
1 

  Joint production and major maintenance planning policies of a 
manufacturing system with deteriorating quality  

Abstract 

We investigate the simultaneous production planning and quality control problem for an 
unreliable single machine manufacturing system responding to a single product type 
demand. The machine is subject to deteriorations, and their effect is observed mainly on 
the rate of defectives, which increases continuously over time. Due to the uncertainty 
caused by failures, the machine may not meet long-term demand, and an overhaul can be 
conducted in order to counter the effect of the deterioration. The main objective of this 
study is to simultaneously determine the optimal production plan and overhaul schedule 
for the analyzed manufacturing system, in order to minimize the total cost, comprising 
the inventory, backlog, repair and overhaul cost, over an infinite planning horizon. A 
stochastic dynamic programming model is proposed, in which a numerical scheme is 
adopted to solve the optimality condition equations. It is observed that the optimal control 
policy is described by a machine deterioration-dependent hedging point policy 
(MDDHPP). To accurately approximate the related control parameters, a simulation 
optimization approach based on design of experiments, simulation modeling and 
response surface methodology is applied. The results obtained provide a better 
understanding about the influence of the deterioration of quality in the production and 
overhaul policies. A numerical example and an extensive sensitivity analysis are 
conducted, and show the robust behavior and usefulness of the policy obtained.  
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1. Introduction 

Production planning has been studied by several authors, with the common objective of 
improving productivity. However, a major limitation encountered in most of the literature 
in this domain lies in the assumption that all the parts produced are conforming items; an 
assumption which is obviously not realistic in industrial contexts. Fortunately, the      
inter-relation between productivity and quality has been received growing attention of 
researchers. We start by examining the need to integrate quality aspects in production 
policies, since all companies must satisfy high levels of productivity and high standards 
of quality. Additionally, if we take into account that manufacturing systems progressively 
degrade over time means that, this factor may have an impact on its operating conditions. 
Therefore, through this research, we contribute to a better understanding of the           
inter-relation between production planning and quality, in the case where the 
manufacturing system is subject to deterioration, which has a negative influence on the 
quality of parts produced. 

In the literature, various authors have covered the production planning problem for 
unreliable manufacturing systems; for example, in the production systems studied by 
Kimemia and Gershwin (1983) and Akella and Kumar (1986), the control policy that they 
obtained was found to have a structure called hedging point policy. The importance of 
such a policy lies in being an efficient way of determining production policies for 
manufacturing systems. Following these two studies, several extensions to this research 
area were realized, considering a wide range of aspects such as; transportation delay from 
the machine to the inventory as in Mourani et al. (2008), multiple-types production 
satisfying a low and a high demand as in Chan et al. (2008), remanufacturing operations 
considering a reserve logistic network as in Kenne et al. (2012), etc. Nevertheless, the 
majority of such extensions on production planning have not covered the influence of 
quality issues on the control policy. While the importance of quality cannot be ignored, it 
should be noted that it reflects the need for further analysis of the inter-relation between 
production and quality aspects. Some papers have highlighted the importance of this 
inter-relation, such as that by Inman et al. (2003), which presented a comprehensive list 
of research issues involving the relationship between quality and production system 
design. However, consideration of quality issues only started growing with the series of 
works of Kim and Gershwin (2005, 2008), who introduced mathematical models to 
evaluate the performance of small and large production systems with quality and 
operational failures. Colledani and Tolio (2006, 2009, 2011) similarly addressed the 
evaluation of the performance of production systems, where the behavior of machines 
were monitored by control charts. Although these papers study the influence of quality 
aspects, their focus is on performance measures, whereas our research approach is 
different. We focus mainly on the structure of the control policy, and we aim to 
investigate the impact of quality aspects on the production control rule. 

A recent area of research has emerged addressing quality issues on the production policy; 
Radhoui et al. (2009), for instance, used the rate of defectives as a decision variable to 
determine when to perform preventive maintenance and define the buffer size. The 
simultaneous determination of maintenance activities and production planning is covered 
by Njike et al. (2009), who applied several operational states that monitor the system’s 
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condition. They used the quantity of defective products as feedback to optimally control 
the system. Further, Mhada et al. (2011) analyzed the production control problem for an 
unreliable manufacturing system producing a random fraction of defective items, and 
succeeded in stating analytical expressions for the production threshold and the optimal 
cost. Additionally Dhouib et al. (2012) incorporates to the production planning problem, 
an age-dependent preventive maintenance policy that reduces the shift rate to the out of 
control state, where their productive systems produces non-conforming items. Despite the 
pertinence of these works, we conjecture that the joint production and quality control 
problem can be studied from a different perspective. For instance, this includes bearing in 
mind that in real industrial contexts, the production system is subject to deteriorations 
(because of an infinite set of factors), meaning therefore that the effect of the 
deterioration may certainly have an impact on the quality of the parts produced. This 
effect will allow us to extend the concept of deterioration, and relate this factor to the 
quality yield of the production system. We find some support for our conjecture in the 
area of deteriorating systems. 

Many papers have been published in the area of deteriorating systems, with the typical 
method used to model deterioration based on the concept of imperfect maintenance. A 
good discussion on the subject of imperfect maintenance can be found in Pham and Wang 
(1996). In addition, Wang and Pham (1999) present an interesting method, and propose 
that after an imperfect repair, the operating time of the system decreases as the number of 
repairs increases. The idea to treat certain deterioration in the operating conditions was 
extended by Lam (2007), who proposed that the operating times after a repair decrease, 
while the consecutive repair times after failure increase. We find another approach for 
modeling deteriorating systems in the work of Dehayem et al. (2011), who described a 
model in which the operating time of the production system follows a decreasing function 
given by the age of the machine, while the repair time consists of an increasing function 
with the number of failures. As can be seen from the previous models, it is assumed that 
deterioration has an effect on the availability of the production system, and that it is used 
as indicator of the level of deterioration either the age of the machine or the number of 
failures. Nevertheless, these models do not link the degrading process to the parts quality. 
This observation in turn raises the question of whether it is possible to relate the 
deterioration phenomenon with the quality yield of the production system. Typically, an 
efficient alternative for determining the optimal control policies of stochastic 
manufacturing systems has been the use of simulation optimization approaches. 

Simulation modeling has proved to be an effective means to analyze manufacturing 
systems, as observed in the work of Lavoie et al. (2009a), who compared different pull 
control mechanisms for homogenous transfer lines. Simulation has also been applied to 
compare different maintenance strategies, such as in Boschian et al. (2009), where they 
analyzed the case of two machines working in parallel, applying different maintenance 
strategies. Other applications of the simulation optimization approach, such as the 
presented by Berthaut et al. (2010), deal with the determination of production and 
periodic preventive maintenance rates. Recently, this hybrid methodology was extended 
by Gharbi et al. (2011), who analyzed the case of the production control problem of a 
manufacturing cell comprising a central and a reserve machine. Moreover Hajji et al. 
(2011) used a simulation based approach to determine the production control parameter 
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and product’s specification limits that have a direct influence in the rate of                  
non-conforming items. A closer look at these models reveals that this simulation 
optimization approach is not yet in use in cases where the degrading process of the 
production system has a continuous deterioration on the parts quality. 

Therefore, given this context, we intend to develop a new model for the simultaneous 
production and quality control policy of a mono-product manufacturing system, 
composed of a single unreliable machine that is subject to progressive quality 
deterioration and uncertainties. This is motivated by the need to study the inter-relation 
between quality issues and the production policy, where phenomena such as deterioration 
are present. Furthermore, the notion of relating the deterioration of the machine with the 
parts quality is based on the concept of worse repairs (a maintenance action which 
increases the rate of defectives). The uncertainties are due to machine failures in a 
dynamic continuous time stochastic context. We develop a stochastic dynamic 
programming model with two decision variables, the production rate and the quality 
decision related to the overhaul strategy, which counters the effect of the deterioration. 
This specific problem has not been yet addressed in the literature. The resultant control 
policy called Machine Deterioration Dependent Hedging Point Policy (MDDHPP), 
adjusts the control parameters according to the level of deterioration of the machine. The 
contribution of this article is further illustrated by the robust behavior of the MDDHPP 
facing several variations of the system parameters in a sensitivity analysis, and providing 
a better knowledge of the production system behavior. We propose a simulation 
optimization approach combined with the control theory to achieve a close approximation 
of the optimal control policy parameters. 

The remainder of the paper is structured as follows. After an overview of the literature in 
section 1, the notations and the system description are presented in section 2. The control 
problem statement is detailed in section 3. Numerical methods are applied to characterize 
the structure of the obtained control policy in section 4. The proposed simulation 
optimization approach is presented in section 5, along with a detailing of the simulation 
model and its validation. In section 6, a numerical example is reported to illustrate the 
system’s behavior. A sensitivity analysis of the control policy is presented in section 7, 
with regards to different cost parameters and trajectories of the rate of defectives. Finally, 
concluding remarks that illustrate new insights into this topic are given in section 8.  

 

2. Notation and system description  

This section presents the notation and the system description of the manufacturing system 
under consideration. 

