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Abstract 

Free form nonrigid parts are the inseparable part of today’s automotive and aerospace 

industries. These parts have different shapes in free state due to dimensional and 

geometric variations, gravity and residual strains. For the geometric inspection of such 

compliant parts, special inspection fixtures, in combination with coordinate measuring 

systems (CMM) and/or optical data acquisition devices (scanners) are used. A general 

procedure to eliminate the use of inspection fixtures was developed by our previous 

work. Here we apply a new method for robustifying the generalized numerical inspection 

fixture (GNIF). We filter out points causing incoherent geodesic distances. We 

demonstrate that our approach has several significant advantages one of which is the 

ability to handle parts with missing range data. The other advantage of presented method 

is the capacity to inspect the parts with large deformations. 

1. Introduction

Geometric inspection, geometric modeling, range data acquisition and analysis have 

developed as separate fields of engineering by different engineering and scientific 

communities. However, all these fields share a common scientific concept and lack of 

mutual connections cause the waste in synergy which could be exist. Computer aided 

inspection is one of these connection points, meanwhile nonrigid geometric inspection 

share a profound degree of understanding of all mentioned disciplines. As of today, the 

flexible workpiece has to be fixed or clamped during the measurement process in order to 

simulate the use state. To this end, special inspection fixture has to be designed and 

manufactured. On the other hand, some inspection stages cannot be fully automated with 

this conventional approach. As a result, the geometric inspection of flexible parts is still a 

time and money consuming process. For example, according to our industrial partner 
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(Bombardier Aerospace), some inspection set-up processes for nonrigid parts, demand 60 

to 75 hours of operations. This is why the inspection of all manufactured parts in a mass 

production line is not possible and only statistical control can be performed. Despite the 

tons of papers and researches on CAD, CAM and CAI (computer aided inspection) fields, 

inspection of flexible parts poses difficulties and significant cost to industries because 

they need special fixation devices. This also depicts the lack of knowledge and theoretical 

foundations around this special field. Our approach [1] was an effort to eliminate the use 

of special inspection fixtures in metrology of flexible parts. However that method had 

some drawbacks. Here we depict a clearer picture of it, with regard to the used 

algorithms. The other aim of this paper is to robustifying the mentioned algorithm. 

Before giving the details on proposed inspection methodology let’s have a definition for 

some of terms used in this paper. 

 

Definition 1. “Free-state variation is the distortion of a part after removal of forces 

applied during manufacture. This distortion is principally due to weight and flexibility of 

the part and the release of internal stress resulting from fabrication. A part of this kind 

(e.g. a part with a very thin wall in proportion to its diameter) is referred to as a nonrigid 

part.”  [para.  5.5 ASME Y14.5-2009]. 

Definition 2. Isometric deformation is a kind of deformations in which the geodesic 

distance between points preserved during deformation.  

Definition 3. Isometric embedding is a distance preserving mapping. 

 

2. Prior works 
2.1 Rigid and nonrigid registration 

Parallel to mechanical engineers but in different fields like Computer vision, Biomedical 

engineering and Pattern recognition, many researches have been done on rigid and 

nonrigid registration and  deformable surface comparison domains. Besl and McKay [2] 

developed the Iterative closest point (ICP) algorithm an iterative method for the rigid 

registration of 3D shapes. The ICP algorithm is one of the common techniques for 3D 

rigid surface registration. Suppose that we are given two shapes X and Y. The goal of ICP 

is to find the rigid transformation which brings two shapes as close as possible. The 
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closeness is measured by Hausdorff distance between two shapes. Many versions of ICP 

have been proposed. They differ from the selection and matching of points, to the 

minimization strategy [3, 4]. We refer the reader to [5] for an account and comparison 

between some ICP variants. In [6], Holden provides a comprehensive and quantitative 

review of spatial transformations models for nonrigid image registration.  

Multidimensional scaling (MDS) [7] which widely used and developed in human 

sciences like sociology and economy was a bridge to represent the intrinsic geometries of 

the shapes in a common metric space where they can be compared using rigid similarity 

algorithms. In [8] authors flattened the convoluted surfaces of the human brains in order 

to compare with each other and finally to study the functional architectures of the brain. 

