciate the risks posed by 
ENPs. Qualitative or quantitative risk evaluation is, by itself, 
a difficult task from an analytical perspective. Given the 
complexity of the ENPs risk assessment, the development of 
an organized risk network needs presently the modelling of 
many parameters currently quantifiable or not, and even 
factoring in yet unknown factors and parameters. 

Particle swarm optimization (PSO) is an intelligent 
optimization algorithm, originally proposed by Kennedy and 
Eberhart (1995). It is inspired by social behaviour among 
individuals (i.e. particles). PSO algorithm can be used to 
solve complex optimization problems and it can be 
implemented easily with few parameters to tune. PSO 
algorithm has been applied successfully in many areas like 
antenna design (Boeringer and Werner 2004; Khodier and 
Christodoulou, 2005), biomedical (Selvan et al. 2006), image 
and video (Wachowiak et al. 2004) and others. PSO was 
therefore first chosen and tested for the development of a 
decision-making tool for the risk management of ENPs. To 
apply the PSO algorithm to discrete optimization problems, 
it should be adapted. Many versions of the discret PSO are 
proposed in the literature.  The first was proposed by 
Kennedy & Eberhart (1997) where particles were encoded 
as binary sequences. Particle trajectories and velocities were 
defined as probabilities of a bit change from 0 to 1. In Hu et 
al. (2003), the velocity is defined as a vector of probabilities 
in which each element corresponds to the probability of 
exchanging two elements of the permutation vector that 
represents a given particle position. Wang et al. (2003) 
presented a new application of PSO algorithm for Traveling 
Salesman Problem (TSP). The authors developed some 
methods for solving TSP by using the concept of Swap 
Operator and Swap Sequence.  Clerc (2004) proposed 
another version of discrete PSO where velocity is defined as 

a list of pairs of indexes of the permutation vector elements 
which will be exchanged. More recently, Fan (2010), 
inspired by the “swap operator” developed in (Wang, 2003), 
redefined velocity and added an heuristic factor, a crossover 
operator and an adaptive noise factor into the discrete PSO 
algorithm.  

 

2. Method 

Since epidemiological studies of nanoparticles are so 
sparse, we preferred the a priori approach, which estimates 
the possible associations between causes and consequences 
before undesirable events occur. Before applying risk 
management to decision-making tools, we first needed to 
identify all the risk factors associated with ENPs. 
Consequently, the critical literature review examines the 
following questions: What are all the risk factors inventoried 
to date? What are the known links between these risk 
factors? Which ENP property poses more risk in a given 
situation?  

In a first step, using PubMed data base and SciFinder 
Scholar research Tool, we conducted a systematic literature 
review for the years 2001 to 2011 using the following 
keywords: nanoparticle, nanomaterial, risk, uncertainty, risk 
management, risk assessment, in various combinations. To 
focus the process, review articles and commission reports 
(for examples OECD or European commission) were first 
selected and research articles were subsequently taken into 
consideration. References cited in these papers were used to 
identify additional studies (also published in the 2001-2011 
period). All risks factors (such as primary particle size, 
particle morphology or catalytic properties) and effects (cell 
uptake or dose-responses relationship) were therefore 
identified. After Step 1, we classified these factors under 
three different levels (Step 2). First, each factor was 
categorized whether it was associated to an intrinsic 
parameter, to a transfer to the target (exposure) or to a 
harmful effect (level-1). Then, a level-2 classification was 
subsequently applied to all the factors identified in the 
literature depending if the factor corresponds to an intrinsic, 
interfacial or mobility-related property or if the exposure 
was due to the task of the environment or if the effect was 
more related to physiological conditions or cell-specific or 
another harmful effect (Table 1). Finally, some factors, for 
example the size distribution, the primary size or the mean 
size, were regrouped into a level-3 classification (i.e size in 
the example). Then, in a third step, using specific keywords 
corresponding to each risk factor listed, we identified all 
observed links between all individual risk factors (Step 3). 
All observations and data from this review were further 
compiled and structured for the identified risk factors and 
links between risk factors in a form of a risk tree (Step 4). 
Finally, a matrix format of the tree was created for Particle 
Swarm Optimization (PSO) algorithm and preliminary 
results were obtained and are presented (Step 5). 
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The objective of an influence diagram, commonly 
referred as a risk tree, is to represent cause-consequence 
associations existing between various elements of risk, in a 
graphical form. A fault tree is a logical diagram that shows 
the relationships leading to an undesirable event. This 
approach is easy to use, favours systematic search for causes 
and their associations and does not require chronological 
relations between risk factors and effects. As will be 
described in greater detail below, fault trees as defined were 
converted to a hierarchized risk network. Arrows between 
elements of risk (Fig. 1) indicate cause-consequence 
associations; the arrow heads indicating which element is 
influenced or that influence is mutual.  