2.1 Notation 

The following notations are used: 

x(t)  Inventory level at time t 
u(t)  Production rate of the manufacturing system at time t 
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n(t)  Current number of failures at time t 
d   Demand rate 
(t)  Mode of the machine at time t 
umax   Maximum production rate  
β  Rate of defectives 
ρ  Discount rate 
 (∙)’ααߣ   Transition rate from mode α to mode α’ 
  ௠௜௡  Minimum overhaul transition rateݒ
௠௔௫ݒ                      Maximum overhaul transition rate  
݃(·)  Cost rate function 
J(·)  Expected discounted cost function 
V(·)  Value function 
τ  A jump time of the process (t) defined in the reset function 
c+  Incurred cost per unit of produced parts for positive inventory 
c-  Incurred cost per unit of produced parts for backlog 
co  Overhaul cost 
cr             Repair cost 
N Maximum number of failures where the system is still operational 
݊௙  Number of failures needed to perform the overhaul 

 
 

2.2 System description 

The production system under consideration consists of an unreliable single machine 
producing one part type. The block diagram of the production system is presented in 
Figure 1. The machine is unreliable, and is subject to random events, such as failures, and 
different maintenance activities, such as repairs and overhauls. We conjecture that the 
machine is subject to deterioration, and this phenomenon is tied directly to an increasing 
defective rate. The quality deterioration leads to the integration of quality related 
decisions, such as the overhaul strategy that counters the effect of the quality 
deterioration, into the model. Since the quality of the parts produced is not perfect, the 
product stock is composed of a mixture of flawless and defective products. In this 
domain, it is generally assumed that deterioration affects the availability of the system, 
but in this paper, however, we focus on its effect on the quality of the parts produced, and 
more specifically on the rate of defectives. When the machine is at failure state, a worse 
repair is conducted, having the particular characteristic to deteriorate the machine, 
thereby increasing the rate of defectives. We thus tie the number of failures to the quality 
deterioration; some reasons justifying this condition are discussed later on this paper. The 
model’s decision variables are related with the production planning and the overhaul 
strategy. The objective of the model is to determine the simultaneous production and 
overhaul policies that minimize the total incurred cost, which is composed of the repair 
cost, the overhaul cost, the inventory cost and the backlog cost of units. 
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Figure 1: Block diagram of the manufacturing system under study 

 
 
 

3. Control problem statement 

In this section, we present the formulation of the control problem for the manufacturing 
system presented in section 2.2. As mentioned previously, the production system consists 
of a single machine that produces one type of product to meet client demand. The system 
is subject to random events (failures, repairs, and overhauls) as well as to quality 
deterioration. The machine has three modes, described by the stochastic process 
ሼሺݐሻ, ݐ ൒ 0	ሽ,		with values in	ߗ ൌ ሼ1,2,3ሽ. The machine is available when operational 
((t)=1), and unavailable when under repair ((t)=2) or under overhaul ((t)=3). The 
overhaul refers to a perfect maintenance whose benefit is to counter quality deterioration 
and restore the machine to as-good-as-new conditions. 

At any given time ݐ, the system is characterized by the machine mode (t), the number of 
failures n(t) and the stock level x(t).  According to standard notation, let ݀ be the demand 
to be satisfied and ݑሺݐሻ the production rate at time ݐ. At any time instant, the production 
rate ݑሺݐሻ of the machine has to satisfy the capacity constraint: 0	൑ ሻݐሺݑ ൑  ௠௔௫, whereݑ
  .௠௔௫ is the maximum production rateݑ

Our primary concern in this model is that the quality of the parts produced is 
continuously deteriorated by the degrading process of the manufacturing system, as 
suggested by Colledani and Tolio (2011) and Kim and Gershwin (2008). These authors 
conceived the deterioration-quality relationship. To exploit this link in our model, we 
assume that the deterioration of the machine has the effect of increasing the rate of 
defectives. Hence, we propose that the dynamics of the inventory/backlog of products 
 :ሻ evolves according to the following differential equationݐሺݔ
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ሻݐሶሺݔ ൌ ሺ൉ሻݑ െ
݀

൫1 െ ሺ݊ሻ൯ߚ
ሺ0ሻݔ			,	 ൌ 	ሺ1ሻ																																																		଴ݔ

where ߚሺ݊ሻ ൏  , is the initial stock level, n is the current number of failures at time t	଴ݔ ,1
ሺ݊ሻ is a function of the rate of defectives, and the quantity ௗߚ

൫ଵିఉሺ௡ሻ൯
 represents the adjusted 

demand that includes defective products. Our remaining problem with this equation (1) is 
to define how exactly the function ߚሺ݊ሻ	relates the deterioration of the machine with the 
rate of defectives. We find some useful ideas that sketch this condition in the area of 
deteriorating systems. 

We should recall that at failure, the maintenance option available is to conduct a worse 
repair, defined in Wang (2002) as the maintenance action where the system’s operating 
conditions become worse with this sort of repair. Some reasons accounting for this 
deterioration is that at failure, the faulty component is only partially repaired, the 
influence of human errors, etc. Additionally, imperfect maintenance methods, such as 
those presented by Wang and Pham (1999) and Lam et al. (2004), use the number of 
repairs or the number of failures to define the level of deterioration of the system, this 
allows us to define the failures-deterioration relationship. In fact, in these models a 
certain trend has been observed in the deterioration, and their results have been applied 
successfully even to real industrial data. We therefore extend the concept of worse repairs 
to model quality deterioration, and based on the relationships between                    
failures-deterioration and deterioration-quality, we propose the increasing function (2), 
which defines the rate of defectives as a function of the number of failures, as follows: 
 

ሺ݊ሻߚ ൌ ଴ߚ ൅ ଵߚ ቀ
݊
ܰ
ቁ
௥
																																																																ሺ2ሻ 

 

where β0 is the value of the rate of defectives at initial conditions (normally with a very 
low value), N is the number of failures where the system is still operational, and ߚଵ and r 
are given parameters. It turns out that our model is a derivation of a Markov model 
because the transitions between modes are not affected by the failures. However, as the 
rate of defectives follows a defined trajectory given by equation (2), we need the number 
of failures ݊ in order to properly characterize the state of the system.  

Before completing the problem formulation, we would like to draw the reader’s attention 
to an important technical detail. Typically, the manufacturing system will only meet the 
conditions needed to fulfill the demand rate ݀  over an infinite horizon, and reach       
steady-state, only if the system is feasible. In other words, the production system must 
satisfy the following feasibility condition:  

 

௠௔௫ݑ ∙ ଵߨ ൒ ݀ ∙ ሾ1 ൅    ሺ3ሻ																																																							ሺ݊ሻሿߚ
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where, ߨଵ		is the limiting probability for the operational state. Let ܳሺ∙ሻ ൌ ሼλఈఈ’ሺ∙ሻሽ refer to 
the related transition matrix. Therefore ߨଵ can be computed as follows:	 

 

௜ߨ ∙ ܳሺ∙ሻ ൌ 0     and 						∑ ௜ߨ
ଷ
௜ୀଵ ൌ 1																																												ሺ4ሻ  

 

For our case of study, the solution of ߨଵ	for the system of equations (4) yields to the 
following expression: 

ଵߨ ൌ
1

1 ൅ λଵଶ
λଶଵ

൅
λଵଷ
λଷଵ

																																																											ሺ5ሻ 

 

where λαα’ are the transition rates from mode α  to mode   In a practical sense, the value of .’ߙ 
the parameters needed by equation (2) can be determined from the analysis of 
maintenance service data. The advantage of equation (2) is that we can change the value 
of the parameter r to adjust the trend of the defective rate for a specific machine. In 
Figure 2, we present several trajectories for the rate of defectives as an illustration, 
applying different values of the parameter r.  
 

 

Figure 2: Trend of the rate of defectives for different values of the parameter r. 
 

 

Returning to the model formulation, the machine’s mode changes from operation mode to 
overhaul mode with a transition rate denoted by		λ13 ൌ ݒሺ൉ሻ.	 The rate vሺ൉ሻ is assumed to 
be a control variable, and the decision to send the machine to overhaul is taken while the 
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machine is operational. The inverse of ݒሺ൉ሻ represents the expected delay time between 
the decision to perform the overhaul and the effective switch from operation mode to 
overhaul mode. In other words, ଵ

௩ሺ൉ሻ
 corresponds to the delay between the call of a 

technician and his/her arrival. Moreover, we assume that the following constraint holds 
for the overhaul rate:	 

௠௜௡ݒ 	൑ ሺ൉ሻݒ 	൑  ሺ6ሻ																																																												௠௔௫ݒ

 

where ݒ௠௜௡  and ݒ௠௔௫	denote the minimum and maximum overhaul rate, respectively. 
The instantaneous cost function of the model at mode ߙ	߳	ߗ, is defined by the following 
equation: 

 

݃ሺߙ, ,ݔ ݊, ,ݑ ሻݒ ൌ ܿାݔା ൅ ିݔିܿ ൅	ܿ௥ ∙ ሻݐሼሺ݀݊ܫ ൌ 2ሽ ൅ ܿ௢ ∙ ሻݐሼሺ݀݊ܫ ൌ 3ሽ														ሺ7ሻ 

 

with:                                          

