HEARING AIDS IN NOISY WORKPLACES

Chantal Laroche

Collaborators:

Tony Leroux, Christian Giguère Jérémie Voix, Véronique Vaillancourt, Martine Gendron, Pauline Fortier and Louise Paré

,

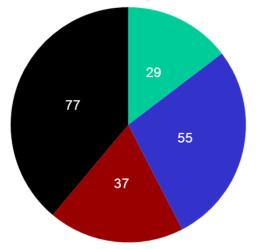
Audiology & Speech-Language Pathology Program, University of Ottawa, Ontario, Canada

Background

- ☐ Hearing aids (HA) frequently prescribed to improve hearing and communication in workers with noise-induced hearing loss
- ☐ Concerns for use in noisy work settings
 - Conditions for use or not in the workplace?
 - Safety (e.g. sound localization)
 - Overexposure leading to worsening of preexisting hearing loss
- ☐ Few studies specifically adressing these concerns

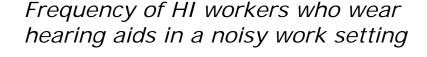
Objectives

- □ Document tools used by health professionals and the needs of workers
- □ Review effects of HA on speech perception in noise and sound localization
- ☐ Identify new technologies to enhance communication while limiting exposure

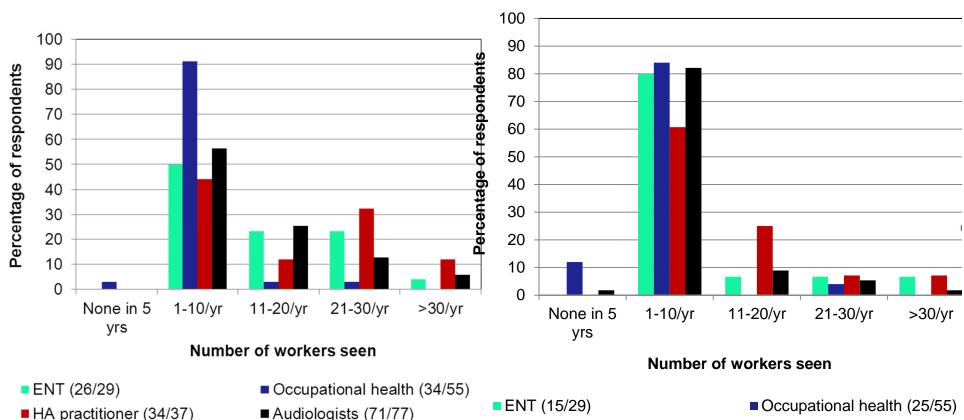

Methodology

- □ Survey
- ☐ Focus group discussions
- ☐ Literature reviews

Survey


- ☐ 198 Quebec health professionals completed the survey
 - ENT
 - Occupational health
 - Hearing aid practitioner
 - Audiologist

- 84% have seen hearing-impaired (HI) workers who consider wearing (or wonder about the possibility of wearing) HA in a noisy work setting
- □ 63% have seen HI workers who wear hearing aids in a noisy work setting


Survey

Frequency of HI workers who consider wearing (or wonder about the possibility of wearing) HA in a noisy work setting

Audiologist (56/77)

Ottawa

HA practitioner (28/37)

NHCA, Las Vegas (March 13-15, 2014)

Focus group discussions - HA practitioners

- ☐ Feel a limited coordination and communication amongst various concerned health professionals
 - Feel that there is a lack of unified and global vision
- ☐ Confident in HA output limiting to protect workers
 - Recognition that dB SPL ≠ dBA; eardrum ≠ soundfield (e.g. 85 dBA)
- ☐ Protection is #1 priority, as often repeated to workers
 - Informed workers know best whether or not HAs should be used in the workplace, or when they should be used during the work day
 - No reliance on noise reduction algorithms for protection
 - Venting; seal issues
- ☐ Limited knowledge but wish to be more informed about augmented protection and communication devices

Focus group discussions - Audiologists

- ☐ Largely concerned about safety and overexposure
- ☐ Lack of clear guidelines and protocols to assess risks
 - Unsure about what should be specifically included in protocols
- □ Lack of information about the workplace (work conditions, tasks, exposure levels, etc.)
- □ Can HA processing strategies (directional mics, noise reduction) reduce exposure to safe levels or limit exposure (MPO and other output limiting)?
- ☐ Those working in rehab do work station adaptation but only see a minor proportion of workers who could actually benefit from such services

