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Stochastic optimal control of manufacturing systems under 
production-dependent failure rates 

 
Abstract: A production system consisting of two parallel machines with production-dependent 
failure rates is investigated in this paper. The machines produce one type of final product and 
unmet demand is backlogged. The objective of the system is to find a productivity policy for both 
machines that will minimize the inventory and shortage costs over an infinite horizon. The failure 
rate of the main machine depends on its productivity, while the failure rate of the second machine 
is constant. In the proposed model, the main machine is characterized by a higher productivity. 
This paper proposes a stochastic dynamic programming formulation of the problem and derives 
the optimal policies numerically. A numerical example is included and sensitivity analyses with 
respect to the system parameters are examined to illustrate the importance and effectiveness of 
the proposed methodology. 
 
Keywords: Production planning; Stochastic dynamic programming; Numerical methods. 
 

1. Introduction 
 
The number of scientific publications covering failure-prone manufacturing systems has been growing 
steadily as a result of the intensive search for increased productivity and better customer service. A 
complete analytical solution was given in Akella and Kumar (1986), for a manufacturing system 
characterized by a homogeneous Markov process. The authors showed that the hedging point policy is 
the optimal control policy for minimizing discounted cost. In such a policy, the machine operates at a 
maximal rate until the inventory hits a safety stock level. If the current inventory level exceeds this 
level, no production should be carried out, but if it is equal to this level, then production should be just 
enough to meet demand. For a single machine, single part-type system, the expression of the optimal 
safety stock level was derived by Akella and Kumar (1986). This basic result has been extended in 
several ways over the years, with most such extensions relating to the Markovian case (see Tan and 
Gershwin (2004), Dong-Ping (2009), etc.). Only a few papers have examined semi-Markov processes 
(see Hu and Xiang (1995); Dehayem et al. (2011); Kazaz and Sloan (2013) etc.). In the Markovian 
case, however, a frequent assumption is that the underlying Markov process is homogeneous. The 
assumption in the semi-Markov processes is that the system deteriorates with age and number of 
failures. While these are reasonable assumptions, which in some cases provide simple and appealing 
mathematical solutions, the authors did not address the question of what happens if the machine is used 
to its maximum production capacity for a long period. The problem becomes much more pertinent if 
the failure rate depends on the productivity. In Rishel (1991), it was proven that the hedging point 
policy remains optimal if and only if the dependence of the failure rate on productivity is quadratic. 
 
Similarly, one of the most important achievements of the research of Hu et al. (1994) was the 
investigation of the necessary and sufficient conditions for the optimality of the hedging point policy 
for a single machine, single part-type problem, when the failure rate of the machine is a function of 
productivity. They showed that the hedging point policies are only optimal under linear failure rate 
functions. As per their discussion, numerical results in the general case suggest that as the inventory 
level approaches a hedging level, it may be beneficial to decrease productivity in order to realize gains 
in reliability. This conjecture was confirmed by the numerical results reported in Martinelli (2007), 
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where the author considered a long average cost function and a machine characterized by two failure 
rates: one for low and one for high productivities. Martinelli (2010) generalizes the problem of 
Martinelli (2007) by considering one machine with different failure rates: more specifically, the failure 
rate is assumed to depend on productivity, through an increasing, piecewise constant function. Dahane 
et al (2012) studied the problem of dependence between production and failure rates in the context of a 
multi-product manufacturing system. The system is analysed in discrete time and the results provided 
an answer about how to produce and what to produce over a finite horizon. The authors considered a 
manufacturing system consisting of a single randomly failing and repairable machine producing two 
products. A method for integrating load distribution decisions and production planning in the context of 
multi-state systems was presented by Nourelfath and Yalaoui (2012). The authors considered the load 
versus failure rate relationship while optimizing planning of production systems. Their integrated 
objective was to minimize the sum of capacity change costs, unused capacity costs, setup costs, holding 
costs, backorder costs, and production costs over a finite horizon. 
 
A stochastic deteriorating production system consisting of two parallel machines with the productivity-
dependent failure rates of the main machine is investigated in this paper. The stochastic nature of the 
system is due to machines that are subject to a non-homogeneous Markov process resulting from the 
dependence of failure rates on the production rate (productivity). The machines produce a single part 
type. Whenever a breakdown occurs, a corrective maintenance is performed. A repair action renews the 
machines. Our objective is to find the productivities of both machines such as to minimize the 
inventory and the shortage costs over an infinite horizon. To solve the optimization problem, we 
propose a stochastic dynamic programming formulation and derive the optimal production policies 
numerically. Numerical examples are included and sensitivity analyses with respect to the system 
parameters are also examined to illustrate the significance and effectiveness of the proposed 
methodology. As an extension, we apply this methodology to discuss the optimal productivities of 
manufacturing systems consisting of two machines with five failure rates depending on the productivity 
of the main machine. 
 
This work distinguishes itself from the literature in three ways. First, the paper extends the work of 
Liberopoulos and Caramanis (1994), Martinelli (2010) and Dahane et al (2012) to manufacturing 
systems consisting of more than one machine subject to a non-homogeneous Markov process with 
productivity-dependent failure rates. We also extend the work of Dahane et al. (2012) and, Nourelfath 
and Yalaoui (2012) to the production planning over an infinite horizon. Secondly, the case of 
manufacturing systems consisting of two machines with multiple failure rates is discussed. Lastly, we 
study the possible industrial applications of the formulation and the approaches used.  
 
The rest of this paper is broken down as follows. In Section 2, we present the industrial context of the 
problem under study. Section 3 covers notations and assumptions used in this research, and presents the 
problem statement. In Section 4, numerical results and sensitivity analyses are presented. Section 5 
examines an extension to the case of multiple failure rates. Discussions and policies implementation are 
presented in Section 6, and the paper is finally concluded in Section 7. 
 
2. Industrial context 
 
The formulation, the approaches, and the numerical procedures used in this paper could be applied to 
many industries in which machines can be subjected to random failures and their production rates can 
also be controlled. The phenomenon has been experienced in machinery and mechanical assemblies, 
including automobile, aircraft engine and machine tools, and paper manufacturing plants. For example, 
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in the metallic parts machining industries, where basic turning lathes and computer numerically 
controlled (CNC) lathes are used, the reliability of the machine-tools will depend on how they are used 
– the type of workpieces, cutting tools, process parameters selected. 
 