ାݔ ൌ ,ሺ0ݔܽ݉  ሻݔ

ିݔ ൌ ,ݔሺെݔܽ݉ 0ሻ 

ሻݐሼሺ݀݊ܫ ൌ ሽߙ ൌ ቄ1 ݂݅		ሺݐሻ ൌ 	ߙ
0 ݁ݏ݅ݓݎ݄݁ݐ݋

 

 

where c+ is the inventory cost, c- is the backlog cost, cr is the repair cost and co is the 
overhaul cost. The control variables of the model are the production rate ݑሺ∙ሻ and the 
overhaul rate 		;ሺ∙ሻݒ	 the set of admissible decisions ሺݑ, ሻݒ  depends on the stochastic 
process and, is given by:  
 

ሻߙሺ߁ ൌ ൛൫ݑሺ൉ሻ, ሺ൉ሻ൯ݒ ∈		R2,							0 ൑ ൉ሻ,ߙሺݑ ൑ ,௠௔௫ݑ ௠௜௡ݒ 	൑ ൉ሻ,ߙሺݒ 	൑ 	ሺ8ሻ								௠௔௫ሽݒ
 

Our objective is to control the production rate ݑሺ∙ሻ	and the overhaul rate	ݒሺ∙ሻ in order to 
minimize the integral of the expected discounted cost given by:  

 

,ߙሺܬ ,ݔ ݊, ,ݑ ሻݒ ൌ 

ܧ ൥න ݁ିఘ௧݃ሺ∙ሻ݀ݐ	|	ߙሺ0ሻ ൌ ,ߙ ሺ0ሻݔ ൌ ,ݔ

∞

଴

݊ሺ0ሻ ൌ ݊൩ , ,ሺ∙ሻݑ	∀ ሺ∙ሻݒ ∈  ሺ9ሻ									ሻߙሺ߁	
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where ߩ	 is the discounted rate and ሺߙ, ,ݔ ݊ሻ	are the initial state conditions. Optimal 
policies are obtained by searching in the value function: 

 

ܸሺߙ, ,ݔ ݊ሻ ൌ ݂݅݊
ሺ௨,௩ሻ∈௰ሺఈሻ

,ߙሺܬ	 ,ݔ ݊, ,ݑ 				ሻݒ 																																	ሺ10ሻ 

 

The value function ܸሺߙ, ,ݔ ݊ሻ	satisfies specific properties called optimality conditions. In 
Appendix A, it is shown that the value function ܸሺ∙ሻ  satisfies the so-called          
Hamilton-Jacobi-Bellman (HJB) equations. Such equations describe the optimally 
conditions of the problem, in addition to determining the optimal feedback control 
ሺݑ,  In this case, the derivation of the optimality conditions leads to the following HJB		ሻ.ݒ
equations: 

 

,ߙሺܸߩ ,ݔ ݊ሻ ൌ 

݂݅݊
ሺ௨,௩ሻ	∈		௰ሺఈሻ

൜݃ሾߙ, ,ݔ ݊, ,ݑ ሿݒ ൅
߲ܸ
ݔ߲

ሾߙ, ,ݔ ݊ሿݔሶ 	൅ ܳሺ∙ሻܸሾߙ, ,ݔ ߮ሺߦ, ݊ሻሿሺߙሻൠ																					ሺ11ሻ 

 

where డ௏
డ௫
	  is the derivative of the value function .  The control policy ሺݑ, ሻݒ  denotes a 

minimizer of the right-hand-side of the HJB equations, and therefore, the controls 
obtained are optimal. Because of the randomness of ߙ, the control policy is a feedback 
control rule based on the inventory level ݔ, the mode of the machine	ߙ, and the number of 
failures ݊. Furthermore, as the overhaul activity restores the rate of defectives ߚሺ݊ሻ to 
initial conditions, at a jump time τ for the process (t), we define a reset function ߮ሺߦ, ݊ሻ 
by the following relationship: 

 

߮ሺߦ, ݊ሻ 	ൌ ൝
݊ ൅ 1 ݂݅	ሺ߬ାሻ ൌ 1			ܽ݊݀			ሺ߬ିሻ ൌ 2	
0 ݂݅	ሺ߬ାሻ ൌ 1			ܽ݊݀			ሺ߬ିሻ ൌ 3
݊ ݁ݏ݅ݓݎ݄݁ݐ݋	

																																						ሺ12ሻ 

 

We conclude this section by stating that, when the value function ܸሺ∙ሻ		is available, an 
optimal control policy can be obtained from the HJB equations (11). The fact is that in 
general, solving the HJB equations is usually impractical, and close-form solutions are 
only obtained for relatively few simple models. Even finding numerical solutions for the 
HJB equations (11) is a challenge. Fortunately, Boukas and Haurie (1990) implemented 
the Kushner’ method to solve such a problem in the context of production planning. In 
the next section, we detail the procedure for determining control policies. 
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4. Structure of optimal control policy 

To determine the optimal policy, a solution could be approximated with the HJB 
equations by the application of numerical methods based on the Kushner technique. The 
main idea of this approach is to use an approximation scheme for the gradient of the 
value function ܸሺߙ, ,ݔ ݊ሻ. Then, a discrete function ௛ܸሺߙ, ,ݔ ݊ሻ is used to approximate the 
continuous value function	ܸሺߙ, ,ݔ ݊ሻ, and its partial derivative డ௏

డ௫
ሺ∙ሻ	can be expressed as a 

function of 	 ௛ܸሺߙ, ,ݔ ݊ሻ and the length of the finite difference interval	݄ of the variable	ݔ. 
More details about the numerical method can be consulted in Kushner and Dupuis (1992) 
and in Hajji et al. (2009), and references therein. Subsequently, ௛ܸሺߙ, ,ݔ ݊ሻ is obtained by 
solving a discrete dynamic programming using the policy improvement technique.  

Table 1 presents the value for the set of parameters used in the numerical example. From 
the literature of optimal control and maintenance it is customary to assume that the cost 
of negative inventory is much higher than the cost of positive inventory (ܿି ൐൐ ܿା). 
Furthermore, it is normal that the overhaul cost is higher than the repair cost (ܿ௢ ൐ ܿ௥ሻ.    

In order that the problem makes sense, the machine parameter ݑ௠௔௫  satisfies the 
condition ݑ௠௔௫ ൐ ݀ ൐ 0. From a practical point of view, we can collect historical data 
from maintenance services to define the transitions λ௜௝  that denote the failure and 
maintenance activities duration (repair and overhaul). To determine the parameters 
related to the degradation of quality ሺߚ଴ , ,ଵߚ	 r, Nሻ,  it can be consulted historical 
production data and fit equation (2). Additionally, as mentioned previously in section 3, 
for the problem to be feasible, condition (3) must be fulfilled. Without loss of generality 
data of Table 1 satisfies the feasibility condition until the 20th failure.  

 

Parameter  umax (units/hr)  d (units/hr)  h  ρ  c+ ($/units/hr)  c‐ ($/units/hr) 
Value  5  3  0.5  0.9  5  250 

Parameter  cr    ($)  co  ($)  N  r   ଴ߚ ଵߚ
Value  5  10  20  1  0  0.35 

Parameter  λ 12   (1/hr)  λ 21  (1/hr)  λ 31 (1/hr)  ௠௜௡ݒ (1/hr)    (1/hr)	௠௔௫ݒ  

Value  0.1  2  0.6  0.0001  20   
Table 1: Parameters of the numerical example 

 

It follows from the HJB equations (11) and their corresponding solution using the data of 
Table 1 that we obtain the control policy presented in Figure 3. The results obtained for 
the production policy are presented in Figure 3a, and for the overhaul policy in Figure 3b. 
Based on these graphics, it is apparent that the optimal production control policy consists 
of three rules, where the production rate is set to ݑ௠௔௫, ݀ and 0, respectively. Moreover, 
the overhaul policy divides the plan ሺݔ, ݊ሻ into two regions, where the overhaul rate is set 
to ݒ௠௜௡ and ݒ௠௔௫  .   



12 
 

The optimal production threshold level is denoted by ܼ݌ሺ∙ሻ, and defines the limits of the 
production region. The production control policy obtained is an extension of the hedging 
point policy, given that it respects the structure presented in Akella and Kumar (1986). 
 

 
a) Production policy                                               b)    Overhaul policy 

Figure 3: Obtained control policies 
 

 
In this case due to the effect of the deterioration of the parts quality; the production policy 
leads to the following Machine Deterioration Dependent Hedging Point Policy 
(MDDHPP): 
 
 

,ߙሺݑ ,ݔ ݊ሻ∗ ൌ ቐ
௠௔௫ݑ ሻݐሺݔ	݂݅ ൏ ሺ݊ሻ݌ܼ
݀ ሻݐሺݔ ൌ ሺ݊ሻ݌ܼ
0 ሻݐሺݔ ൐ ሺ݊ሻ݌ܼ

																																																				ሺ13ሻ 

  
 
where	ܼ݌ሺ·ሻ is the funtion that gives the optimal production threshold for each failure ݊. 
We note that the production threshold ܼ݌ሺ∙ሻ of Figure 3a, increases progressively; this 
trend shows the effect of the quality deterioration on the production policy.  
 