Focus group discussions - Occupational health

- ☐ Mainly occupational health nurses
- ☐ Mostly tell workers not to wear HAs in noisy workplace
- ☐ Feel caught "between a rock and a hard place"
 - Workers advised differently = anxiety and broken trust
 - Affects worker-practioner relationship
 - Intervention might result in job termination (if concerns about safety and/or overexposure are identified)
- ☐ Different course of action for follow-up of HI workers
 - Personal hearing loss (with medical follow-up) vs noiseinduced hearing loss screened at work
 - Indemnisation by Quebec Workers Compensation Board (CSST)

Focus group discussions - Workers

- ☐ Issues with wearing HAs at work
 - Discomfort (physical and loudness), dust
 - Lack of training, information and clear directives regarding use, but often told not to wear HAs at work
- □ Notable safety concerns = hypervigilance
- ☐ Communication needs often hindered by HPDs and HL
 - Disciplinary action if communication breakdown
 - Misuse of HPDs to allow better communication
- ☐ Lack of information regarding other available technologies
- ☐ Relationship with health professionals
 - Limited knowledge of respective roles of each professional
 - Often no recollection of having been asked about their communication needs at work

Focus group discussions - Summary

- ☐ Lack of tools, guidelines and uniform protocols
 - In doubt, nonuse is often recommended = safety tradeoff?
 - Case-by-case approach; decision-tree?
- ☐ Current disparities for personal HL vs acquired NIHL
- ☐ Limited consideration of individual communication needs, workplace conditions and work tasks
- □ Poor communication and information exchange amongst various professionals involved no clear message
- ☐ Consider other solutions, including new technologies
- □ Need for greater worker access to rehabilitation services
 - Increase awareness regarding services
 - Train audiologists to offer more extensive rehabilitation services and/or to consider job tasks during intervention

Effects of hearing aids on speech perception and sound localization

- 1. Effect of noise reduction algorithms (NRA) on speech perception in noise
- □ No reported benefit in most studies; however, does not seem to negatively impact speech perception in noise
- ☐ Some studies show improved listening comfort
- ☐ Could reduce overall levels by about 4-7 dB compared to the same HA without NRA activated (Chung et al. 2009)

2. Effect of directional microphones on speech perception in noise

- □ Directional benefit (relative to omnidirectional)
 - Can reach 15 dB, but most studies report on average a 2-5 dB benefit
 - Depends on methodology (noise type, # of noise sources and configuration relative to speech, # of microphones, directional scheme, earmold type)
 - Additional advantage of about 2 dB for adaptive vs fixed directionality when noise is not diffuse
 - Open fittings reduce benefit relative to closed fittings
- ☐ Subjective appreciation
 - Preference for directionality when faced with a variety of different listening conditions and in the presence of noise vs omnidirectional for sound localization

3. Effect of hearing aids on sound localization

- □ Overall better unaided than aided (particularly for Front/Back), and bilateral better than unilateral
- ☐ Inconclusive effect of microphone position
- □ Directional mics can prove better than omnidirectional mics (depends on stimuli and directional properties)
- □ Difficult to draw conclusions relative to many processing strategies (compression, noise reduction, etc.):
 - Few studies specifically adressing a single parameter; complex interaction amongst various parameters; various methodologies used
- ☐ Acclimatization to HAs
 - Initial differences across processing strategies can disappear after acclimatization
 - Can also be beneficial to reduce F/B confusions

New technologies to enhance communication while limiting exposure

☐ Range of powered HPDs combining low-level amplication and protection at high levels

Characteristics of powered HPDs

- ☐ Passive attenuation: documented NRR
- □ Compression with gain up to 12-18 dB (depending on model) in relatively quiet conditions
- □ Output limiting with goal to keep levels below 82-85 dBA
- ☐ Range of options:
 - Communication: talk-through, two-way radio, bluetooth, mobile phone, external audio
 - Passive and/or variable attenuation
 - ANR for added LF attenuation
 - Volume control
 - Frequency shaping (limited)

Current limitations of powered HPDs for use with hearing-impaired workers

- □ Limited frequency shaping to accommodate for individual loss mostly flat and/or fixed gain curve
- ☐ Often no possibility of independent L/R gain adjustement (unilateral or asymmetric loss)
- ☐ Limited fitting options (programming) and no common platform
- ☐ Limited microphone options (directional)
- ☐ Limited standards for technical specifications (unlike HA industry) ANSI S12.42 (protection)

Future work

- ☐ Further integration of HA technologies into HPDs
- ☐ Better tools for the selection, fitting and verification of powered HPDs, especially for workers with hearing loss
- Better protocols involving the stakeholders (ENT, audiologist, HA practitioner, occupational health)

Individualized approach to meet safety, communication and protection needs

Acknowledgment

Work supported by IRSST (Institut de recherche Robert Sauvé en santé et en sécurité du travail du Québec)