The most basic turning lathe is the engine lathe, which is used for single, prototype, and low-quantity 
parts. The major lathe used in production today is the CNC lathe. Such lathes can produce a variety of 
parts requiring surfacing, turning, boring, grooving, drilling, threading, and chamfering in single or 
combined motions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Schematic representation of machining costs and productivity as a function of the cutting speed 
(adapted from Groover, 2007) 
 
Any motion that can be expressed mathematically can be programmed into the lathe’s computer 
control. CNC lathes machining provide parts characterized by great precision and low variability. It 
allows the machining of mechanical parts at high cutting speeds, which improves the productivity and 
the part surface finish. However, high speed machining (HSM) has some disadvantages: For instance 
higher acceleration and deceleration rates require precise forecasting and highly capable controllers. As 
well, constant spindle starting and stopping results in faster wear of guide ways, ball screws and spindle 
bearings, leading to higher maintenance costs. HSM also requires specific process knowledge, 
programming equipment and interfaces for the fast data transfer needed. Finding suitably trained staff 
can be difficult, and HSM can involve a considerable “trial and error” period. Good work and process 
planning is necessary, along with significant safety precautions and safety enclosing (bullet-proof 
covers). Tools, adapters and screws need to be checked regularly for fatigue cracks. Only tools with 
posted maximum spindle speeds can be used. 
 
The dependency of the machining cost and productivity (parts per hour) as a function of the cutting 
speed are presented in Fig. 1. Examining Fig. 1, we see that to minimize production costs and take into 
account the reliability of the CNC lathe, it would be advantageous to reduce the machining speed from 
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its maximal productivity value to its economical value (see zone E).The machining costs are broken 
down into:  

• Non-cutting costs (loading, unloading, assembly, rapid movements of approach, return to the 
table). These costs are independent of the cutting parameters. 

• Tool costs (purchasing price, tool holders, tool changing costs, resharpening costs). When 
machining at higher speeds, tools wear out quickly, leading to short tool life and frequent tool 
change. 

• Cutting costs (real metal removal cost). These decrease when the speed increases. 

The total machining costs, which are at their lowest at the speed called the economical speed, represent 
the sum of all tool costs, cutting costs and non-cutting costs. Similarly, the productivity varies with the 
cutting speed and is at a maximum at the speed called the maximum productivity speed. Two important 
observations should be made here. First, the cost increase is due mainly to tool costs related to machine 
maintenance and repairs resulting from tool deterioration and operator mistakes induced by insufficient 
training. Secondly, in the shaded area, the total machining cost is a growing function of productivity. 
At the level of production optimization, details such as the machine speed cannot be taken into account, 
but the described phenomena can be addressed by considering the machine failure rate as dependent on 
the machine’s productivity. Below, we formulate an optimization model and develop appropriate 
techniques for its solution. 
 
3. Problem statement and optimality conditions  
 
Before delving into the problem statement, we first present the notations and assumptions used 
throughout this article. 
 
3.1 Notations 
 
The model under consideration is based on the following notations: 
 

1u :  productivity of the main machine 1M  

2u :  productivity of the second machine 2M  

1maxu :  maximal productivity of 1M  
U : economical productivity (in terms of machine’s reliability) of 1M  

2maxu :  maximal productivity of 2M  
x:  stock level 
d :  customer demand rate 
ξ :  stochastic process (manufacturing system) 
c + :  inventory cost 
c − :  backlog cost 
αβλ :  transition rate from mode α  to mode β   

Q :  transition rate matrix 
π :  vector of limiting probabilities 

( )g ⋅ :  instantaneous cost function 
( )J ⋅ :  total cost 
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( )ν ⋅ :  value function 
ρ :      discount rate 
n :      number of failure rates 
 

 
3.2 Assumptions 

 
This section presents the assumptions used throughout this paper. 
 
(1) For the considered two-machine single-product environment, the machines are subject to random 

breakdowns and repairs. The failure rate of one machine depends on its productivity. This 
assumption represents the original characteristic of our approach. Other works consider one 
machine with a productivity-dependent failure rate or the system that deteriorates with age and 
number of failures. 

(2) The shortage cost depends on parts produced for backlog (average value ($/unit)). 
(3) The inventory cost depends on parts produced for positive inventory (average value ($/unit)). 

Assumptions 2 and 3 are common in inventory management. 
(4) The productivity of the main machine is higher than that of the second machine. 
(5) The second machine alone cannot satisfy customer demand. 

This machine is a supporting machine. The main machine is unable to satisfy customer demand 
with its economical productivity, which is why another machine (second machine) is called upon.  

 
3.3 Problem formulation 

 
As illustrated in Fig. 2, the manufacturing system studied consists of two parallel machines denoted as 

1M  and 2M , which produce a single part type. When the main machine works at a faster rate, it is 
more likely to fail. The mode of the machine iM  can be described by a stochastic process ( ),  1, 2i t iξ =  
with value in { }1,2iB = . Such a machine is available when it is operational ( ( ) 1i tξ = ) and unavailable 

when it is under repair ( ( ) 2i tξ = ). The transition diagram, which describes the dynamics of the 

considered manufacturing system, is presented in Fig. 3. We then have ( ) { }1,2,3,4t Bξ ∈ = . With αβλ  

denoting a jump rate of the system from state α  to state β , we can describe ( )tξ  statistically by the 

following state probabilities:  

( ) ( )[ ]
( ) ( )

( ) ( )
.  

1 .  
t t t

t t if

t t if
αβ

αβ

ξ δ β ξ α
λ δ ο δ α β

λ δ ο δ α β
Ρ + = = =

+ ≠

+ + =

⎧⎪
⎨
⎪⎩               

(1) 

where 0   ( )αβλ α β≥ ≠ , αα αβ
β α

λ λ
≠

= −∑  and 
( )

0
lim 0

t

t
tδ

ο δ
δ→

=  for all , Bα β ∈ . 

 
The operational mode of the manufacturing system can be described by the random vector 
( ) ( ) ( )1 2( , )t t tξ ξ ξ= . Given that the dynamics of each machine is described by a 2-state stochastic 

process, the set of possible values of the process ( )tξ  can be determined from the values of ( )1 tξ  and 

( )2 tξ  as illustrated in Table 1, with: 
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- Mode 1: 1M  and  2M  are operational 
- Mode 2: 1M  is operational and 2M  is under repair 
- Mode 3: 1M  is under repair and 2M  is operational 
- Mode 4: 1M  and 2M  are under repair 
 
Table 1. Modes of a two-machine manufacturing system 

 
1( )tξ  1 1 2 2 Machine 1 Stochastic process 

2 ( )tξ  1 2 1 2 Machine 2 Stochastic process 

( )tξ  1 2 3 4 Manufacturing system Stochastic process 

 

 
 
 
 
 
 
 
 
 
 

Fig. 2: Structure of the production system 
 
The dynamics of the system is described by a discrete element, namely ( )tξ , and a continuous element 
( )x t . The discrete element represents the status of the machines and the continuous one represents that 

of the stock level. It can be positive for an inventory or negative for a backlog.  
 