For some, their work was a breakthrough in which surface geometry was translated into a 

plane. From the first generation of MDS until now, many variants of minimization 

algorithms for minimizing the stress function have been developed. One the most 

straightforward and successful among those was developed by de Leeuw [9]. In [10] 

authors presented the concept of Invariant Signature for surfaces. Their method used fast 

marching on triangulated domains followed by MDS technique. They transformed the 

problem of isometric-nonrigid surface matching into a matching of rigid surfaces 

problem. Using MDS, they embedded surfaces X and Y into some common embedding 

space Z called Canonical form and then measured their similarity using the Hausdorff 

distance. Their method is strongly based on the Kimmel and Sethian [11] method in 

computing the geodesic distance on triangular meshes. As the nature of their study was 

based on classification and pattern recognition, the accuracy of their presented method as 

a measure of similarity of metric spaces was not discussed. On the other hand the 

uncertainty of canonical forms as a result of geodesics by means of fast marching 

method, as well as the uncertainty related to the least square multidimensional scaling 

process should be investigated in depth. As in our special case the similarity measure 

plays a critical role, the accuracy of canonical forms in case of nonrigid inspection will be 

studied using real engineering case studies.   

In spite of canonical forms in which two metric space was mapped into some common 

space, Bronstein et al. [12] proposed a method which mapped two metric shape directly 

into each other. In spite of classic MDS here the distortion was a kind of similarity 

https://www.researchgate.net/publication/5582140_A_Review_of_Geometric_Transformations_for_Nonrigid_Body_Registration?el=1_x_8&enrichId=rgreq-a2124a4512f5d987e17c65005b04856c-XXX&enrichSource=Y292ZXJQYWdlOzI1NzgxMTMwMTtBUzoxMDMwMjI1NTQyNTUzNjFAMTQwMTU3Mzg5OTQ5Mw==
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measure tool. The distortion showed that in which degree two shapes are similar (or 

dissimilar). Other advantage of their method is the ability to measure the similarity of 

shapes in which there is no exact nodal correspondence between the sets of range data. 

The presented method was also suitable in case of partial matching. 

 
2.2 Point cloud segmentation 

In spite of world’s continuous phenomena, usually in engineering applications such as 

image processing and computer vision, we encounter with discrete data. In our 

application (i.e. geometric inspection) features of range data captured by optic scanners 

should be extracted. To this end, the edges play an important role as one of the feature 

detection tools. Various approaches have been proposed to detect edge points in 

measured range data. Chen and Schmitt [13] represented a method to calculate principal 

curvatures on triangulated surface. Yang and Lee [14] used surface curvature properties 

for detection of edge points. They investigated the behaviour of the surface curvature in a 

cross section of the surfaces: step edge, crease edge, edge formed by a concave/convex 

surface and a flat surface and finally edge formed by a concave and convex surface. If the 

range images are relatively noise-free then one can compute first the two principal 

curvatures, then the zero crossing and extrema of the largest principal curvature.  

Alrashdan et al. [15] proposed a hybrid segmentation approach. The edge based 

segmentation performed by Kohenon network to detect step and roof edge points. They 

used Laplacian filter and surface normal values at each point as an input of Kohenon 

network. Then they used mean and Gaussian curvatures in order to perform the region 

based segmentation. The next step was the integration of the two previous steps. 

 In [16, 17] and more recently [18] authors address the problem of object class 

segmentation of 3D range data using Markov random field. Although MRF based 

methods give the acceptable results in object recognition, for feature detection (i.e. 

finding the boundaries, sharp edges and corners which are the subject of similarity 

measuring process) this method should be combined by others. On the other hand, the 

accuracy of MRF based method, in metric space’s correspondence measure, should be 
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investigated in depth. In this paper, as one of the essential steps of our methodology, a 

novel method of contour detection will be presented.  

 

2.3 Geometric metrology of nonrigid parts 

3D geometric inspection of free-forms has become a nonseparable part of automotive 

and aerospace industries. In spite of the revolution in computer sciences and digital data 

acquisition devices such as laser scanners, nonrigid shape measurement is strongly based 

on using the fixation devices to simulate the state of use. Free-form nonrigid geometrical 

inspection has not well studied and state-of-the-art industries still use fixation devices for 

this purpose. Rigid registration has been the basis of nonrigid inspection. A state of the 

art review of the most important measuring techniques is presented in [19, 20] along with 

their capacity  for freeform measuring tasks. Throughout these presented methods [21-24] 

the manufactured part is assumed to have a similar shape to the CAD model, allowing for 

comparison. Li et al. [23] used a two-step registration. They used some local properties 

of surface (e.g. Principal and Gaussian curvature) in order to find the coarse 

correspondence between CAD-model and range data. Then fine localisation has been 

done based on least square principal. The benefits of their method in comparison to single 

step ICP algorithm were not discussed. All presented methods, and most recently 

Ravishankar, et al. [25], have used rigid registration as similarity measures. 

The early efforts for nonrigid inspection were made by Weckenmann and Gabbia [26]. 