The overhaul policy is presented in Figure 3b. Its analysis is facilitated with the use of its 
boundary	݊ܤሺ∙ሻ.		We note that Figure 3b identifies two zones in the computational domain 
delimited by the boundary ܤ௡ሺ∙ሻ, as follows:  
 
 
 Zone ܣ: in this zone the quality deterioration, denoted by the number of failures, 

has a high level, which justifies the cost of performing an overhaul, and thus the 
overhaul rate is set to its maximum value, ሺ݅. ݁., ሺ∙ሻݒ ൌ  .௠௔௫ሻݒ
 

 Zone ܤ: here the quality deterioration is low, meaning that an overhaul is not 
recommended, and the related decision variable is set to its minimum value, 
ሺ݅. ݁., ሺ∙ሻݒ ൌ  .௠௜௡ሻݒ
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To define the overhaul policy, we will now simultaneously consider the production and 
the overhaul boundaries as presented in Figure 4. Apparently the overhaul trace ܤ௡ሺ∙ሻ is 
represented in Figure 4 by the points ݊௢݊ேଵ݊ேଶതതതതതതതതതതതതത. However, it should be noted that the stock 
level is limited by the production threshold	ܼ݌ሺ∙ሻ, identified by the segment ܼܰ݌ܼ݋݌തതതതതതതതതതത.  This 
observation help us to realize that only a part of the overhaul zone ܣ is used, and from 
what follows, this feasible overhaul region is denoted as zone ܣᇱ . This reduction is 
important as it indicates that we can define the overhaul policy knowing the point ݊௙

∗, 
which is where the segments ܼܰ݌ܼ݋݌തതതതതതതതതതത.  and ݊௢݊ேଶതതതതതതതത, intersect.  
 
 

 
Figure 4: Intersection of the production and the overhaul trace 

 

 

According to the results provided by Figure 3b, it is clear that the overhaul policy has a 
bang-bang structure. Moreover, the overhaul activity is triggered according to the policy 
described in Figure 4, which indicates that the overhaul activity should be performed at 
rate ݒሺ∙ሻ, with:  

 

,ߙሺݒ ,ݔ ݊ሻ∗ ൌ ൜
௠௔௫ݒ 			݂݅		݊ሺݐሻ ൒ ݊௙

ሺ∙ሻݔ		݀݊ܽ		∗ ∈ 				ᇱܣ	݁݊݋ݖ
௠௜௡ݒ ݁ݏ݅ݓݎ݄݁ݐ݋		

																									ሺ14ሻ	

 

where ݊௙
∗	is the number of failures limit required to conduct the overhaul. For a given 

number of failures ݊, the parameter ݊௙
∗ is provided by Figure 4, as the point where the 

production threshold ܼ݌ሺ∙ሻ	intersects the overhaul zone ܣ. On the basis of the previous 
result, it can be observed that when the number of failures increases, the deterioration of 

݊ேଶ 

݊௢

Feasible zone ܣᇱ 

Zone ܤ 

Zone ܣ 

݊௙
∗

 ௢݌ܼ

 ே݌ܼ

݊ேଵ 
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the parts quality also increases, meaning that the machine is sent to overhaul more often. 
This highlights the fact that the production and overhaul policies are influenced by the    
quality-deterioration phenomenon. Summing up, we can illustrate the joint production 
and overhaul policies by equations (13)-(14), which are characterized by the control 
parameters ሺܼ݌, ݊௙ሻ, where ܼ݌  corresponds to the value of ܼ݌ሺ∙ሻ for each ݊  value in 
Figure 4. 

Briefly, even though the application of the numerical methods provides the structure of 
the optimal control policies, the problem is that a satisfactory approximation of the 
control parameters would be too time-consuming to be applicable at the operational level. 
This is observed because the accuracy of the numerical results depends on the size of the 
discrete grid step ݄, as discussed in Kenné et al. (2003). To overcome this condition in 
the next section, we propose an alternative simulation optimization approach, to 
approximate the optimal control parameters ሺܼ݌, ݊௙ሻ, and determine the optimal cost. The 
technical advantage of the simulation optimization is that it is more flexible, and allows 
us to examine the control policy in a wide range of time and different cost variations. 

 

5. Simulation optimization approach 

This section presents a simulation optimization approach having the advantage of being 
applicable at an operational level. The proposed control approach combines analytical 
and simulation models with statistical analysis, and is based on the works of Gharbi and 
Kenné (2000) and Berthaut et al. (2010). The block diagram of the proposed approach is 
presented in Figure 5, and consists of the following sequential steps: 

 

 Mathematical formulation of the optimization problem and numerical resolution: 
This step consists of the representation of the simultaneous production planning 
and the overhaul scheduling problem through an optimal control model. The 
objective is to determine the control variables ሺݑ,  ሻ that minimize the incurredݒ
cost. Numerical methods are applied to determine the structure of the control 
policy, in which we identify the control parameters (ܼ݌, ݊௙ ), as discussed in 
section 3 and section 4. 
 

 Development of the simulation model: A simulation model is developed that uses 
the control parameters (ܼ݌, ݊௙) as inputs for conducting several simulations runs. 
This simulation model accurately reproduces the behavior of the manufacturing 
system and provides a measure of its performance, denoted by the total incurred 
cost. A detailed description of the simulation model is presented in section 5.1. 
 

 Statistical analysis: Data from several simulation runs is collected to perform a 
design of experiments with the purpose of determining the effects of the main 
factors and their interactions on the total incurred cost. The design of experiments 
analyzes the factors with a minimal set of simulation runs. 
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 Parameter Optimization: The response surface methodology is used to express a 
relationship between the incurred cost and the significant main factors and 
interactions identified. The resulted expression is then optimized to determine the 
best values (ܼ݌∗, ݊௙

∗ሻ	of the control parameters.  
 

 Near-optimal control policy: Finally	ݑ෤	ሺߙ, ,ݔ ݊, ,ߙ෤ሺݒ	and		ሻ∗݌ܼ ,ݔ ݊, ݊௙
∗ሻ define the 

control policy to be applied to the manufacturing system. The application of the 
proposed control approach defines the production and overhaul rates described by 
equations (13) and (14) for the best values (ܼ݌∗, ݊௙

∗ሻ	of the control factors.  
 
 

 
Figure 5: Proposed simulation-based control approach  

 

5.1 Simulation model 

A discrete/continuous simulation model was developed for the manufacturing system 
under analysis, and the simulation software Arena with C subroutines was applied. The 
model consisted of several networks and user routines, each of which describes a specific 
task or event in the system. The block diagram of the simulation model is presented in 
Figure 6, and its description is detailed below: 

1. The INITIALIZATION block sets the values of several parameters, such as the input 
factors 	൫ܼ݌, ݊௙൯,	the demand rate ݀ , the maximum production rate ݑ௠௔௫ , and the 
value of the transitions for the different modes. It also defines the step specifications 
for the time-persistent statistics of the cumulative variables, as well as the simulation 
time ௘ܶ௡ௗ and the length of the warm-up period. 
 

2. The FAILURES AND REPAIRS block samples the time to failure and time to repair 
of the machine from their respective probability distributions. It communicates with 
the state equation block  to indicate the operational and the breakdown state; a 
direct communication also exists with the rate of defectives block  to adjust the 
current rate ߚ		with every repair, and subsequently update the production threshold 
level.  
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3. The OVERHAUL POLICY block, together with observations networks, establishes 
when to perform the overhaul, as defined in equation (14). It communicates with the     
failures-repairs block  and the state equation block  to properly synchronize 
different events, such as failures, repairs and overhaul. Moreover, it interacts with the 
rate of defectives block  to indicate when an overhaul has been conducted. 
 

4. The RATE OF DEFECTIVES block receives information from the failures-repairs 
block  and the overhaul policy block  to correctly update the rate of defectives. 
Generally, at failure, the rate ߚ,		increases as defined in expression (2). Conversely, 
these parameters are restored to initial conditions when an overhaul is performed. 
 

5. The STATE EQUATION block defines, in a C language insert, the system dynamics 
of the production system, which in this case, is the evolution of the inventory level 
denoted by the differential equation (1). For proper operation this block requires the 
production rate set by the production policy block , the rate of defectives given in 
block  and the state of the machine defined in the failures-repairs block  and the 
overhaul policy block .   
 

6. The PRODUCTION POLICY block uses equation (13) to set the proper production 
rate comparing the current stock level with a pre-determined threshold. When the 
current stock level crosses the production threshold, a flag is noticed by detection 
mechanisms. The production rate is then adjusted and used in the differential state 
equation of block . 
 

7. The ADVANCE TIME block updates the current time based on a combination of 
discrete event scheduling (consisting of failures, repairs and overhauls), continuous 
variables threshold crossing events and time step specifications.  
 

8. The UPDATE STOCK LEVEL block traces any variations of the inventory level for 
the chosen time step. As well, it integrates the cumulative variables using the    
Runge-Kutta-Fehlberg algorithm. 
 

9. At the end of the simulation time ௘ܶ௡ௗ, the OUTPUT block provides time persistent 
statistics of the positive and negative stock, the simulation length, the number of 
repairs and overhauls conducted, and the number of failure ݊௙,  that is where the 
production threshold intersects the overhaul zone	ܣ. Subsequently, the total incurred 
cost is calculated based on the information provided by this block. 