We assume that the failure rate of 1M  depends on its productivity, and is defined by: 

( ]
[ ]

1 1max
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Fig. 3: States transition diagram of the considered system 
 
The continuous part of the system dynamics is described by the following differential equation: 

1 2 0
( ) ( ) ( ) ,  (0)dx t u t u t d x x

dt
= + − =                  

(3) 
where 0x

 
and d

 
are the given initial stock level and demand rate, respectively. 

 
The set of the feasible control policies Α , including 1( )u ⋅  and 2 ( )u ⋅ , is given by:  

( ) ( )( ) ( ) ( ){ }2
1 2 1 1max 2 2max, , 0 ,0u u u u u uΑ = ⋅ ⋅ ∈ℜ ≤ ⋅ ≤ ≤ ⋅ ≤

              (4) 
where 1( )u ⋅  and 2 ( )u ⋅  are known as control variables, and constitute the control policies of the problem 
under study. The maximal productivities of the main machine and the second machine are denoted by 

1maxu  and 2maxu , respectively. 
 
Let ( )g ⋅  be the cost rate defined as follows:  

1
12q
1
21q

1M

2
12q
2
21q

2M

12λ

21λ

24λ
42λ

34λ

43λ

31λ 13λ
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( , )g x c x c xα + + − −= +                            
(5) 
where constants c+  and c−  ($ per part per unit of time) are used to penalize inventory and backlog 
respectively, ( ) ( )max 0, , max , 0x x x x+ −= = − .  
 
The production planning problem considered in this paper involves the determination of the optimal 
control policies ( 1 ( )u t∗

 and 2( )u t∗ ) minimizing  the expected discounted cost ( )J ⋅  given by: 

( ) ( ) ( ){ }01 2 0
, , , ( , ) 0 , 0tJ x u u E e g x dt x xρα α ξ α

∞ −= = =∫                

(6) 
where ρ  is the discount rate. The value function of such a problem is defined as follows:  

( ) ( )
1 2

1 2( ( ), ( )) ( )
, inf , , ,  

u u
v x J x u u B

α
α α α

⋅ ⋅ ∈Α
= ∀ ∈

               
(7) 
 
The properties of the value function and the manner in which the Hamilton-Jacobi-Bellman (HJB) 
equations are obtained can be found in Kenné et al. (2003), with a constant failure rate. 
 
3.4 Optimality conditions 

 
Regarding the optimality principle, we can write the HJB equations as follows: 

1 2
1 2( , ) ( )

( , )( , ) min ( , ) ( , ) ( )
u u B

v xv x g x v x u u d xαβα β

αρ α α λ β
∈Α ∈

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

∂= + + + −
∂∑

                     (8)  

where ( , )v x
x
α∂
∂  

is the partial derivative of the value function ( , )v xα  

The optimal control policy ( ) ( )( )* *
1 2,u u⋅ ⋅ denotes a minimizer over Α  of the right hand of Eq. (8). This 

policy corresponds to the value function described by Eq. (7). When the value function is available, an 
optimal control policy can then be obtained by solving Eq. (8). However, an analytical solution of Eq. 
(8) is almost impossible to obtain. The numerical resolution of the HJB Eq. (8) represents a challenge 
which was considered insurmountable in the past. Boukas and Haurie (1990) showed that 
implementing Kushner’s method can solve such a problem in the context of production planning. In the 
Appendix, we present the numerical methods used to solve the proposed optimality conditions. In this 
research, the contribution to the optimality conditions lies in the fact that at modes 1 and 2, where 1M  
is operational, we developed modified HJB equations with additional equations due to the 
consideration of multiple failure rates. Hence, for the examples of two, three, five and nine failure rates 
(as in the numerical examples presented in sections 4 and 5), we obtained multiple HJB equations with 
four, six, ten and eighteen equations instead of two, three, five and nine as in the case of a 
manufacturing system without a productivity-dependent failure rate. The reader is referred to equations 
(A.2) and (A.3) for the case of two failure rates. The next section provides a numerical example to 
illustrate the structure of the control policies. 
 
4. Simulation and numerical example  
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Here, we illustrate the resolution of the model above with a numerical example. Sensitivity analyses 
with respect to the system parameters are also presented to illustrate the importance and effectiveness 
of the proposed methodology. 

 
4.1 Numerical results  
 
In this section, we present a numerical example for the manufacturing system presented in Section 3. A 
four-state Markov process with the modes in { }1,2,3, 4B =  describes the system capacity. The 
instantaneous cost is described by Eq. (5).  
 
The considered computation domain D  is given by:  

{ }: 20 40D x x= − ≤ ≤                 
(9) 
 
The limiting probabilities of modes 1, 2, 3 and 4 (i.e., 1 2 3, ,π π π  and 4π ) are computed as follows:  

4

1
( ) 0     and     1i

i
Qπ π

=
⋅ ⋅ = =∑                               

(10) 
where 1 2 3 4( , , , )π π π π π=  and ( )Q ⋅  is the corresponding 4 4×  transition rate matrix given by Eq. (2). 
 
Table 2. Parameters of numerical example 
 

c +  c −  h  U  
1maxu  2maxu d  1θ  2θ  2

12q  1
21q  2

21q  ρ  

1 50 3 0.75 1.2 0.65 1 0.03 0.02 0.04 0.1 0.2 0.03 

 
The condition for meeting customer demands, over an infinite horizon is given by:  

1 2 max 2 3 2 max( )U u U u dπ π π⋅ + + ⋅ + ⋅ >                         
(11) 
where ( 1 2,π π  and 3π ) constitute the limiting probability at the operational modes of the machines. Eq. 
(11) is also satisfied with 1maxu  because 1maxU u< . Table 2 summarizes the parameters of the numerical 
example for which the feasibility conditions given by Eq. (11) are satisfied. 
 