They proposed a measuring method using virtual distortion compensation. The idea 

behind their method was to deform the actual distorted point cloud into the nominal use 

state (CAD-model). Feature (e.g. holes and edges) extraction was the key to measure the 

correspondence between CAD-model and range data. From the acquired point cloud a 

triangle mesh of the surface was generated. Then the meshed surface was transformed 

into a FEM model to simulate the fixation process by using extracted features as 

boundary condition. Their method was not completely automated because the suggested 

method needed some human challenges to identify the correlation between some special 

points like holes and assembly joint positions. These led the controller to find the 
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boundary conditions of the FEM problematic. Besides, transforming the point cloud to a 

computer-aided analyzable model is a very time consuming process. These drawbacks 

then largely improved in [27]. To this end they deformed CAD-model and mapped it 

towards range data. By this way, they decreased the time of inspection. A FEM-mesh 

created from a CAD-model, also provided more precise results than a triangle mesh from 

measurement results. However, proposed method still needed human intervention in 

order to find the correspondence between CAD-model and range data.  

The concept of the Small Displacement Torsor (SDT) was  developed by Bourdet and 

Clément [28] to solve the general problem of a geometrical surface model fit to a set of 

points using rigid body movements. Lartigue et al. [29] took  advantage of the 

possibilities offered by voxel representation and SDT method for the dimensional 

metrology of flexible parts. They considered the effect of gravity and the spatial location 

of a scanned part. This method is fundamentally based on finding the correspondence 

between the cloud of all measured points and CAD meshed data. In fact, the SDT is not 

suitable in the presence of large deformations.   

Abenhaim et al. [30] developed an Iterative Displacement Inspection (IDI) which 

smoothly deformed the CAD mesh data until it matched the range data. Their method 

was based on optimal step nonrigid ICP algorithms [31]. The point cloud needs to be 

dense enough because the method’s similarity measure is based on the nearest distance 

calculation. The method depends on finding some flexibility parameters which could vary 

according to thickness. They used the same number of nodes in two datasets which rarely 

happens in real applications. By the way, they did not test the ICI in presence of 

topological discontinuities like holes. The mentioned drawbacks cause previously 

mentioned methods to limit their applicability in industrial applications. 

3. Robust numerical inspection fixture (RNIF) 

In [1] and for the first time in metrology, we presented a methodology based on the fact 

that the interpoint shortest path (geodesic distance) between any two points on the parts 

remains unchanged during an isometric deformation. We called this property as distance 

preserving property of nonrigid parts. Here we provide a more detailed image of it. The 

aim is to construct a more robust algorithm. To this end we will filter out some geodesic 

https://www.researchgate.net/publication/215583173_Nonrigid_Geometric_Metrology_using_Generalized_Numerical_Inspection_Fixtures?el=1_x_8&enrichId=rgreq-a2124a4512f5d987e17c65005b04856c-XXX&enrichSource=Y292ZXJQYWdlOzI1NzgxMTMwMTtBUzoxMDMwMjI1NTQyNTUzNjFAMTQwMTU3Mzg5OTQ5Mw==
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distances which influence our algorithm. With depicted examples we will discuss the 

source of such incoherent geodesics.  

3.1 Geodesics on range data 

Fig. 1 depicts a thin-wall part deformed under its weight. Let xi be the theoretical point 

within a CAD model and iy  represents the image of xi in Y on free-state. Where

1
,..., nx x X ; 

1
,..., my y Y   and n, m are the sampled points which represent two spaces X 

and Y. In spite of large deformation, two shapes are intrinsically similar, which means 

that it is possible to unfold one surface onto the other without stretching it, i.e. a map of 

one surface onto the other preserving its distance. The shortest path (geodesic distance) 

between x1 and x2 rests unchangeable during isometric deformation, so  
1 2 1 2x x y y

d d
 

 . As 

we will discuss later, this property enable us to find the correspondence between CAD 

model and scanned data. Mathematically speaking intrinsic properties rest unchangeable 

to isometric deformations; so in order to compare the nonrigid shapes we should look at 

their intrinsic geometries. By other words, since X and Y belong to different metric 

spaces 3 , we cannot measure their similarity using Hausdorff distance based similarity 

measure (e.g. using ICP).  

 

Figure 1 

Figure 1: Intrinsic similarity in deformed shapes 

 

Therefore, the first and most important step of our approache is to approximate the 

pairwise geodesic distance between all points on range data and CAD model. If the 

sampling domain is dense enough, one idea is to approximate the geodesic distance 
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between points with the famous Dijkstra’s shortest path algorithm [32]; but the shortest 

path computed by Dijkstra algorithm does not always lead to the real shortest path. As an 

example consider a unit square graph and its shortest path between upper left and lower 

right which is equal to 2 while the shortest calculated by Dijkstra algorithm is equal to 

2. This problem is due to the fact that we are allowed to move in the graph using only 

nodal points. To overcome to this inconsistency of Dijksta algorithm Fast Marching 