The ENPs risk prioritization can be viewed as an 
optimization approach, tending to reduce the ENPs 
occurrence probability and their impact on human health. 
Every factor keeps a relationship with others, as concluded 
from the risk hierarchization. Finding out a feature model in 
which all factors maintain maximal relationships with each 
other is a typical combinatorial optimization problem (Zhu 
and Xiao-ping, 2009) which can be solved by metaheuristics. 
In the PSO algorithm, each solution (i.e. particle) is 
considered as a bird in the search space. Every particle has a 
velocity by which the direction and distance of the flying are 
determined, and a fitness that is obtained by the optimized 
function.  At the beginning, a set of random particles (i.e. 
solutions) is generated, and the corresponding fitness values 
are determined. At each iteration, two values are updated 
for every particle. The first value corresponds to the best 
personal solution, and the second corresponds to the global 
best solution found by the population.  

 

3. Primary Results and Discussion 
3.1 Literature review 

With over 100 different documents selected (table not 
shown), step 1 could allow the identification of 100 potential 
risk factors associated to ENPs in an occupational safety 
context. A first categorization of these factors was then 
carried out (i.e. size, shape, room humidity, cellular uptake, 
etc.), therefore creating 34 primary factors (level-3 
classification) where all 100 secondary factors were sub-
listed. For example, physical properties include catalytic, 
magnetic, thermal, electrical properties, etc. These 34 
primary factors were classified as hazard, exposure or effect 
factor, giving 15 hazard factors, 9 exposure factors and 12 
possible effects (Table 1). A recent review by Grass et al. 
(2010) demonstrated that nanospecific risks could be 
categorised under 3 groups: mobility, interface and quantum 
effects. This classification method was then applied to the 34 
primary factors listed in order to create 8 major groups 
(level-2): intrinsic properties, interfacial properties, 
mobility, ambient exposure, task-related exposure, global 
toxic effects, cellular toxic effects and other harmful effects 
(step 2). 

By using the 34 primary factors, a second literature 
review was carried out to establish the known links between 
these factors. Again, recent reviews were first considered 
leading to the analysis of references. Each article underlining 
a link between 2 factors was listed, with emphasis on the 
ENP type (TiO2, silver, carbon nanotubes, fullerenes, etc.) for 
which the link was established (step 3). 

The results obtained in steps 1 to 3 allowed the creation 
of a graphic and a matrix-like (data not shown) structure of 
a risk tree (step 4) for the 34 “primary” factors, then for the 
8 major groups (Fig. 1). The arrows appearing between each 
category represent the known links based on the literature.  

 
 

Table 1. three levels based classification. 
  

Level-1 
Major groups 

(level-2) 
Primary factors (level-3) 

Risk 
factor 

Intrinsic 
properties 

Size, Surface area, Shape, 
Chemical composition, Physical 

properties, 
Method of synthesis, Fibrosity, 

New product? 

Interfacial 
properties 

Surface charge, Surface 
chemistry, Reactivity, 

Degradation/Transformation 

Mobility 
properties 

Media-dependent behaviour, 
Agglomeration/Disagglomeration 
behaviour, Dustiness/Mistiness, 

Deposition behaviour 

Transfer 
to the 
target 

Ambient 
exposure 

Exposure route, Environmental 
conditions, Used with other 

products 

Task-related 
exposure 

Concentration, Task/Operation 

Effect 

Physiological 
toxic effects 

Inflammatory response / 
Immunotoxicity, Toxicokinetics 
(ADME), Toxicodynamics and 

biovailability, 
Clearance/Migration/Translocati
on ability, Reproductive toxicity / 

Teratogenicity, Dermal/Ocular 
toxicity, Neurotoxicity 

Cell-specific 
toxic effects 

Cell viability, Cellular uptake 
Carcinogenicity/ Mutagenicity 
(clastogenicity), Genotoxicity 

(Aneugenicity), Long term effects, 
Dose-response 

Other 
harmful 
effects 

Explosivity, Combustibility and 
Inflammability 

 