The productivities at mode 1 of machines 1M  and 2M  are presented in Figs. 4 and 5, respectively. 
Examining these figures, we can see that the threshold 1z  is low because both machines are 
operational. The results show that the productivities are set to zero for comfortable stock levels. At this 
point, there is no need to produce parts to ensure comfortable stock levels. According to the classical 
results as in Kenne et al. (2012) and references therein, the computational domain is expected to be 
divided into two stages, such as in Fig. 5. Our results show however that the computational domain of 
Fig. 4 is divided into three stages, which represents a specific finding of this paper. The optimal 
production control policy consists of one of the following rules for 1M : 
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1. Set the productivity of 1M  to its maximal value when the current stock level is under the first 
threshold value ( 1 4.0z = ); 

2. Reduce the productivity of 1M  to its economical value when the current stock level approaches the 
second threshold value ( 2 19.0z = ); 

3. Set the productivity of 1M  to zero when the current stock level is greater than the second threshold 
value. 

 

 
Fig. 4: Productivity of 1M  at mode 1 
 
The control policies obtained in Fig. 4 are of multi-hedging point policy form. According to these 
results, the optimal productivities for the two machines can be expressed as follows: 

1
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0       if  

u x z
u x U x z

x z
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⎪
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(12) 
where 1z  and 2z  are the first and the second threshold values of 1M , respectively. 

2
2max 2
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(13) 
where 2z  is the optimal threshold value at mode 1.  
 
The productivity of 1M  at mode 2 of the system is presented in Fig. 6. Unlike the case illustrated in 
Fig. 4, where the tendency was to use the maximal productivity of the main machine less, at mode 2, 
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the first threshold (
3 13.0z = ) is higher than 1z  in Fig. 4 because the machine works alone. However, 

the control policy is still a multi-hedging point policy, and is defined by:  

1

1max 3

3 4

4

  if  
( ,2)       if  z

0       if  

u x z
u x U x z

x z

⎧
⎪
⎨
⎪
⎩

<
= ≤ <

>

               

(14) 
where 3z  and 4z  are the first and second threshold values of 1M  at mode 2, respectively.  
 

 
Fig. 5: Productivity of 2M  at mode 1 
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Fig. 6: Productivity of 1M  at mode 2 

 
Fig. 7: Productivity of 2M  at mode 3 
 
The productivity of 2M  at mode 3 is plotted in Fig. 7. The results of this figure show that the threshold 
value ( 5 25z = ) is higher than the thresholds 2z  and 4z  because at mode 3, 1M  is under repair. The 
second machine must use its maximum productivity over a long period to avoid over-shortages. With 
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numerical methods, the results show 5 25z = . However in the industrial context, the system cannot 
exceed the value of 4 22z = . Hence, the threshold value 5z  will be ignored.  
 
In the manufacturing system consisting of two machines and one type of product, with a constant 
failure rate, the optimal control policy is characterized by two threshold values (Ouaret et al., 2013). 
The results obtained in this paper show that the optimal control policy is characterized by four different 
threshold parameters ( 1 2 3 4,z ,z  and z z ) due to the fact that the main machine degrades according to its 
productivity speed. This is a main finding of this paper.  
 
The next section analyzes the sensitivity of the policies obtained with respect to the various parameters 
of the model. Several experiments were conducted to ensure that the structure of the obtained policies 
is maintained under parameter variation, and therefore, can be used in practice. 
 
4.2 Sensitivity analyses  
 
A set of numerical examples were considered to measure the sensitivity of the control policies obtained 
and to illustrate the contribution of this paper. The sensitivity of the control policies is analyzed 
according to the variation of the backlog costs and the machine parameters. 
 
 
 
4.2.1 Sensitivity analysis with respect to backlog costs 
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b) Effect on the production rate of 1M  

  
c) Effect on the production rate of 2M  

Fig. 8: Sensitivity to the variation of backlog costs at mode 1 
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a) Effect on the threshold values 

 
b) Effect on the production rate of 1M  

Fig. 9: Sensitivity to the variation of backlog costs at mode 2 
 
The results presented in Figs. 8 and 9 show the behavior of the productivities of machines according to 
variations of backlog costs. Based on these results, we can see that low backlog cost values 
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( 0 25c−≤ ≤ ) do not affect the threshold 1z . This is logical because at mode 1, when both machines are 
operational, the system does not use the first machine enough to its maximal productivity in order to 
take account of its reliability. The thresholds 1 2 3, ,z z z  and 4z  increase as the backlog costs increase in 
order to avoid further backlog costs. Fig. 9 shows that the threshold values of 1M  at mode 2 ( 3z  and 

4z ) are higher than the thresholds at mode 1 ( 1z  and 2z ) because the second machine is under repair. 
We therefore need a lot of parts in stock to avoid further backlog costs. 
 
4.2.2 Sensitivity analysis with respect to machine parameters 
 
This section analyzes the sensitivity of the threshold values with the respect to the parameters of the 
two machines, as shown in Figs. 10 to 17. The results show that the variation of the parameter 2

12q  does 
not affect the thresholds 1z and 3z  . This adequately reflects the phenomenon of degradation of our 
system. The productivity of 1M  should be reduced to its economical value when closing to a 
comfortable stock level in order to ensure its reliability. We recall that 1z  and 3z  are the first hedging 
point policies of 1M  at mode 1 and mode 2, respectively. 
 
Let us now analyze the sensitivity of the thresholds according to each machine parameter. 

 
 

a. Varying 1θ  (failure rate of 1M  for ( ]1 1max,u U u∈ ) 

When 1θ  increases, 1z  remains constant, 3z  decreases, and 2z  and 4z  increase. 2M  will necessarily 
tend to be more commonly used at mode 1 (both machines are producing) and 1M  will be at its 
economical productivity level (

1u U= ) at mode 2 ( 1M  runs alone) in order to account for the reliability 
(the probability of failure at the maximum value is high). When 1θ  decreases, 1z  and 3z  increase 
because the probability of failure, for ( ]1 max,u U u∈ , is low. The other parameters of the control policy 
move as predicted, from a practical perspective (see Fig. 10). 
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Fig. 10: Sensitivity analysis with respect to failure rate of 1M  for ( ]1 1max,u U u∈  
 

b. Varying 2θ  (failure rate of 1M  for [ ]1 0,u U∈ ) 