Method (FMM) was introduced by Sethian [33] as a numerical method for 

solving boundary value problems of the Eikonal equation: 

01,        ( ) 0T F T X                                            (1) 

which describes the propagation of a closed curve in 2 (or a surface in 3 ) with speed F 

in the direction normal to itself so that the sign of speed function never change. Kimmel 

and Sethian [11] have developed a version of  Fast Marching algorithm on triangulated 

domains with the same computational complexity. The initialization of T is like in 

Dijkstra algorithm, zero at 0X . Unlike the Dijksta algorithm which the shortest path was 

restricted to graph vertices, in FMM the shortest path can pass through the triangular 

mesh. Fig. 2 (left) depicts the idea behind FMM in triangulated domain. Suppose that we 

are given two points x1 , x2 with known front arrival times T1 and T2. The question is how 

to estimate the front time T3 when it arrives to the point x3. Note that we can freely switch 

between the path length and arrival time, thus d1=T1, etc. In this case d can be calculated 

as point-plane distance d 1= n.x1+p, d 2= n.x2+p. These two equations can be written with 

matrix notation: 

 .1TV n p d                                                          (2) 

where d  = [d1, d2]
T , V = [x1, x2] , 1 =  [1, 1]T . Unit normal vector n can be easily driven 

from equation (2).  
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Figure 2 : Calculation of arrival time in 2 for a expanding front F>0. 

Assuming that the front is planar ( 2
1 2 3, ,x x x  ), the discretization of the Eikonal 

equation leads to the following quadratic equation [34]: 

2
3 3.1 1 2 .1 1 0T T Td Q d Qd d Qd                                                     (3) 

where Q = (VTV)-1 . Equation (3) has two solutions, both n, -n satisfy the equation. In this 

case the smallest solution is not acceptable (Fig. 2 right) because front propagation time 

is monotonically increasing function which means that d3 > d1, d2. This is equal to say 

that 0TV n  .  

Other effect of this monotonicity can be translated as: 

3 3

1 2

, 0
T

d d

d d

  
   

                                                         (4) 

which means that d3 should increased when d1, d2 increase or simply QVTn < 0. Seeing 

that Q = (VTV)-1 then QVTV = (VTV)-1VTV = I. This means that rows of QVT are 

orthogonal to triangle edges which mean that n must lie within triangle and 1 3 2x x x

should be acute. Thus, the entire update step can be summarized as in Algorithm 1. 
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input : triangulated surface 
output : interpoint shortest path 
 

i. Solve the quadratic equation (3) and select the largest solution.  
ii. Compute the front propagation direction n. 

iii. if     QVTn > 0 
use Dijkstra’s algorithm: 

 3 1 1 3 2 2 32 2
min ,d d x x d x x      

     else 
         d3 = min {d3 , p} 

Algorithm 1:  Fast marching update 

In case of obtuse meshes in [11] the authors propose to split obtuse triangle by into two 

acute ones. 

 

3.2 Isometric embedding 

Let X and Y be metric spaces and ƒ: X → Y an arbitrary map. The distortion of ƒ is 

defined by:
        

 

.
dis  sup ( ( ), ( )) ( , )Y X

a b X
f d f a f b d a b


                                        (5) 

The distance dX (a,b) between a pair of points in X is mapped to the distance dY (f(a), f(b)) 

between the images of a and b under f [35]. 
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Figure 3 : Illustration of the isometric embedding problem. 

 

Fig. 3 depicts two similar nonrigid shapes. As stated in the previous section our goal is to 

compare and find the correspondence between shapes X and Y with the metrics of dX and 

dY. In most of applications for nonrigid parts the deformations are isometric. This means 

that two shapes X and Y in spite of deformations- are isometrically equal. In this case, 

because two metrics are different we cannot find their similarity using Hausdorff based 

methods like ICP. In fact nonrigid registration is somehow difficult from that of the rigid 

registration. In spite of rigid case, here we should look for the intrinsic similarity because 

intrinsic geometry remains unchangeable during isometric deformations. Fig. 3 also 

demonstrates a method in order to deal with nonrigid registration problem. Suppose that 

we are capable to embed two shapes (left) in a common metric space (right). If we can 

construct this embedding in such way that the Euclidean distance between all interpoint 

nodes during embedding remains equal as for geodesics before embedding, in this case 

we can transform nonrigid similarity problem into a rigid registration problem. This 

method seems like an ideal method for nonrigid registration problem. The only problem 

is how to map the shapes into common space in an ideally isometric manner. From our 

knowledge of geometry we know, for example, that mapping a sphere into flat surface 

(X, dX) 

(Y, dY) 
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(and vise versa) produces unwanted distortions; because each of them has a different 

