Use of Passive Hearing Protectors and Adaptive Noise Reduction for Field Recording of Otoacoustic Emissions in Industrial Noise

Vincent Nadon¹

Collaborators: Annelies Bockstael², Dick Botteldooren², Jean-Marc Lina¹ and Jérémie Voix¹

¹École de technologie supérieure, Montreal, Quebec, Canada ²Ghent University, Ghent, Belgium

Hearing Health Monitoring Earplug

Objectives of my presentation:

- Inform hearing conservationists about available technologies for hearing health monitoring
- Motivate hearing conservationists to request manufacturers for such technologies
- Invite manufacturers to offer such advanced hearing protection devices

- Motivation
- Proposed approach
- Methodology
- Research problem
- Developed system
- Experimental validation
- Results
- Conclusions

Motivation

Despite all our efforts...

...hearing loss is still a major occupational issue

- Motivation
- Proposed approach
- Methodology
- Research problem
- Developed system
- Experimental validation
- Results
- Conclusions

Proposed Approach

What is the best way to prevent hearing loss?

<u>Traditional answer</u> Limiting noise exposure!

- a) Noise control at the source
- b) Administrative means (limit duration)
- c) Hearing protection

Our proposed approach

Use of a hearing protector that continuously monitor's the hearing health status

of each individual

- Motivation
- Proposed approach
- Methodology
- Research problem
- Developed system
- Experimental validation
- Results
- Conclusions

Methodology

Continuous monitoring of hearing health

OAE monitoring system will measure the worker's hearing health with distortion product OAEs (**DPOAE**s) daily.

Methodology

Use of a hearing protector that continuously monitor's the hearing health status of each individual

Measurement of distortion product otoacoustic emissions (DPOAEs) to quickly and objectively detect hearing damage.

Methodology

Hearing protection

- Motivation
- Proposed approach
- Methodology
- Research problem
- Developed system
- Experimental validation
- Results
- Conclusions

Research problem

Otoacoustic emissions are very sensitive to background noise.

Could adaptive noise reduction algorithm (ANR) reduce physiological and ambient noise enough to measure DPOAEs in a loud environment?

- Motivation
- Proposed approach
- Methodology
- Research problem
- Developed system
- Experimental validation
- Results
- Conclusions

- Motivation
- Proposed approach
- Methodology
- Research problem
- Developed system
- Experimental validation
- Results
- Conclusions

Validation

- Tests conducted
 - in double-wall audiometric booth;
 - on 8 otologicaly normal human subjects;
- Comparison with a clinical reference system;
 - in quiet conditions;
 - against Otodynamics ILO DPEchoport
- DPOAE Measurements
 - with white noise, condition [W70]
 - with industrial noise fragments (NOISEX database)
 - at 3 different sound pressure levels
 - 65dB(A), condition [165]
 - 70dB(A), condition [170]
 - 75dB(A), condition [175]

- Motivation
- Proposed approach
- Methodology
- Research problem
- Developed system
- Experimental validation
- Results
- Conclusions

Results in silence ≈ DP Signal (dB) clinic system proposed system norm 1.3 1.7 2.2 2.8 3.7 4.8 6.2 Frequency (kHz) 26

Results at 70dB(A)

Results

Conclusions

- A prototype of a hearing protector that continuously monitor's the hearing health status was successfully developed.
- The developed noise reduction algorithm can reduce physiological as well as ambient noise.
- Conducted tests have shown that it is possible to measure DPOAEs in environments with ambient noise levels up to 75dB(A).

Future work

- Real world validation on a larger group;
- Automatically warn the wearer when a DPOAE shift is detected;
- Integration of an in-ear dosimeter to link the noise exposure to the auditory fatigue and assess personal exposure limit;
- Warn the wearer when he has reached his personal exposure limit.

Contacts: Université du Québec, ÉTS, Montréal

Vincent.nadon@etsmtl.ca

Jeremie.voix@etsmtl.ca

Acknowledgments:

Natural Sciences and Engineering Research Council of Canada (NSERC)

RG PIN 402126-2012