 

The simulation ends when the current simulation time ௡ܶ௢௪  reaches the defined 
simulation period Tend, which is defined as the required time to ensure steady-state 
conditions. The simulation model reproduces the characteristic features of the proposed 
manufacturing system, and a more detailed discussion about the validity of the simulation 
results is provided in the next section. 
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Figure 6: Simulation model block diagram  

 

 

5.2 Validation of the simulation model 

To better to verify the accuracy of the simulation model, we examine the evolution of the 
trajectory of the stock level. This analysis is intended to graphically evaluate whether the 
simulation model works according to the control policy obtained and the series of 
proposed assumptions discussed previously. In that regard, Figure 7 illustrates the 
trajectory of the inventory level ݔሺݐሻ when the control parameters are set to 	ܼ݌௢ ൌ 20, 
and ݊௙ ൌ 11 . The evolution of the inventory level is as follows: at time ݐ ൌ 0 , the 
machine maintains a stock level denoted by the production threshold ܼ݌௢ ൌ 20, and then 
it experiences a series of random failures, and after every failure, the production 
threshold increases by a certain amount. At time ݐ ൌ 114, the machine experiences its 
11th failure, and at this point the increase in the stock level is notable, as compared to the 
initial conditions; this point also indicates the moment to carry out an overhaul. At time 
ݐ ൌ 122.5,  after an overhaul is conducted, the rate of defectives and the production 
threshold are restored to initial conditions. From this point, the machine deteriorates once 
again, increasing the production threshold with every failure, until at time ݐ ൌ 233.5, 
where it accumulates eleven other failures. At time ݐ ൌ 242, after a second overhaul is 
conducted, the machine is restored to initial conditions. From this point the production 
system continues its normal deterioration until ݐ ൌ 300,	where the simulation run is 
completed. 
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Figure 7:  Stock trajectory, for ࢕࢖ࢆ ൌ ૛૙	and ࢌ࢔ ൌ ૚૚ 

 
Summing up, from the stock trajectory of Figure 7, we note that: i) The inventory level 
reaches	ܼ݌௢	and this threshold, as well as the rate of defectives, increases with every 
failure because of the quality deterioration phenomenon, and arrows  illustrates the 
increases in the production threshold. ii) The stock level decreases during repair as 
indicated by arrow , and decreases even more when an overhaul is carried out,            
as indicated by arrow , because an overhaul requires much more time. iii) As expected, 
every eleven failures, an overhaul is conducted, and this activity restores the rate of 
defectives and the production threshold to initial conditions, as presented in arrows . 
Based on these observations, we can state that our simulation model works well, 
according to the assumptions of the proposed manufacturing system, and that it properly 
reproduces the dynamics of the stock level.  

 

6. Numerical example 

The determination of the control parameters for the joint production and overhaul policy 
is illustrated with a numerical example. We combine the simulation model with statistical 
analysis based on designs of experiments, and parameter optimization applying the 
response surface methodology. In this section, we detailed the procedure for 
simultaneously and efficiently varying the input variables ൫ܼ݌, ݊௙൯	of the simulation 
model. The goal is to identify the significant main factors and interactions that have a 
significant effect on the total incurred cost. Then eventually, we determine the best values 
(ܼ௣∗	, ݊௙

∗ሻ of the control parameters and calculate their respective incurred costs. 

One point should be noted concerning the control parameters. It is clear from the last 
section that with each failure, a worse repair is conducted, which leads to different system 
dynamics, and that implies an increase of the production threshold and the rate of 
defectives. To determine the control factors,	 we must first define a limit for the number 
of failures. Let us, for instances, set ܰ ൌ 20,  as discussed previously in section 3. 
Normally this leads to the definition of 22 parameters, with 21 related with the 
production threshold ܼ݌ and one with the number of failures	݊௙ . Given the convexity 

1

2

3 4
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property of the value function (10), and given that an optimal solution of the control 
problem exists, we can define three levels for each control parameter to obtain a convex 
estimated cost function. In particular, we consider a second-order model to fit the cost 
function, and there are various possibilities for addressing this problem. For instance, a 
complete 3௡  factorial design may be conducted, which in the case concerning                 
22 parameters, leads to a 3ଶଶdesign. If we replicate this design four times, then altogether 
we will need (3ଶଶ4ݔሻ ൌ  .10ଵଵ runs, which is a considerable number of calculationsݔ1.23
The number of runs could possibly be reduced with a fractional design such as the central 
composite design (CCD), as reported in Montgomery (2009) and Lavoie et al. (2009b), 
which in the case of 22 parameters gives a total of (2ଶଶ ൅ 2ሺ22ሻ ൅ 3ሻ4 ൌ  .10଻ runsݔ1.67
The problem is that even in this last scenario, the computational effort needed to perform 
the calculations would be too time-demanding. Faced with such a situation, it should first 
be ascertained that each of the designs presented is insurmountable, due to time and 
resource constraints, and mainly because a single run of our simulation model takes 4.6 
seconds on average, and an exhaustive simulation of all the combinations would simply 
be impossible. In average 1.8410ݔସ years would be needed to complete the runs with the 
3ଶଶ factorial design, while the CCD design would require 895 days. If the number of 
parameters to optimize were smaller, the number of runs could considerably be reduced 
with a Latin Hypercube Sampling (LHS). However, this is not the case, since we have to 
optimize 22 parameters, and LHS is impractical when the dimensionality is too high (i.e., 
more than ten parameters), as suggested in Huang et al (2006). Therefore, we have to 
conceive alternative procedures to cope with such limitations.  

To tackle this difficulty, we propose a drastic reduction in the number of simulation runs 
required, while simultaneously maintaining high accuracy in the results. The reduction is 
based on the observation that the production threshold follows a defined trajectory along 
the deterioration process. Hence, it is possible to define an analytical expression for the 
production threshold, when the manufacturing system produces a random fraction of 
defective products.  

 
Figure 8:  Trajectory of the production threshold 	࢖ࢆ	as a function of the number of failures ࢔ 

 ௢݌ܼ
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Figure 8 depicts a trace of the production policy as a function of the number of failures. 
We conjecture that the trajectory of the production threshold ܼ݌ሺ൉ሻ for any number of 
failures can be determined by only one parameter	ܼ݌௢ which denotes the value of the 
production threshold before the first failure. From an adaptation of the results of Mhada 
et al. (2011), we can define the whole trajectory of the production threshold 
 :according to the following expression	ሺ൉ሻ݌ܼ
 

ሺ݊ሻ݌ܼ ൌ ቊ
௓௣೚

ሺଵିሾఉሺ௡ሻିఉ೚ሿሻ
݂݅	0 ൑ ݊ ൑ ܰ

0 ݁ݏ݅ݓݎ݄݁ݐ݋
																																						ሺ15ሻ  

 

where ܼ݌௢ is the optimal production threshold before the first failure, ߚሺ݊ሻ is the rate of 
defectives denoted by equation (2) for a given number of failures ݊, and ߚ௢ is the value of 
the rate of defectives at initial conditions. The application of equation (15) considerably 
facilitates the determination of the control parameters, since adaptations of this 
expression can also be applied to define the feasible overhaul zone, based on the control 
policy discussed in section 2. Consequently, the original problem concerning                 
22 parameters reduces to the determination of only two factors ൫ܼ݌௢, ݊௙൯,		leading to the 
possibility of applying a 3ଶ factorial design. Replicating this design four times implies a 
total of (3ଶ4ݔሻ ൌ 36 simulation runs, which is much easier to compute, as compared with 
the complete and fractional designs. The practical advantage of equation (15) is 
remarkable, and in fact, modifications of this equation are implemented in our simulation 
model to determine the increase of the production threshold and the size of the overhaul 
zone.  

 

6.1 Statistical analysis 

The statistical analysis of the simulation data consists in conducting a multifactor analysis 
of variance (ANOVA). In this section, we determine the control factors ൫ܼ݌, ݊௙൯	using two 
independent variables	ሺܼ݌௢, ݊௢ሻ, where ܼ݌௢	denotes the production threshold before the 
first failure as observed in Figure 8, and ݊௢ is the number of failures that represents the 
origin of the overhaul zone ܣ, as shown in Figure 4. We identify one dependent variable 
denoted by the total incurred cost. As discussed previously, a complete experimental 3ଶ 
design is selected to fit the cost function, where each combination of factors is replicated 
4 times, requiring 36 simulations runs in total. From off-line simulations, the replication 
length for each simulation run is set to 1,000,000 time units to ensure that steady-state 
conditions are achieved. The cost values presented in Table 2 are considered in the 
statistical analysis, and the remaining parameters are defined as indicated in Table 1. 

 

Parameter  c+ ($/units/hr)  c‐ ($/units/hr)  cr    ($)  co  ($) 
Value  4  250  1000  3000 

Table 2: Cost parameters for the statistical analysis 
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The ANOVA is performed on the 3ଶ experimental design, using the statistical software 
STATGRAPHICS, in a bid to quantify the effects of the main factors, their interactions 
and their quadratic effects on the total incurred cost. Based on off-line simulation runs, 
we select the minimum and the maximum values of the factors ሺܼ݌௢, ݊௢ሻ, as presented in 
Table 3. 
 