When 2θ  increases, the thresholds 1z  and 3z  increase, while 2z  and 4z  remain constant. This means 
that we must limit the use of 1M  at its economical productivity level because doing so increases the 
second failure rate; the threshold 1z  remains constant, as do the other parameters of the control policy, 
when 2θ  decreases (Fig. 11). 
 

c. Varying 2
12q  (failure rate of 2M ) 

When 2
12q  decreases, the thresholds 2z  and 4z  decrease. This means that the system will stay at mode 1 

for a long time before transitioning to mode 2 because the probability of failure of the second machine 
decreases. As for 1z  and 3z , their values remain constant. As a result, 1M  will tend to be used to its 
maximal productivity in order to avoid backlogs. The thresholds 1 2 3, ,z z z  and 4z  remain constant when 

2
12q  increases (see Fig. 12). 
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Fig. 11: Sensitivity analysis with respect to failure rate of 1M  for [ ]1 0,u U∈  
 

d. Varying 1
21q  (repair rate of 1M ) 

When 1
21q  increases, the thresholds 1 2 3, ,z z z  and 4z  decrease in order to avoid over-stocking because the 

probability of repairing 1M  is high. There is a tendency to use 1M  and 2M  less when the repair rate of 
the main machine increases. If 1M  breaks down, it soon returns to the operational state. The parameters 
of the control policy move as predicted, from a practical perspective when 1

21q  decreases (Fig. 13). 
 

e. Varying 2
21q  (repair rate of 2M ) 

The parameters 1z  and 3z  remain constant when 2
21q  increases; when 2

21q  decreases, 1 2 3, ,z z z  and 4z  
increase in order to avoid backlogs because the repair time of 2M  is long. If this machine fails, it will 
later return to its operational mode (Fig. 14). 
 

f. Varying 1maxu  (maximal productivity of 1M ) 
The values of 1z  increases when 1maxu  increases. This inevitably increases the chances of 1M  being 
used to its maximal productivity at mode 1. At mode 2, where 2M  is under repair, 3z  decreases and 4z  
remains constant. The productivity of 1M  must be reduced to its economical value to take account of 
its reliability. When 1maxu  decreases, the threshold 1z  decreases and the other parameters remain 
constant. This means 1M  must be used less to its maximum productivity (Fig. 15).  
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Fig.12: Sensitivity analysis with respect to failure rate of 2M  

 
Fig. 13: Sensitivity analysis with respect to repair rate of 1M   
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Fig. 14: Sensitivity analysis with respect to repair rate of 2M   
 

 
Fig. 15: Sensitivity analysis with respect to maximal productivity of 1M  
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g. Varying U  (economical productivity of 1M ) 
The values of 1z  and 3z  increase and 2z  and 4z   remain constant when the economical productivity of 

1M  decreases. This must increase the likelihood of 1M  being used to its maximum productivity at 
mode 1 and mode 2. The parameters of the control policy move as predicted, from a practical 
perspective when U  decreases. See Fig. 16. 

 
Fig. 16: Sensitivity analysis with respect to economical productivity of 1M  
 

h. Varying 2maxu  (maximal productivity of 2M ) 
When 2maxu  increases, 1z  remains constant, and 2 3,z z  and 4z  decrease in order to avoid over-stocking. 
The parameters of the control policy move as predicted, from a practical perspective when 

2maxu decreases, in order to avoid over-shortages (Fig. 17). 
 
Through the observations drawn made from the sensitivity analysis, it clearly appears that the results 
obtained make sense, and confirm and validate the proposed approach. They show the usefulness of the 
proposed model, given that the parameters of the control policies move as predicted, from a practical 
perspective. The next section studies the case of production rate-dependent multiple failure rates. 
 
5. Extensions to the case of multiple failure rates  
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failure rates depending on the productivity of the main machine. These failure rates are given as 
follows: 

( ) ( ]

( ]1 1max

1 1 1

2 1 1 21
12 1

5 4if  ,

  if 
  if ,

...
  

q

u U u

u U
u U U

u

θ
θ

θ ∈

≤⎧
⎪ ∈⎪= ⎨
⎪
⎪⎩

               

(15) 
where 1 2 50 ...θ θ θ< < < <  and 1 2 3 4 5 1max0 U U U U U u< < < < < = . 
 
The failure rate in Eq. (15) has the general form considered in Liberopoulos and Caramanis (1994), 

( )1 1
12 1

1max

b

q
uu a

u
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

                       

(16) 
where a  and b  are non-negative constants. 
 

 
Fig. 17: Sensitivity analysis with respect to maximal productivity of 2M  
 
The results for 0.02a =  and different values of b  are plotted in Fig. 18. 
 
The curves plotted in Fig. 18 illustrate the impact of the machine’s productivity on its dynamics. The 
solid sections represent the feasible productivity values (values for which the condition to meet 
customer demand is satisfied) when both machines are operational. The dashed sections represent the 
unfeasible values. The concave curve is represented by 1b <  and the convex curve by 1b > . 
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For a single machine, single product manufacturing system, where the failure rate depends on the 
production rate, it was concluded that an optimal feedback policy control does not exist if 

,  1, 2,3,4,5nU d n< =  (see Liberopoulos and Caramanis (1994); Martinelli (2010)). For a 
manufacturing system consisting of two machines, with a single product, such as the one studied in this 
paper, we examine the case of the main machine’s productivity lower than the demand rate 

( 1

1max

0.9u
u

< ). Typical results for productivity with values of 0.4b =  and 3b =  are shown in Figs. 19 

and 20, respectively. The values used for 1

1max

, n
u U

u
 and nθ  are presented in Table 3. 

 
Fig. 18: Failure rate of the main machine 
 
Table 3. Parameter values 
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1max

u
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 0.3 0.5 0.7 0.9 1 

nU  0.36 0.60 0.84 1.08 1.2 

( 0.4)n bθ =  0.01236 0.01516 0.01734 0.01917 0.0200 

( 3)n bθ =  0.00054 0.0025 0.00686 0.01458 0.0200 
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Based on the results presented in Figs. 19 and 20, the productivity policy of 1M  defines three control 
rules at mode 1 (Figs. 19a and 20a) and four (Fig. 19b) or five (Fig. 20b) control rules at mode 2. More 
specifically, these rules state that: 

i) When the stock level is higher than the optimal threshold point, 1M  does not produce.  
ii) If the stock level is lower than the first threshold point ( 11 12 11 12, , ,y y z z ), 1M  should be set to its 

maximal productivity. Note that the requirement 1d u<  is not imposed for the machine 1M  
because the system has a supporting machine 2M  (both machines can satisfy the customer 
demand together). 