Gaussian curvature. A way to overcome such a problem is to try to construct an 

approximate construction by minimizing the distortion as defined in equation (5). This is 

the basic idea behind the canonical forms proposed in [10]. In our point cloud setting, 

where the shape X is sampeled at N points {x1,x2,…,xN}, the distortion criteria will be: 

, 1,...,
max ( ( ), ( )) ( , )m i j X i j

i j N
d f x f x d x x


 


                                        (6) 

In MDS literature the function which measures the distortion of distances is called 

stress. Historically 2 is used as the distortion criterion. Assume that Zi = f (xi) is a matrix 

of canonical form coordinates and ( ) ( , )mij i jd Z d z z
 , then: 

2

2 ( ; ) ( ) ( , )X ij X i j
i j

Z D d Z d x x


                                              (7) 

Here DX is a matrix of geodesic distances and dij(Z) is the Euclidean distance between the 

points on the canonical form. The minimization algorithms which minimize the stress 

function known as Multidimensional scaling. Historically MDS is classfied as a 

dimensionality reduction method. SMACOF (scaling by majorizing a complicated 

function) is one of the well known MDS algorithms for minimizing the stress function 

2 ( ; )XZ D with respect to Z. This algorithm was proposed by proposed by De Leeuw [9].  

This algorithm is the core of our study in [36]. Here we present a brief introduction on 

SMACOF. We refer the reader to [7] for an account. Before summarizing the SMACOF 

algorithm we describe some relations and notations. Equation (7) can be written as matrix 

form: 

 2
2 ( ; ) ( ) 2 ( ( ; ) ) ( , )T T

X X X i j
i j

Z D tr Z VZ tr Z B Z D Z d x x


                   (8) 

Here V is a constant N N matrix with elements: 
1

1ij

i j
v

N i j

 
   

                                                               (9) 

and B(Z;DX) is an N N matrix with elements: 
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1( , ) ( ) ( )...

...

0

( ; ) 0 ( ) 0
X i j ij ij

ij X ij

iki k

d x x d Z i j and d Z

b Z D i j and d Z

b i j





  


  
   

                                 (10) 

Thus, the SMACOF algorithm can be summarized as: 

input            :  matrix of geodesic distances  X N N
D

  
output          :  canonical form Z* 
 
1   set some initial Z(0) and k=0 

2   compute the raw stress 
(0)

2 ( ; )XZ D  
3   repeat 

4   compute 
( 1) 1 ( ) ( )( ; )k k k

XZ N B Z D Z    (Guttman transform) 

5   compute the stress for this iteration , 
( 1)

2 ( ; )k
XZ D 

 
6   compute the difference  
7   k = k+1 
8   until convergence 
9   set Z* = Z(k) 

Algorithm 2 : SMACOF algorithm 
 
Step 6 of SMACOF algorithm contains of finding the difference in the stress values 

between the two previous iterations. If it is less than some predefined tolerance or if the 

maximum number of iterations has been reached, then algorithm will stop. Despite of 

simplicity, SMACOF guarantees monotonically decreasing sequence of stress values. 

Fig. 4 illustrates the convergence of SMACOF algorithm applied to the problem of 

embedding of surface X (Fig. 3) sampled with N = 1511 points. 
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Figure 4: convergence plot of SMACOF algorithm  
applied to shape X (Fig. 3) with N=1511 nodes. 

 

3.2.1 Generalized multidimensional scaling 

In the previous section we saw that MDS always looks for Euclidean embedding space.  

We also discussed that such an Euclidean embedding is rarely without distortion 

especially if one try to embed a surface that looks more like sphere than a plane into 

Euclidean space. One way to overcome this drawback is by choosing one of the surfaces, 

say Y as embedding space (Fig. 5). In other words, we would like to embed X into Y by 

solving the following problem: 

1

2

' ,..., '
min ( , ) ( ' , ' )

N
X i j Y i jy y Y

d x x d y y



                                         (11)

 

where iy is the image of xi in Y.  
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Figure 5: Generalized MDS 
 

In this case, the minimum stress value quantifies how much the metric of X should be 

distorted in order to fit into Y. But unlike MDS, there is no closed-form expression for 

( ' , ' )Y i jd y y and the metric needs to be approximated, as 'iy are the optimization 

variables. Simply speaking, matrix of pair-wise geodesic distances dX(xi,xj) can be 

precomputed, since  ix  are fixed but the question is how to compute ( ' , ' )Y i jd y y . 