 
Arrows between elements of risk (Fig. 1) may indicate 

cause-consequence associations (unidirectional arrows) or if 
the influence is mutual (bi-directional arrows).  
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Moreover, it was already noted that a great number of 
research reports highlighted the influence of ENPs intrinsic 
properties (size in particular) on the different physiological 
toxic effects, while just fewer studies focused on the link 
between ENPs mobility and their other harmful effects, such 
as their flammability. This enumeration was not exhaustive 
since several reviews of the literature have reached the 
conclusion that this would be a colossal task. However, the 
bare number of studies discussing a factor is not necessarily 
a reliable indicator of its importance. As a matter of fact, 
certain characterizing and testing techniques were not 
available 10 years ago. For example, it was easier to measure 
the size of nanoparticles using microscopy than to conduct 
real-time analysis of particle agglomeration rates in matrices 
identical or nearly identical to those used in cytotoxicity 
tests. Therefore a careful and detailed analysis of the each 
article describing the links between each of the 34 factors is 
definitely needed in order to validate the results obtained by 
the model. Meanwhile, preliminary calculations with 
optimization methods (such as PSO) was conducted to 
estimate the importance of level-3 primary factors.  

 

 
Fig. 1. Risk tree with the 8 major risk-associated groups. 

 
Fig. 1 can be considered as representative of the 

current knowledge regarding the risks associated to ENPs. 
The main observation of this complex structure is that all 
parameters are interdependent. Several remarks can be 
made: 

- It is difficult to extract or study one parameter 
specifically and independently from the others. 
Consequently, care must be taken regarding the 
interpretation of the results of each of these studies. 

- Therefore, it reinforces the need for standardization 
of the methods, the tests and the materials usable for these 
tests. 

- Case-by-case analysis, which was previously 
pointed out as an alternative, may not be considered. The 
task appears colossal even impossible without a standard 
method approved by the scientific community. The solution 
of the « puzzle » is far from simple and most probably needs 
a specific and adequate analytical model. 

- Few relationships involving exposure factors have 
been established in the literature 

A similar analysis was completed by Morgan (2005). 
The risk tree that was developed at that time can be 
compared to the one we are proposing now and one can first 
conclude that the situation has rapidly and significantly 
changed over the last 6 years as new risk factors and new 
links appeared. As introduced by Grass et al. (2010), this can 
be associated to the fast and continuous growth of research 
and consumer products.  

In contrast with the work of Morgan (2005) based on 
consultation of experts, our review is based on literature 
published between 2001 and 2011. The lack of extensive 
scientific data, noted by Morgan (2005), should now be re-
examined. The number of studies published on the subject of 
nanotechnologies and their effects on health has grown 
exponentially. Based on PubMed, the number of publications 
matching keywords such as ultrafine particles or 
nanoparticles plus toxicity or effects on health was 5 in 
2001, 246 in 2006 and 1516 in 2011. 

One of the aims of the present article was to produce 
a brief list of ENP-associated first-line risks, in other words 
focused specifically on the protection of workers. Another 
aim was to present the relative relevance of existing 
relationships between the various elements of risk, as 
reflected by the great number of studies published during 
the period of interest. We thus note in particular, by way of 
simplified comparison, that certain categories of risk have 
been regarded in the scientific community as more 
important than others seemingly equally deserving of in-
depth study, such as exposure categories. 

As evidenced by the hierarchized risk network, 
presented in Fig. 1, the interdependency between each 
factor confirms the need for an adaptive risk management 
method as the most promising solution facing the rapidly 
challenging development of nanotechnologies.  

A few tests with multi-criteria methods (Linkov et al. 
2011; Zuin et al. 2011) were performed but this efficient and 
simple method has its limits. Since the risk assessment for 
ENPs brings uncertainties of a structural nature, techniques 
that are more suited for uncertain decisional environments 
are needed (Nadeau et al. 2012). Using metaheuristics to 
classify the risks associated to ENPs presents several 
advantages. The first is that these methods are classified 
whether they end up to a single or multiples solutions, as the 
characterization of an ENP requires a reasonable opening of 
the possible solutions. Secondly, ENPs classification refers to 
the resolution of an optimization problem, which tends to 
reduce the occurrence probability associated to the ENP and 
its possible impact on human health. Called "combinatory 
optimization", it consists in finding the best solution among a 
high but finite number of potential choices. PSO (Dréo et al. 
2005) is one possible approach that offers flexibility in its 
use and implantation.  
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3.2 Optimization Results 
As a first step towards a complex optimization of our 

review results, we decided to consider only a part of all 100 
secondary factors. Our choice was first directed to the 
factors having an influence on the mobility properties, 
namely the factors behind the intrinsic, interfacial 
properties and the ambient and task-related exposure 
categories. These factors presented showed in Table 2.  

 
Table. 2. List of 3rd level category factors chosen for the first 

optimization test. 
 