 

 
a) Mode 1      b) Mode 2 

Fig. 19: Productivity of 1M at mode 1 and mode 2, 0.4b =  
 
According to Fig. 19, the corresponding multiple threshold point policy has the structure of Eqs (17) 
and (18) for mode 1 and mode 2, respectively. 
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(17) 
where 11y  and 21y  are the first and second threshold values of 1M at mode 1, respectively. 
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(18) 
where 2, 1,2,3,4iy i =  is the ith threshold value of 1M at mode 2. 
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The optimal policy of Fig. 20 is defined by Eqs. (19) and (20) for mode 1 and mode 2, respectively. 
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(19) 
where 11z  and 21z  are the first and second threshold values of 1M at mode 1, respectively. 
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(20) 
where 2 , 1,2,3,4,5iz i =  is the ith threshold value of 1M at mode 2. 
 

 
a) Mode 1        b) Mode 2 

Fig. 20: Productivity of 1M  at mode 1 and mode 2, 3b =  
 
It clearly appears that at mode 2 ( 1M  produces alone), when 1 3 0.84u U= =  (meaning that the machine 
begins to produce at a rate lower than the demand rate), the system switches directly from 3 0.84U =  to 
its minimal value 1 0.36U =  (see Zone T in Fig. 19b). This is logical because the system has to avoid 
shortages and ensure its reliability at the same time.  
 
5.2 Sensitivity analyses  
 
This section explains the usefulness of the obtained control policy. We perform a sensitivity analysis 
according to the variation of the parameters " "a , " "b  and " "n  to illustrate the contribution of the 
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proposed approach, and also to confirm the structure of the control policy. The productivity is 
presented in Figs. 21 to 24.  
 
The effect of the variation of the parameter a  on the productivity policy is illustrated in Fig. 21. The 
parameter takes three values: 0.01,  0.02 and 0.05.a =  When the parameter is low, 0.01a = , it means 
the system experiences fewer failures. Thus, the threshold value is low. If the parameter is set 
to 0.05a = , the system needs more protection against failures, leading to an even greater increase in the 
threshold value. It is worth mentioning that when a  increases, the probability of failure of the system 
increases and the reliability of the machine is reduced. This necessarily leads to a high likelihood of 
increasing the threshold level in order to avoid shortages. 
 

 
a) Concave case " 0.4"b =     b) Convex case" 2"b =  

Fig. 21: Sensitivity to the variation of " "a  
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a) Mode 1        b) Mode 2 
Fig. 22: Sensitivity to the variation of " "b ; Concave case 
 
From the results obtained in Figs. 22 and 23, we notice that when parameter b  increases, the threshold 
values increase. If parameter b  increases, for the same productivity value, the failure rate decreases. 
This means that the system produces for a long time before failure. The variation of parameter b  does 
not affect the second threshold value at mode 1.  
 
At mode 2, when b  decreases ( 0.1b =  and 0.25b = ), zone T increases and is the same (see Fig. 22b). 
Decreasing b in the concave case means that the failure rate increases. The system must store to avoid 
shortages. 
 

 
a) Mode 1        b) Mode 2 

Fig. 23: Sensitivity to the variation of " "b ; Convex case 
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a) Mode 1        b) Mode 2 

Fig. 24: Sensitivity to the variation of " "n  
 
The results of Fig. 23 show that in the convex case, decreasing parameter b  does not affect the 
productivity trend at mode 1. However, when b  increases ( 5 and b = 7b = ), Fig. 23a shows three 
stages instead of two stages, as in the basic case ( 3b = ). It is clear that higher values of b  reduce the 
deterioration of the system. The system can produce to its intermediate speeds before reaching the 
minimal productivity.  
 
The results of Fig. 24a show that the variation of parameter n  does not affect the threshold values at 
mode 1. At mode 2 (Fig. 24b), the number of stages does not change when n  increases. For example, 
when 5n > , we have five threshold parameters, such  as in the case of five failure rates. However, 
when the number of failures decreases, the number of stages decreases. The next section presents the 
discussions and how to implement the obtained control policies. 
 
 
6. Discussions and policies implementation 
 
The results of Figs. 4 ( 1M  at mode 1) and 6 ( 1M  at mode 2) confirm the possible practical suggestion 
based on the analysis of Fig. 1. The results suggest that to obtain gains in availability of the main 
machine and to reduce the total machining cost incurred, it may be beneficial to decrease the 
productivity speed from the maximal value to the economical value when the inventory level 
approaches the maximal threshold values.  
 
In the sensitivity analysis, we observe that the threshold values increase as the backlog costs increase 
(Figs. 8 and 9). This seems natural in order to avoid further backlog costs. Figs. 10 to 17 show that the 
parameters of the control policy move as predicted, from a practical perspective, when the machine 
parameters change. 
 

-20 -10 0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

1.2

Stock level

Pr
od

uc
tiv

ity

 

 

-20 -10 0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

1.2

Stock level

Pr
od

uc
tiv

ity

 

 

n = 3

n = 5

n = 6

n = 9
n = 3

n = 5

n = 6

n = 9



30 
 

For the manufacturing system considered, the optimal control policies are characterized by four 
different threshold parameters ( 1 2 3 4,z ,z  and z z ) for two failure rates of 1M , which constitute a main 
finding of this paper. For n  different failure rates of the main machine, the control policies will depend 
on more than n  different threshold parameters. In Section 5, the case of five failure rates was studied. 
The most important observation from the results is that the optimal policy exists and is still equivalent 
to the multiple threshold policy. In the concave case, the structure of the productivity policy is the 
multiple hedging point policy because the system consists of two machines. The effect of the second 
machine reduces the concavity of the curve. Therefore, the concave curve is close to linear ( 1b = ), or 
is nearly convex. At mode 2, where 2M  is under repair, we have multiple thresholds in both cases. 
With two machines, even if one machine fails, the system knows that it exists and will return to the 
operational state in a relatively short time. 
 