Factor Low level Center High level  Description 
 ௢݌ܼ 4 8 12 Production threshold  at the first failure  
݊௢  7 10 13 Failure of origin of the overhaul zone ܣ 

Table 3: Level of the independent variables 

 

The ANOVA table corresponding to the generated data states that at a confidence level  
of 95%, all the p–values are less than 5%. The significant factors are identified in     
Figure 9, where the standardized Pareto plot is presented. The analysis also provides the 
proportion of the observed variability explained by the model that is denoted by the 
adjusted coefficient of determination	ܴଶ. In this case, we found that the model explains 
94.21% of the variability observed in the incurred cost.  
 

 
Standardized effect 

Figure 9:  Standardized Pareto Plot for the total cost  
 

Based on the ANOVA results, we found that the two main factors, ܼ݌௢		and ݊௢ , the 
quadratic effect ܼ݌௢ଶ and		݊௢ଶ and their interaction ܼ݌௢݊௢ must be included in the parameter 
optimization since they are significant at a confidence level of 95%. Moreover, the 
residual versus the predicted valued plot and the normality probability plot were used to 
test the homogeneity of the variances and the residual normality, respectively. We 
conclude that the total cost can be determined well by the proposed second-order model.  

 

6.2 Parameter optimization 

A response surface methodology is applied in order to minimize the incurred cost as a 
function of the significant variables identified in the last section. To this end, we assume 
that there exists a continuous function Ф, called the response surface, which defines the 
total incurred cost corresponding to any given combination of the parameters ܼ݌௢	and ݊௢. 
In this case, the second-order model obtained is given by: 



22 
 

Фሺܼ݌௢	, ݊௢ሻ= 								 

														194.243	 െ 7.3398 ∙ ௢݌ܼ െ 1.99834 ∙ ݊௢ ൅ 0.525489 ∙ ܼ௣ଶ 	െ 	0.0660525 ∙ ௢݊௢݌ܼ ൅
														0.115667	݊௢ଶ൅߳																																																																																																																													ሺ16ሻ	 																																				

The projection of the cost response surface in a two-dimensional plan is presented in 
Figure 10. The minimum total cost is 155.29, and is located at ܼ݌௢∗=7.66 and 	݊௢∗=10.82. 
With these values, we can determine the missing control parameter 	݊௙	

∗  as provided 
bellow. In the last section, we stated that from the initial value ܼ݌௢∗,  the production 
threshold follows a defined trajectory denoted by equation (15). Moreover, from point	݊௢∗  
the overhaul zone spreads in the plan intersecting the production threshold, as presented 
in section 4. We postulate that a part of the overhaul trace follows an inverse trajectory of 
the production threshold, as observed in Figure 4, and therefore, we use a variation of 
expression (15) (with an inverse trend) and expression (15), (both expressions 
incorporated in the simulation model) to define their intersection, and determine the 
parameter	݊௙	

∗ . Following this procedure, we identify the intersection of the production 
threshold and the overhaul zone at failure	݊௙

∗=13.84. Therefore, the values ܼ݌௢∗=7.66 and 
	݊௙
∗=14 represent the best obtained parameters that should be applied in the simultaneous 

production and overhaul control policy. 
 

 
Figure 10:  Contours of the estimated response surface. 

 

If we round the number of failures to the closest integer 	݊௢∗=11 and minimize the cost 
function (16), the optimal production threshold is ܼ݌௢∗=7.68, and these parameters lead to 
a total cost of 155.30. To cross-check the validity of the results obtained, we use these 
values as input to the simulation model to obtain a 95% confidence interval for the total 
cost, which in this case, is defined by:  

തܺሺݕሻ േ ௡ିଵ,ଵିቀఈଶቁݐ
ඨ
ܵଶሺݕሻ

ݕ
ൌ ሾ154.89; 	155.70ሿ 

The interval was calculated with 35=ݕ extra replications of the simulation model. This 
result confirms that our simulation optimization approach determines the optimal values 
of the control parameters with high precision, since the minimum cost given by the cost 
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function (16) falls inside the confidence interval. With the optimal values of the 
independent variables, the cost is minimized and the corresponding control policy can 
subsequently be defined.  

 

7. Sensitivity analysis 
 
 

The sensitivity of the control policy obtained for a set of numerical examples is analysed 
with respect to different cost variations of the inventory, backlog, repair and overhaul 
costs (i.e., ܿ൅	, ܿെ, ,ݎܿ  The objective of the analysis is to compare the incurred cost .(݋ܿ
and control parameters for different cost scenarios derived from a basic case. Also, the 
effect of the variation in the trajectory of the rate of defectives on the control parameters 
ሺܼ݌௢	, ݊௙ሻ is analyzed. 

 

7.1 Effect of the cost variation 

The goal of this analysis is to demonstrate the efficiency and robustness of our simulation 
optimization approach, and study the behaviour of the control policy obtained, when 
varying cost parameters such as: ܿା, ܿି, ܿ௥, ܿ௢. Thus, Table 4 illustrates eight different 
configurations of cost parameters, derived from a basic case by changing them to higher 
and lower values. These different configurations are related with variations of the 
inventory, backlog, repair and overhaul cost. 
 
 

Case ܿା ܿି ܿ௥ ܿ௢ 
Basic case 3 250 1000 3000 
Sensitivity of positive inventory cost 

1 2 250 1000 3000 
2 4 250 1000 3000 

Sensitivity of backlog  stock cost 
3 3 150 1000 3000 
4 3 350 1000 3000 

Sensitivity of repair cost 
5 3 250 500 3000 
6 3 250 1500 3000 

Sensitivity of overhaul cost 
7 3 250 1000 2500 
8 3 250 1000 3500 

Table 4: Combination of cost parameters of sensitivity analysis 

 

The results of the sensitivity analysis, presented in Table 5, highlight the consistency 
between the variation of each cost parameter, the optimal control factors (ܼ݌௢∗	, ݊௙

∗ሻ and 
their respective incurred cost. The first observation from Table 5 is that the optimum 
control factors change in response to variations of the cost parameters.  
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Case ܼ݌∗ ݊௙
∗ݐݏ݋ܥ ∗  ݇ݎܴܽ݉݁

Basic case 8.79 13.15 146.35 Base for the comparison   
Sensitivity of positive inventory cost 

increases  and ݊௙ ∗݌ܼ 136.03 12.50 9.95 1
∗ decreases 

decreases and ݊௙ ∗݌ܼ 155.29 13.84 7.66 2
∗ increases 

Sensitivity of backlog  stock cost 
decreases and ݊௙ ∗݌ܼ 140.28 15.97 6.60 3

∗ increases 
increases and ݊௙ ∗݌ܼ 150.16 12.03 9.73 4

∗ decreases 
Sensitivity of repair cost 

݊௙	almost unchanged and ∗݌ܼ 102.21 13.71 8.83 5
∗	increases    

∗݌ܼ 190.33 12.50   8.74 6 almost unchanged and	݊௙
∗	decreases    

Sensitivity of overhaul cost 
݊௙	almost unchanged and ∗݌ܼ 143.26 12.58 8.74 7

∗	decreases    
∗݌ܼ 149.31 13.65 8.83 8 almost unchanged and	݊௙

∗	increases    
Table 5: Sensitivity analysis of different cost parameters  

 

The variation of each cost, the respective control factors and optimal cost are examined 
and analyzed as follows: 

Variation of the inventory cost, ܿା	 (cases 1 and 2): From the results obtained and 
presented in Table 5, we observe that the effect of the inventory cost is remarkable on the 
production threshold. For instance, with an increasing ܿା  (case 2), the production 
threshold ܼ݌∗ decreases, because with higher inventory cost, the stock of product is more 
greatly penalized, leading to smaller production thresholds. The effect of this cost on the 
overhaul policy is such that when the inventory cost increases, the number of failures ݊௙

∗
 

needed to perform the overhaul also increases, because the production threshold is 
reduced and the intersection with the overhaul zone moves to a higher number of failures. 
The final result of this condition is a reduction in the feasible overhaul zone ܣᇱ, (please 
see Figure 4 for an explanation of this reduction). The influence of the inventory cost also 
is remarkable in the incurred cost, as we observe that the more the inventory cost 
increases, the more the incurred cost rises as well. An opposite effect is observed on the 
production and overhaul policies at decreasing	ܿା (case 1). 

Variation of the backlog cost, ܿି	 (cases 3 and 4): The backlog cost influences the 
production policy, and we observe that at increasing ܿି	(case 4), the production threshold 
increases, since, there is more wiggle room to maintain a certain amount of stock, and the 
increase in the inventory helps protect the system against shortages caused by 
breakdowns and defectives. With respect to the overhaul policy, the backlog cost also has 
an effect on its control parameter, since as the backlog cost increases, the production 
threshold increases, intersecting the overhaul zone at an early number of failures, thus 
leading to decrease	݊௙

∗. This in turn yields to an increase in the feasible overhaul zone ܣᇱ. 
Decreasing ܿି	(case 3) produces the opposite result in both policies. Furthermore, as can 
be seen in the results obtained, the effect of the backlog cost on the control parameters is 
the opposite of the inventory cost effect.   
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Variation of the repair cost, ܿ௥	(cases 5 and 6): With respect to the repair cost, the 
influence of its variation shows that it does not considerably modify the optimal 
production threshold ܼ݌∗, since this control parameter remained almost at the same level 
for the analyzed cases. The effect of the repair cost is observed mainly in the overhaul 
policy, where the underlying pattern shows, that as expected, when the ܿ௥  increases     
(case 6), the number of failures ݊௙

∗ decreases, thus implying an increase in the feasible 
overhaul zone ܣᇱ with respect to the case with a low repair cost. Moreover, at decreasing 
ܿ௥ (case 5), the overhaul zone ܣᇱ	decreases as well. 