D1 Size 

Intrinsic 
properties 

D3 Surface area 
D6 Shape 
D9 Chemical composition 

D11 Physical properties 
D14 Method of synthesis 
D21 Fibrosity 
E6 New product? 
D2 Surface charge 

Interfacial 
properties 

D4 Surface chemistry 
D5 Reactivity 

D10 Degradation/Transformation 
E2 Exposure route 

Ambient 
exposure 

E3 Environmental conditions 
E5 Used with other products 
E4 Concentration Task-related 

exposure E7 Task/Operation 
 
The relationships between each of the risk factors 

listed in Table 2 have not been quantified yet in the 
literature. Such a quantification can be achieved by further 
steps such as expert elicitation or meta-analysis. Therefore, 
for the purpose of validating the use of PSO to our 
hierarchized network, random values were assigned to the 
relationships between each factor. However, in order to 
estimate the relative importance between factor i and j 
regarding their impact on the mobility properties, a primary 
2-by-2 comparison of the factors was first carried out with 
“1”s for important and “0”s for negligible. Then, when the 
relationship between factor i and j was considered 
important, the values d(i,j) (i,j=1,..17) (Table 2), referring to 
the relationship between each factor with the others, are 
generated randomly between 5 and 50 (data not shown). 
The smaller d(i,j) is the closer relationship factor i has with 
factor j. When the relationship is considered negligible, the 
d(i,j) value was affected to the letter M. In this paper M is set 
to 50. 

The problem can be seen as a graph with a completely 
connected network in which each influencing factor is 
considered as a node and the relationship between each 
couple of factors is viewed as an edge. In our case, the graph 
is formed with 17 nodes. The objective is to search an 

influencing factor model with the maximal contribution and 
relationship in graph. To solve this problem, we adopted the 
discrete PSO algorithm (Fan 2010) and applied it to the 
matrix formed by the risk factors in Table 2. With less than 
10000 iterations, the most influencing factors are given by 
Table 3.  

From Table 2, one can see that surface charge and 
surface area (equally with task and operation) are the most 
influencing factors towards the mobility properties, as a 
whole factor, with scores of 0.578 and 0.412 respectively.  
Since the d(i,j) values were randomly selected, this ranking 
cannot be considered as definite. However, these results 
confirm that discrete PSO is definitely fast and suitable for 
such a system and that with d(i,j) values extracted from 
expert elicitation or meta-analysis, it is possible to obtain 
reasonable results for the ranking of ENPs risk factors. One 
can also note that the three most influencing factors belong 
to three distinct categories: intrinsic properties, interfacial 
properties and task-related exposure. Moreover, the former 
two categories are amongst the categories that received the 
most attention by the research community by describing the 
links and influences between them. This observation 
emphasizes on the interdependency between all categories, 
as evidenced by Fig. 1. The results from PSO are based on 
actual data and reviews and expected to change and go into 
much details with future research. 
 

Table. 3. Contribution of each factor. 
 

Factor Contribution 
D2 0.578 
D3 0.412 
E7 0.412 
E4 0.361 
D6 0.321 
D9 0.321 
E2 0.289 
D5 0.262 
D4 0.262 

D11 0.222 
D1 0.222 
E5 0.222 

D21 0.125 
E3 0.120 

D10 0.111 
D14 0.057 
E6 0.057 

 
 

4. Conclusion 
The main conclusion of the literature review is that it is 

nearly impossible to study one parameter independently 
from all the others owing to the reciprocal influence they 
have on each other. Given the considerable number of 
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reports and ENPs available on the market, comparison is 
also very difficult without standardization (methods and 
testing). However, a promising approach to bring solutions 
to decision makers can be brought by developing an 
adaptive tool that will allow the stakeholders to propose 
control measures efficient enough to protect the workers. 

Since future steps in the development of this innovative 
decision-making tool involve expert judgement analysis, 
toxicological test results and field data, we needed to choose 
a widely used material. Moreover, in view of the multiplicity 
of ENPs and the complexity of the system, as presented in 
Fig.1, the use of one specific ENP is needed to design and test 
the future prototype before extending the applicability of 
our tool to other nanomaterial. Therefore, based on the 
abundant available literature and the feasibility of future 
toxicological tests, TiO2 particles were selected for the next 
tool development steps and will allow ultimately the 
development of a tool usable for any ENP as needed by the 
stakeholders. Consequently, this study is a first step towards 
risk management but cannot be used as a ranking tool in its 
present form since future optimization steps are needed. 

Moreover, since PSO is not the only optimization 
method for modelling such a system, results from other 
techniques will be further compared in order to choose the 
most suitable technique for the development of our adaptive 
decision-making tool. 
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