Assuming two arbitrary points on the meshed surface ( , )i i iy t u and ( , )i i iy t u   in 

barycentric coordinates (any point inside a triangle can be expressed uniquely as a 

convex combination of the triangle vertices) the goal is to calculate the geodesic distance 

between iy  and iy  .To this end, in [34] and , the authors represent the three point 

geodesic distance interpolation. They proved that: 

ˆ ( , ) ( , )T
Y Yd y y u D t t u                                                      (12) 

in which, the matrix ( , )YD t t only depends on triangle indices t and t’. Substituting the 

interpolated distance term (11) into generalized stress function one can obtain, 

 2

1 1( , ,..., , ) ( , ) ( , )T
N N X i j i Y i j jt u t u d x x u D t t u                                (13) 

 

Fixing all uj and all tj, the stress as a function of ui becomes quadratic. Thus, the 
minimization algorithm can be summarized by: 
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1   initialize {ui,ti} 
2   for i ={1,...,N} 
3   fix uj≠i and tj  

4   compute the gradient ( )iu  

5   select i corresponding to max of ( )iu  

6   compute the constrained quadratic problem 

                                

* 1 2 3

0
...arg min ( ) s.t.. 1..

i

i i i i i
u

u u u u u


   
 

7   translate ui , ti to adjacent triangle 
8   iterate until convergence 

Algorithm 3 : Least square GMDS algorithm 

Algorithm 3 is not the only way to solve the generalized MDS problem. We refer the 

reader to [37] for further account. 

 
3.3 Incoherent geodesic distances 

In this section we are going to discuss about what we call it incoherent geodesics and the 

origin of incoherency. Fig. 6a and 6b depict X and Y as two metric spaces corresponding 

to CAD-model and range data. In Fig. 6a and at the middle of the part (white) consider an 

area with missing data. This is normally a common problem during data acquisition 

process. Missed data can be caused by operator’s error or scanners precision. Data 

sampling and meshing also can cause such a missed data region. While the actual 

geodesic between xi and xj  in CAD model is calculated by straight (black) line, the 

geodesic in range data (red dashed line) significantly varies from nominal one (Fig. 6a). 

Fig. 6b depicts a case in which the operator decides to do a partial inspection. In this case 

also the actual geodesic (red line) in boundary of range data may vary from nominal one 

(black line – in CAD model).  

In this study we will use the boundary of the parts in order to perform the nonrigid finite 

element registration. This will be discussed in section 3.4. In most cases the boundary of 

the parts is mostly contaminated area with noise and geometric deviation. Thus, it may be 

another source of incoherency. So far we know two kinds of these geodesics: 1) ones who 

have the contact with missing data region, 2) others who have a contact with boundary of 
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the scanned part. We will filter all these geodesics which we call them incoherent 

geodesics out of MDS procedure.          

   

 

 

 

 

 

(b) 

Figure 6: Incoherency caused by missing data (a); and partial matching (b) 

 

3.3.1 Boundary detection 

Geodesic distances are vital and critical as the inputs for MDS algorithm. Any 

incoherency can cause the inaccurate correspondence between CAD-model and range 

data. To prevent such situation, we find all geodesics which have a contact with the 

mentioned regions and filter points causing such an incoherent geodesic distance. To this 

end, we propose a simple method to calculate the boundaries. Of course that there exist 

many algorithms for edge and boundary detection in range data (section 2.2) our 

(a)
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method’s simplicity comes from the ability of transforming the higher dimensional data 

into lower dimensional space.  

 

Figure 7: Boundary detection for the part in Fig. 6 (embedding using SMACOF)  

 

In Fig. 7 any point j is a boundary point if all its neighbours are on one side of it. This 
simple idea leads us into following boundary detection algorithm. 

input :  points cloud 

output :  boundary points (inner and outer) 

1 repeat {1,..., }j N    

2 calculate the K nearest neighbours of the j. 
3 apply SMACOF algorithm to K K matrix of nearest neighbours. 
4 calculate the center of gravity for K nearest neighbours. 
5 compute the distance between j and the center of gravity. 
6 if this distance is larger than some threshold then label it as boundary point.  

Algorithm 4 : Boundary detection algorithm 
 

 

3.4 Nonrigid finite element registration 

Our methodology was inspired by real industrial inspection process. When we put the 

flexible part on the inspection fixture the prevailing idea is that we are going to simulate 

the state of use. This is absolutely correct! But more specifically we can say that we are 

looking for some correspondence between distorted part and inspection fixture, which 

represents our CAD-model. We present a methodology based on the fact that the 
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interpoint shortest path (geodesic distance) between any two points on a shape remains 

unchanged during an isometric deformation. We call this property as distance preserving 

property of nonrigid parts. In Fig. 8, CAD-model and range data are represented as a 

cantilever beam. For simplicity and without loss of generality, let’s assume that some of 

prior information about boundary conditions is already known (e.g. support point). Rigid 

registration (e.g., ICP based algorithm) can be done using this prior information. In the 

absence of plastic deformations, displacing x1 to y1 will deform the beam; so that there 

will be a bijective (one-to-one correspondence) distance-preserving map between these 

two shapes (by bijective we do not mean the exact nodal correspondence). Also we 

assume that all pair-wise geodesic distances between the points on X (CAD-model) and Y 

(scanned data) are available (e.g., using fast marching method). If we can introduce 

similarity measure in order to find correspondence between these two metric spaces, the 

step that we call it finite element nonrigid registration (FENR) can be performed: (a) 

Find the correspondence (e.g. y1 is the image of x1). (b) Knowing some boundary 

conditions as prior information and finding the correspondence then displace x1 towards 

y1. (c) Calculate the geometric deviation between deformed CAD-model and measure 

range data. 