Variation of the overhaul cost, ܿ௢	(cases 7 and 8): The main effect of this cost parameter 
is observed on the overhaul policy, since the production threshold remains almost at the 
same value for the analyzed cases. At decreasing ܿ௢	 (case 7), more overhauls are 
conducted, leading to a decrease in the number of repairs	݊௙

∗. Moreover, at increasing ܿ௢    
(case 8), the overhaul zone ܣᇱ	is reduced, consequently leading to fewer overhauls and an 
increase in the number of repairs	݊௙

∗. We notice that the effect of the overhaul cost on the 
overhaul policy is the opposite of the effect of the repair cost. 

From the set of numerical examples considered in this sensitivity analysis, it is clear that 
the results obtained are logical and confirm the structure of our control policy. Generally, 
any cost variation reflects changes in the control parameters, and we observe that the 
inventory cost has the opposite effect as the backlog cost, while the repair cost has the 
opposite effect as the overhaul cost. 

 

7.2 Effect of the trajectory of the rate of defectives 

In the last section, we discussed the effect of variations of the cost parameters on the 
control factors and on the total incurred cost. The objective of this section is to allow a 
better understanding of the control parameters ሺܼ݌௢	, ݊௙ሻ		when varying the trajectory of 
the rate of defectives. Hence, in this section, another set of simulation runs were 
conducted in order to analyze the impact of variations of the trajectory of β on the control 
factors. This analysis involves the variation of the parameter ݎ in expression (2). The 
obtained production thresholds ܼ݌௢∗  and the number of failures 	݊௙

∗ , are illustrated in 
Figures 11a and 11b, respectively, when varying the parameter ݎ	from 0.25 to 3, and the 
other parameters remain unchanged, as defined in the numerical values of the basic case.  

The key observation in this analysis is that the role of the parameter ݎ in expression (2) is 
to adequately adjust the trajectory of the rate of defectives to a specific manufacturing 
system, as discussed previously in section 1, and presented graphically in Figure 2. An 
important remark should be made at this point, namely, that changes in the optimal 
control parameters (ܼ݌௢∗	, ݊௙

∗ሻ	appear when the path of the rate of defectives does not 
follow a linear trend. For instance, if the parameter is 1 > ݎ, then the rate of defectives 
increases more abruptly, compared to the basic case 	1 = ݎ, and this condition results in a 
decrease in the number of failures ݊௙

∗ , consequently leading to more overhauls, as 
presented in Figure 11a. Additionally, when 1 > ݎ, the production threshold increases, as 
depicted in Figure 11b, because the rate of defectives increases more rapidly, and so the 
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production system needs more protection to cope with the defective products.  Therefore, 
if the stock level increases and the overhaul is more conducted, then the total cost 
increases when 1 > ݎ, because there is more disruptions caused by defectives. 

 

 
 

            a) Number of failures, ࢌ࢔
∗                  b) Production threshold, ࢕࢖ࢆ∗  

Figure 11:  Effect of the parameter ࢘ on the control parameters 
 

There is another interesting observation when the parameter is 1 < ݎ; it means that the 
rate of defectives increases more smoothly and slowly compared to the basic case, as can 
be seen in Figure 2. From the obtained results presented in Figure 11a, it follows that 
when 1 < ݎ, the number of failures ݊௙

∗ increases because the overhaul is conducted less 
frequently, reducing the feasible overhaul zone ܣᇱ. Furthermore, when the parameter is   
 this leads to a reduction in the production threshold, since the rate of defectives ,1 < ݎ
smoothes its increase and thus reducing the need to maintain a certain amount of products 
as protection for shortages. With respect to the total cost, when 1 < ݎ it implies less 
defectives, leading to a reduction in the stock level and less overhaul conduction, thus the 
total cost decreases.   

Through this sensitivity analysis, it is apparent that the variation of the trajectory of the 
rate of defectives has a clear effect on the control parameters and consequently in the 
total cost. In fact, we observed that when the parameter ݎ is less than one, the rate of 
defectives increases more abruptly, increasing the production threshold and reducing the 
number of failures ݊௙

∗,	leading to perform more overhauls, thus increasing the total cost. 
The opposite effect was observed, when the parameter ݎ is greater than one. From our 
results, we observed that the variation of the total cost given by changes of the parameter 
 .1 = ݎ is around േ10% of the total cost of the basic case, when ݎ

 

8. Conclusions 

In this paper, issues pertaining to the inter-relation between production control and 
quality aspects are investigated in a manufacturing system consisting of an unreliable 
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single machine, single part type manufacturing system. The machine is subject to 
deteriorations that have a negative effect on the quality of the parts produced, a fact that 
is especially reflected in the rate of defectives. The quality issues are related with the 
overhaul strategy, since it counters the effect of the deterioration. A simulation 
optimization approach is proposed and combines analytical formulation, simulation 
modeling, statistical analysis and response surface methodology. First, we investigate the 
structure of the joint production and overhaul control policy through the application of 
numerical methods designed for stochastic optimal control models. The resulting policy 
consists of a Machine Deterioration Dependent Hedging Point Policy which controls the 
production rate, and comprises several increasing thresholds and an overhaul strategy that 
performs a perfect repair when the number of failures is high. This leads to the 
identification of the two associated control parameters of the joint control policy as 
dependent on the deterioration of the production system. A simulation model is 
developed to reproduce the dynamic of the manufacturing system controlled by a 
modification of the hedging point policy obtained. An experimental design is applied to 
investigate the effects of the control factors on the incurred cost over the production 
horizon, and a cost function is estimated with a response surface from which we 
determine the best values of the control parameters and their respective incurred costs. 
The simulation optimization approach is applied on a wide range of time, and a 
combination of cost parameters is examined in a sensitivity analysis to evaluate their 
effects on the control policy. It is observed that in general, cost variations reflect changes 
in the control parameters and that the inventory cost has the opposite effect of the 
backlog cost, while the repair cost has the opposite effect of the overhaul cost. Also the 
effect of the variation of the trajectory of the rate of defectives is analyzed, and we 
observe that when the parameter ݎ is less than one, the rate of defectives increases more 
rapidly leading to an increase in the production threshold and simultaneously to more 
overhauls, thus reducing the number of failures ݊௙

∗. The opposite effect on the control 
parameters is observed when the parameter ݎ is greater than one. The results obtained 
indicate that the control policy is influenced by the quality deterioration phenomenon, 
since in this case the hedging point policy is modified to a situation with several 
thresholds, which increase from one breakdown to the next. Hence, the production 
threshold increases with the number of failures, and the overhaul is conducted only with 
high numbers of failures. The use of equation (15) and its variations significantly reduces 
the number of runs needed in the simulation optimization. Finally, our control approach 
turned out as an interesting alternative for controlling the manufacturing system at the 
operational level, and the final assessment is that our simulation optimization approach is 
robust and efficient since it provides accurate results.  
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Appendix A. Optimality conditions 

The model denoted in equations (1-10) is a stochastic dynamic programming problem 
because the minimization operation takes into account the randomness of ߙ.	Hence, we 
define the related transition rates λ୧୨ from modes i to j, as follows: 

probሾߙሺݐ ൅ ሻݐߜ ൌ ሻݐሺߙ|݅ ൌ ݆ሿ ൌ λijݐߜ	,							∀			i, j, i ് j																																ሺܣ. 1ሻ 

The value function ܸሺߙ, ,ݔ ݊ሻ, defined in equations (10), denotes the value of the cost 
function (9) when the optimal control policy is applied. Regarding the principle of 
optimality, we can derive the optimality conditions of the problem; for example, let us 
assume we know the best possible trajectory during the time interval ሾݐ,∞ሿ. However, we 
know nothing about the problem during the interval ሾ0, ,ሿ. If ܸሺ൉ݐ  ሻ denotes a cost-to-goݐ
function at time ݐ, then we can break up equation (10) as follows: 
 
ܸሺߙሺ0ሻ, ,ሺ0ሻݔ ݊ሺ0ሻ, 0ሻ ൌ  

݂݅݊
௨ሺ௧ሻ,௩ሺ௧ሻ
଴ஸ௧ஸ∞

ܧ	

ە
ۖ
۔

ۖ
ۓ
න݁ିఘ௧݃ሾሺߙሺݐሻ, ,ሻݐሺݔ ݊ሺݐሻ, ,ሻݐሺݑ ݐሻሿ݀ݐሺݒ

൅

௧

଴

	න ݁ିఘ௧݃ሾሺߙሺݐሻ, ,ሻݐሺݔ ݊ሺݐሻ, ,ሻݐሺݑ ݐሻሿ݀ݐሺݒ

∞

௧

ተ

ተ
,ሺ0ሻߙ ,ሺ0ሻݔ ݊ሺ0ሻ

ۙ
ۖ
ۘ

ۖ
ۗ

																ሺܣ. 2ሻ 

 
However, we know that the integral in the interval ሾݐ,∞ሿ		 is the value function 
ܸሾߙሺݐሻ, ,ሻݐሺݔ ݊ሺݐሻ,  :equation (A.2) becomes ,ߩ ሿ, so considering the discounted rateݐ
 