At mode 1, where both machines produce, Figs. 19a and 20a show that the optimal control policy of the 
main machine is characterized by two threshold parameters, such as in the system described in Section 
4 with two failure rates. In the case of five failure rates, the system prefers to skip the intermediate 
productivities of the main machine and to produce directly to the minimal value ( 1 0.36U = ) over a 
long period. It can then use the supporting machine to fill the customer demand. This is logical because 
the probability of failure of the main machine increases with high productivity, while the failure rate of 
the supporting machine is constant. However, at mode 2, the optimal policy is characterized by four 
(concave case) or five (convex case) threshold parameters (Figs. 19b and 20b). The number of stages in 
the concave case is less than the number of stages in the convex case because from 3 0.84U =  to 

2 0.60U = , Table 3 shows that the differences between the failure rates are low. In contrast, this 
difference is higher in the convex case. The system must rapidly reduce the productivity of the machine 
to account for its reliability. Hence, the system passes through 2 0.60U =  before reaching 1 0.36U =  
(see Fig. 20b). Another remark regarding Fig. 20b is that 52 4= 22  z z= . The threshold parameter is the 
same with five failures. This means that to achieve gains in availability of the main machine and to 
reduce the total machining costs incurred, the system does several speed jumps before reaching the 
optimal stock level. 
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Fig. 25: Illustration of the production policy 
 
Through the sensitivity analysis conducted, Fig. 21 shows that the threshold values increase when the 
parameter a  increases. This necessarily leads to a sustained increase in the threshold level in order to 
avoid shortages. According to Figs. 22 and 23, the results show that the parameters of the control 
policy move as predicted, from a practical perspective, when parameter b  changes. Unlike in the 
concave case, where Fig. 22a shows two stages, as in the basic case, Fig. 23a shows three stages when 
b  increases. This is due to the fact that the failure rate decreases faster in the convex case than it does 
in the concave case. We should recall that the failure rate decreases when b  increases. The system can 
use its intermediate speeds before achieving minimal productivity. The results of Fig. 24a show that at 
mode 1 where both machines are operational, for gaining in availability of the main machine, the 
system maintains the same threshold values and uses the supporting machine to fill the customer 
demand. Increasing of parameter n  ( 5n > ) does not change the number of stages at mode 2 (see Fig. 
24b) because for several values of productivity comprised between 1 0.36U =  and 1max 1.2u = , the 
differences between values are too low. In this way, the system skips some intermediate values. If the 
value of 1maxu  increases, the number of threshold parameters will be increased as well. However, when 

3n = , there is three threshold parameters. The relevance of the sensitivity analysis is apparent, since it 
seems that our results are logical and consistent, and this enables us to confirm the structure of the 
control policies obtained. 
 
Fig. 25 illustrates the implementation of the control policy when the number of failure rates is 2n = . 
This illustration shows the actions that should be taken by the manager when both machines are 
producing (mode 1), and when the supporting is under repair (mode 2). Based on the diagram of Fig. 
25, we can see how the production speed of the main machine is set to different values depending on 
the both machine modes (functioning or failure) and the stock level. Thus, the obtained policies have a 
direct managerial implication, namely the manager can use obtained results to define the parameters of 
the manufacturing system in order to optimize the production process. 
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7. Conclusion 
 

The number of scientific publications in the field of deteriorated systems is growing steadily, reflecting 
the increasing importance of this subject. However, the reported works are mostly based on systems 
which deteriorate with the age and the number of failures. This paper investigates the problem of 
minimizing a cost function which penalizes both the presence of waiting customers and the inventory 
surplus. The manufacturing system studied comprises parallel machines subject to a non-homogeneous 
Markov process, with the failure rate depending on the productivity. The machines produce a single 
part type. We developed the stochastic optimization model of the considered problem with two 
decision variables (productivities of the main and the supporting machines) and one state variable 
(stock level of final products). From the numerical study, it has been found that for two parallel 
machines systems, when the failure rate of the main machine depends on its productivity, the hedging 
point policies are optimal within a four-threshold feedback policy, and the reliability of the machines is 
enhanced. The results also show that to reduce the total machining cost, it may be beneficial to 
decrease the productivity of the main machine from its maximal value to its economical value when the 
inventory level approaches the threshold value. We illustrated and validated the proposed approach 
using a numerical example and a sensitivity analysis. We have studied the case of manufacturing 
systems involving multiple failure rates, and the results obtained are very satisfactory and may be 
productive for future research to address the issue of multiple-part-type, random demand rates and 
multiple-machine (more than two machines) systems. 
 
 
Appendix. Numerical approach 

 
To solve the HJB equations, we used a numerical method based on the Kushner (1992) approach, such 
as in Gharbi et al. (2011). By approximating ( , )v xα  by a function ( , )hv xα  and the first-order partial 

derivative of the value function ( , )v x
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The system of Eq. (A.1) can be interpreted as the infinite horizon dynamic programming equation of a 
discrete-time, discrete-state decision process, as in Boukas and Haurie (1990). In this paper, we use the 
value iteration procedure to approximate the value function given by Eq. (A.1). Dehayem et al. (2011) 
and references therein provide details on such methods. 
 
The discrete dynamic programming Eq. (A.1) gives the following six equations: 
 
- mode 1 

( ]
[ ]

1 1 1max

2 1

( ,1)     if ,
                  with

( ,1)     if 0,
( ,1)

h

h
h V x u U u

V x u U
v x

⎧ ∈⎪
⎨

∈⎪⎩
=           

(A.2) 

(

{ }
{ } 1

1

1 1max

2
12

1

2
122 2max

1 21 2

1 2

,
1 2

0,

( ,1)

( ,1) 0( )( , ) ( ,2) ( ,3)
( ,1) 0

minh

h
h h

h

u U u
u u

V x

v x h Ind u u du u dg x q v x v xh v x h Ind u u d

u u d
qh

α θ

ρ θ
⎤
⎥⎦

⎡ ⎤
⎢ ⎥⎣ ⎦

∈

∈

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥
⎢ ⎛ ⎞ ⎥

⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

=

+ + − ≥ ++ −+ +
− + − <

+ −
+ + +

+

 

{ }
{ } 2

2

1

2
12

2

2
122 2max

1 21 2

1 2

0,
1 2

0,

( ,1)

( ,1) 0( )( , ) ( ,2) ( ,3)
( ,1) 0

minh

h
h h

h

u U

u u

V x

v x h Ind u u du u dg x q v x v xh v x h Ind u u d

u u d
qh

α θ

ρ θ
⎡ ⎤
⎢ ⎥
⎣ ⎦
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

∈

∈

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥

⎛ ⎞⎢ ⎥
⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

=

+ + − ≥ ++ −+ +
− + − <

+ −
+ + +

+
 

 
- mode 2 

( ]
[ ]