 

Figure 8: Nonrigid finite element registration 
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3.5 Identification of geometric deviation 

The part is setup onto reference support points where the position is clearly defined 

within the part frame. These points, as priori information, will be utilized as the boundary 

condition, where it will simulate the gravity and support effect on the CAD-model. The 

part is scanned in a distorted state without a fixation device. Preprocessed measured data 

then comes together with the CAD-model. Note that the CAD-model should be 

previously analyzed, applying the gravity and support effects in the same direction as the 

scanning process (Fig. 9). The transformations that map the preprocessed CAD-model 

towards range data can be obtained by a regular ICP method. In practice and at this stage, 

we put the measuring part on the inspection fixture. In our methodology, this range data 

plays the role of inspection fixture and we call it numerical inspection fixture. Again we 

notice that mapping the CAD-model into range data has some advantages. Transforming 

the range data into a computer-aided analyzable model especially for complicated 

surfaces is a very time consuming process. For such surfaces, more human intervention is 

needed. Furthermore, parts with hidden stiffening structure or other details at the back 

side of scanned surface, are so difficult to be modelized as a FEM-analyzable model. The 

main advantage of proposed method is that only one FEM-analyzable model should be 

created. This really decreases inspection time specially is mass production inspection. 

Using geodesic distance as a similarity measure tool, enable us to find the 

correspondence between CAD-model and range data even in the presence of large 

deformations. Also note that embedding process does not need primary surface 

registration, so the similarity detection can take place before the rigid registration. If we 

suppose that there is no a priori information for the assembly process, then the contour or 

other assured points with negligible deformations such as rigid attachments can be used 

for nonrigid mapping of preprocessed CAD-model into the range data. Generalized 

multidimensional scaling can be used as isometry-invariant partial surface matching so 

there is no need for perfect contour hypothesis. This is very useful when dealing with 

parts containing missing data. Defects due to geometric deviation can be found after finite 

element nonrigid registration, eliminating the spring-back effect. Also note that the 

meshed CAD-model and the scanned workpiece may have a different number of vertices. 
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Figure 9: Inspection process flowchart using Robust GNIF 

*Similarity measure can also be performed before rigid registration. 

 

The part can be scanned in a production line or it is indispensable to the fast scanning 

process.  The other steps are realized offline using a PC, thus there is no more need to 

stop production lines for testing a part.  

 
 

4. Results 

We have tested presented methodology with a series of typical mechanical parts. Table 

1 presents the overall size and engineering data for these parts. We present four case 

studies containing free-forms, sharp edges, discontinuities (holes) and with different sizes 

that evaluates performance and validates the method developed in previous section. To 

this end, the free-form model was simulated by CATIA® then a finite element analysis of 

the model performed simulating the free-state range data. At this step, a displacement 

and/or a force was applied to the model to simulate unknown spring back deformation.  

Fig. 10 depicts such free-state simulation for first case study. Predefined profile defect 

was also added to all case studies. For instance Fig. 11 illustrates such profile defect for 

only one blade of propeller. 
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Due to the fact that we have used predefined deformation in range data generation 

steps (spring back and profile defect), qualitative performance evaluation is effectively 

traceable. Point clouds of free-form and free-state are simulated with a different number 

of vertices to evaluate the geodesic distance interpolation. We have used Voronoi 

tessellation in order to represent the sampled discrete nodes of (metric) surface. Then 

incoherent geodesic detection was performed. To this end we filtered out all the 

geodesics containing the inner and outer boundary points. In each part we also added the 

regions with some missing data. After ICP based rigid registration, similarity detection 

has been done using GMDS. Then CAD-model was mapped towards range data using 

detected points. Finally the finite element nonrigid registration was performed. Here, only 

the maximum geometric deviation is presented (Table 2). For better visualization, a 

sampled tessellated section of the first case study with 50 sampled points is illustrated in 

Fig. 12. Geodesic distance interpolation enables us to accurately measure the similarity 

between the CAD and scanned data; still there is no exact nodal correspondence. In rigid 

registration process, some prior defined points, or in the areas with the least defect 

probability, may be used for increasing the procedure speed. The results are shown in 

Table 2. 
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Table 1: Case study’s size and engineering data 

1st case study 
(wind turbine blade) 

2nd case study 
(propeller) 

l =1200, r =150 
t =0.5 

Aluminum 

Φ860, h =150 

3rd case study 
(hood) 

4th case study 
(cover) 

1900x1600x400 600x400x225 

Note: Dimensions are in mm. 
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Figure 11: Sample predefined profile defect for 2nd case study. 