ܸሺߙሺ0ሻ, ,ሺ0ሻݔ ݊ሺ0ሻ, 0ሻ ൌ  

݂݅݊
௨ሺ௧ሻ,௩ሺ௧ሻ
଴ஸ௧ஸ∞

ܧ	

ە
ۖ
۔

ۖ
නۓ ݁ିఘ௧݃ሾሺߙሺݐሻ, ,ሻݐሺݔ ݊ሺݐሻ, ,ሻݐሺݑ ݐሻሿ݀ݐሺݒ

൅

௧

଴

	
1

1 ൅ ݐߜߩ
ܸሾߙሺݐሻ, ,ሻݐሺݔ ݊ሺݐሻ, ሿݐ

ተተߙሺ0ሻ, ,ሺ0ሻݔ ݊ሺ0ሻ

ۙ
ۖ
ۘ

ۖ
ۗ

																	ሺܣ. 3ሻ 

Based on this underlying pattern, if we perturb ݐ, we can focus on ܸሾߙሺݐሻ, ,ሻݐሺݔ ݊ሺݐሻ,  ሿ toݐ
get the one-step counterpart in the interval ሾݐ, ݐ ൅ ,ሿݐߜ  as indicated in the following 
expression: 
 
ܸሺߙሺݐሻ, ,ሻݐሺݔ ݊ሺݐሻ, ሻݐ ൌ  

݂݅݊
௨ሺ௦ሻ,௩ሺ௦ሻ
ݐߜ൅ݐ൑ݏ൑ݐ

ܧ	

ە
ۖ
۔

ۖ
ۓ න ݁ିఘ௧݃ሾሺߙሺݏሻ, ,ሻݏሺݔ ݊ሺݏሻ, ,ሻݏሺݑ ݏሻሿ݀ݏሺݒ

௧ାఋ௧

௧
൅

	
1

1 ൅ ݐߜߩ
ܸሾߙሺݐ ൅ ,ሻݐߜ ݐሺݔ ൅ ,ሻݐߜ ݊ሺݐ ൅ ,ሻݐߜ ݐ ൅ ሿݐߜ

ተ

ተ
,ሻݐሺߙ ,ሻݐሺݔ ݊ሺݐሻ

ۙ
ۖ
ۘ

ۖ
ۗ

												ሺܣ. 4ሻ 

 
where ݑሺݏሻ	is treated as constant in the interval ݐ ൑ ݏ ൑ ݐ ൅  Equations (A.4) can be .ݐߜ
simplified even more if we apply the conditional expectation operation		ܧ෩ 		(i.e., for any 
function ܪሺߙሻ, ෩ܧ	 ݐሺߙ൫ܪ	 ൅ ሻ൯ݐߜ ൌ ݐሺߙ൫ܪ൛ܧ ൅ ሻൟݐሺߙሻ൯หݐߜ ). Thus, the expectation ෩ܧ	  leads 
to: 
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ܸሺߙሺݐሻ, ,ሻݐሺݔ ݊ሺݐሻ, ሻݐ ൌ  

݂݅݊
௨ሺ௦ሻ,௩ሺ௦ሻ
௧ஸ௦ஸ௧ାఋ௧

෨ܧ 	ቐ

݃ሾሺߙሺݐሻ, ,ሻݐሺݔ ݊ሺݐሻ, ,ሻݐሺݑ ݐߜሻሿݐሺݒ
൅

ଵ

ଵାఘఋ௧
ܸሾߙሺݐ ൅ ,ሻݐߜ ݐሺݔ ൅ ,ሻݐߜ ݊ሺݐ ൅ ,ሻݐߜ ݐ ൅ ሿݐߜ

ቑ ൅ .ܣሻ               ሺݐߜሺ݋ 5ሻ  

Then for small ݐߜ and after some manipulations, we have: 

,ሻݐሺߙሺܸߩ ,ሻݐሺݔ ݊ሺݐሻ, ሻݐ ൌ 

݂݅݊
௨ሺ௧ሻ,௩ሺ௧ሻ

෨ܧ 	ቐ

݃ሾሺߙሺݐሻ, ,ሻݐሺݔ ݊ሺݐሻ, ,ሻݐሺݑ ݐߜሻሿݐሺݒ
൅

௏ሾఈሺ௧ାఋ௧ሻ,௫ሺ௧ାఋ௧ሻ,௡ሺ௧ାఋ௧ሻ,௧ାఋ௧ሿି௏ሾఈሺ௧ሻ,௫ሺ௧ሻ,௡ሺ௧ሻ,௧ሿ

ఋ௧

ቑ ൅ .ܣሺ																						ሻݐߜሺ݋ 6ሻ   

 
The second term inside the expectation operator ܧ෨  refers to the derivate of ܸሺߙ, ,ݔ ݊ሻ. If the 
value function is differentiable, then we can apply the full derivative. Also, we can 
expand the expectation operation ܧ෨ , (i.e., using the expansion 	ܧ෩ ݐሺߙ൫ܪ	 ൅ ሻ൯ݐߜ 	ൌ ሻ൯ݐሺߙ൫ܪ		 ൅
∑ ሺ݆ሻ௝ܪ ݐߜ௝ఈሺ୲ሻߣ ൅                         :ሻ, and so we haveݐߜሺ݋	
 
,ሻݐሺߙሺܸߩ ,ሻݐሺݔ ݊ሺݐሻ, ሻ	ݐ ൌ																																																																																																								 

݂݅݊
௨ሺ௧ሻ,௩ሺ௧ሻ

	൞

݃ሾሺߙሺݐሻ, ,ሻݐሺݔ ݊ሺݐሻ, ,ሻݐሺݑ 	ݐߜሻሿݐሺݒ ൅
డ௏

డ௫
ሾߙሺݐሻ, ,ሻݐሺݔ ݊ሺݐሻ, ሻݐሺݔߜሿݐ ൅

డ௏

డ௧
ሾߙሺݐሻ, ,ሻݐሺݔ ݊ሺݐሻ, ݐߜሿݐ

൅∑ ܸሾߙ′, ,ሻݐሺݔ ݊ሺݐሻ, ′ఈݐߜఈ′ఈሺ୲ሻߣሿݐ

ൢ ൅     ሻ                    (A.7)ݐߜሺ݋

 
We have eliminated the expectation symbol with the summation term. Now, if we replace 
ሻݐሺݔߜ ሻ byݐሺݔߜ ൌ move డ௏ ,ݐߜሻݐሶሺݔ

డ௧
	to the left, let ݐߜ approach zero, and do other manipulations, 

we get: 

,ߙሺܸߩ ,ݔ ݊, ሻݐ െ
߲ܸ
ݐ߲

ሾߙ, ,ݔ ݊, ሿݐ ൌ 

݂݅݊
௨ሺ௧ሻ,௩ሺ௧ሻ

	ቄ݃ሾߙ, ,ݔ ݊, ,ݑ ሿݒ 	൅
డ௏

డ௫
ሾߙ, ,ݔ ݊, ሶݔሿݐ ൅ ∑ ܸሾߙ′, ,ݔ ݊, ′ሿఈݐ  ఈ′ఈቅ                    (A.8)ߣ

We observe that none of the functions ݃ሺ∙ሻ  and ݔሶሺ∙ሻ  are functions of ݐ	 explicitly. 
Furthermore, since the time horizon is infinite and a steady-state distribution exists for ߙ, 
equation (A.8) is independent of ݐ. Based on this, and replacing the summation term by 
the generator Qሺ൉ሻ ൌ ൛λαఈ′ሺ൉ሻൟ, equations (A.8) can be further simplified to: 

,ߙሺܸߩ ,ݔ ݊ሻ ൌ ݂݅݊
ሺ௨,௩ሻ	∈		௰ሺఈሻ

൜݃ሾߙ, ,ݔ ݊, ,ݑ ሿݒ ൅
߲ܸ
ݔ߲

ሾߙ, ,ݔ ݊ሿݔሶ 	൅ ܳሺ∙ሻܸሾߙ, ,ݔ ߮ሺߦ, ݊ሻሿሺߙሻൠ																					ሺA. 9ሻ 

These are the fundamental manufacturing system control equations called           
Hamilton-Jacobi-Bellman (HJB) equations, and they are important because they convert 
the minimization problem, defined over an extended time interval, into a minimization 
problem at a single time instant. HJB equations serve us to determine the optimal control 
policy, which in this case, is a real feedback law. Since the problem is stochastic, it 
means that it is specified only when ሺߙ, ,ݔ ݊ሻ are determined. Further details about how 
HJB equations are obtained can be consulted in Rishel (1975) and Gershwin (2002). 
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