1 1 1max

2 1

( ,2)       if ,
             with

( ,2)       if 0,
( ,2)

h

h
h V x u U u

V x u U
v x

⎧ ∈⎪
⎨

∈⎪⎩
=                  

(A.3) 

{ } { }
1 1max

2
21 1

1

2
21 1

1
1 1

,
1

( ,2)

( )( , ) ( ,2) 0 ( ,2) 0 + ( ,1) ( ,4)
minh

h h h h

u U u
V x

u dg x v x h Ind u d v x h Ind u d q v x v xh
u d

qh

α θ

ρ θ
⎛ ⎤
⎜ ⎥
⎝ ⎦

∈

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦
⎢ ⎥⎛ ⎞⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

=

−+ + − ≥ + − − < +

−
+ + +

 

{ } { } 2

2

1

2
21

2

2
21

1
1 1

0,
1

( ,2)

( )( , ) ( ,2) 0 ( ,2) 0 + ( ,1) ( ,4)
minh

h h h h

u U
V x

u dg x v x h Ind u d v x h Ind u d q v x v xh
u d

qh

α θ

ρ θ
⎡ ⎤
⎢ ⎥
⎣ ⎦

∈

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦
⎢ ⎥⎛ ⎞⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

=

−+ + − ≥ + − − < +

−
+ + +

 

- mode 3 



34 
 

{ } { }
1 2
21 12

1 2
21 12

2 2max

2
2 2

0,
2

( )( , ) ( ,3) 0 ( ,3) 0

( ,1) ( ,4)
                       ( ,3) min

h h

h h

h

u u

u dg x v x h Ind u d v x h Ind u d
h

q v x q v x

v x
u d

q q
h

α

ρ
⎡ ⎤
⎢ ⎥⎣ ⎦

∈

⎡ ⎤⎡ ⎤⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎛ ⎞
⎢ ⎥⎜ ⎟

⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

−+ + − ≥ + − − < +

+

=
−

+ + +    

                 
     (A.4)  
 
- mode 4 

1 2
21 21

1 2
21 21

( , )+ ( ,2) ( ,3) ( ,4)

                       ( ,4) min

h h h

h

dg x q v x q v x v x h
h

v x
d q q
h

α

ρ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎛ ⎞⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠
⎢ ⎥⎣ ⎦

+ + −

=
+ + +           

(A.5) 
 
 
References 
 
Akella, R., Kumar, P.R., 1986. Optimal control of production rate in a failure prone manufacturing 

system. IEEE Transactions on Automatic Control 31, 116-126. 
Boukas, E.K., Haurie, A., 1990. Manufacturing flow control and preventing maintenance: a stochastic 

control approach. IEEE Transactions on Automatic Control 35, 1024-1031. 
Dahane, M., Rezg, N., Chelbi, A., 2012. Optimal production plan for a multi-products manufacturing system with 

production rate dependent failure rate. International Journal of Production Research 50(13), 3517-3528. 
Dehayem Nodem, F.I., Kenne, J.-P., Gharbi, A., 2011. Simultaneous control of production, 

repair/replacement and preventive maintenance of deteriorating manufacturing systems. International 
Journal of Production Economics 134(1), 271-282. 

Dong-Ping, S., 2009. Production and preventive maintenance control in a stochastic manufacturing 
system. International Journal of Production Economics 119(1), 101-111. 

Groover, M.P., 2007. Fundamentals of modern manufacturing: materials, processes, and systems. John 
Wiley & Sons, New York 

Gharbi, A., Hajji, A., Dhouib, K., 2011. Production rate control of an unreliable manufacturing cell 
with adjustable capacity. International Journal of Production Research 49 (21), 6539-6557. 

Gharbi, A., Kenne, J.P., Hajji, A., 2006. Operational level-based policies in production rate control of 
unreliable manufacturing systems with set-ups. International Journal of Production Research 44(3), 
545-567. 

Hu, J.-Q., Valiki, P., Yu, G.-X., 1994. Optimality of hedging point policicies in the production control 
of failure prone manufacturing systems. IEEE Transactions on Automatic Control 39(9), 1875-1880. 

Hu, J.-Q., Xiang, D., 1995. Monotonicity of optimal flow control for failure prone production systems. 
Journal Optimal Theory Appliction 86, 57-71. 



35 
 

Kazaz, B., Sloan, T.W., 2013. The impact of process deterioration on production and maintenance 
policies. European Journal of Operational Research 227(1), 88-100. 

Kenné, J.P., Boukas, E.K., Gharbi, A., 2003. Control of production and corrective maintenance rates in 
a multiple-machine, multiple-product manufacturing system. Mathematical and Computer 
Modelling 38(3-4), 351-365. 

Kenné, J.-P., Dejax, P., Gharbi, A., 2012. Production planning of a hybrid manufacturing-
remanufacturing system under uncertainty within a closed-loop supply chain. International Journal 
of Production Economics 135(1), 81-93. 

Kushner, H., 1992. Numerical Methods for Stochastic Control Problems in Continuous Time. 
Liberopoulos, G., Caramanis, M., 1994. Production control of manufacturing systems with production 

rate-dependent failure rates. IEEE Transactions on Automatic Control 39(4), 889-895. 
Martinelli, F., 2007. Optimality of a two-threshold feedback control for a manufacturing system with a 

production dependent failure rate. IEEE Transactions on Automatic Control 52(10), 1937-1942. 
Martinelli, F., 2010. Manufacturing systems with a production dependent failure rate: Structure of 

optimality. IEEE Transactions on Automatic Control 55(10), 2401-2406. 
Nourelfath, M., Yalaoui, F., 2012. Integrated load distribution and production planning in series-

parallel multi-state systems with failure rate depending on load. Reliability Engineering and System 
Safety 106, 138-145. 

Ouaret, S., Polotski, V., Kenné, J.P., Gharbi, A., 2013. Optimal Production Control of Hybrid 
Manufacturing/Remanufacturing Failure-Prone Systems under Diffusion-Type Demand. Applied 
Mathematics 4, 550-559. 

Rishel, R., 1975. Dynamic Programming and Minimum Principles for Systems with Jump Markov 
Disturbances, Journal on Control, 1975, 13(2), 338–371. 

Tan, B., Gershwin, S.B., 2004. Production and subcontracting strategies for manufacturers with limited 
capacity and volatile demand. Annals of Operations Research 125, 205-232. 
 
 

View publication statsView publication stats

https://www.researchgate.net/publication/259996775