 
 

Figure 10: Predefined deformation for wind turbine 
blade (to simulate free-state) – Blade’s side view 

8 mm bump
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Figure 12: Similarity measure between CAD-model and range data  
(with 1833 and 7140 nodes respectively), 

End of turbine blade (1st case study) 
 
 

Table 2: The verification of RNIF 

  1st case study  2nd case study  3rd case study  4th case study 

  GNIF  RNIF  GNIF  RNIF  GNIF  RNIF  GNIF  RNIF 

Results 

2.67a 
(50)b 

2.93 
(50) 

4.44 
(100) 

4.51 
(100) 

x  x 
2.09 
(100) 

2.16 
(100) 

2.85 
(500) 

3.20 
(500) 

7.52 
(250) 

7.65 
(250) 

x  x 
6.95 
(500) 

7.09 
(500) 

4.57 
(1500) 

4.71 
(1500) 

7.87 
(500) 

7.83 
(500) 

x  x 
9.19 
(1000) 

9.38 
(1000) 

Maximum 
predefined 
profile 
deviation 

5  8  x  10 

a All dimensions are in mm. 
b The values between parentheses represent sampled points. 
 

All case studies were performed on an AMD Phenom(tm) II X4 B95 Processor 3.00 

GHz PC using a 64-bit operating system. For instance, similarity measure on first case 

study and for 50, 500 and 1500 sampled points took 1.2min, 9.9min and 117.8min, 

respectively. Correspondence search and putting the results with nonrigid registration 

algorithm are the main computational demanding steps. As expected, increasing the 

density of sampled points causes more accurate results (see case studies by column in 
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Table 2). On one hand, in order to better represent the underlying surface deviation, we 

prefer the point sampling to be as densely as possible.  On the other hand, we need to 

keep in mind that the discrete representation is used by computer algorithms, and every 

additional point increases storage and computational complexity costs.  

 

5. Conclusion 

As a result of the lack of theoretical knowledge in nonrigid geometric inspection, today in 

industry the only method to handle this problem is to use the high cost inspection 

fixtures. In this study we tried to construct the robust foundation to handle the fixtureless 

nonrigid inspection. Including part compliance with intrinsic geometry of surface in 

metrology of free-form surfaces is an area of research pioneered with this research. We 

introduced a methodology based on the fact that the shortest path (geodesic distance) 

between any two points on a shape remains unchanged during an isometric deformation. 

We call this property as distance preserving property of nonrigid parts. We merged the 

technologies in metric and computational geometry along with nonlinear dimensionality 

reduction methods and finite element analysis to develop a general approach to the 

geometrical inspection of nonrigid parts. The preliminary results proved that proposed 

methods, based on distance preserving NLDR methods was quite efficient. Although we 

tried to present the persuasive results by applying the developed methodology into some 

typical virtual mechanical parts, no method with such promise is likely to be widely 

accepted until more real-world tests can be done. A real-world test would indeed have 

immense utility. This test needs inspection fixture in addition to the work-piece. The 

results of this test, then, can be compared with our results. Our next study is to develop 

and verify the proposed methodology with real-world tests in cooperation with our 

industrial partner. Also in this study we did not deal with the effect of the diverse 

smoothing methods to reduce the topological noise effect. The uncertainty associated 

with the material properties has not been considered. These methods as well as the effect 

of material uncertainty should also be studied in depth.  
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The proposed method is not a perfect and faultless substitution for inspection fixtures 

and CMM reports.  However, in real-time applications it can be used for variational 

control of production lines so there will be no more need to stop production to test a 

workpiece. Although there are few researches in geometric inspection of nonrigid parts, 

general-purpose, fully automated and real-world practical method which can be a 

substitute for CMM reports does not yet exist. Specific long-term goals must be set forth 

and systematically accomplished. 
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Nomenclature 

iy  image of |i ix x X in Y  

  stress (loss function) 

(X, dX) metric space where d is a metric on X 

aij ijth element of matrix A 

dis f distortion of the map f 

DX symmetric matrix of pairwise geodesic distances. (For n 

points, it requires 
( 1)

2

n n 
calculations) 

dX(a, b) distance between a pair of points 

m  
 

m-dimensional Euclidean space 

ti 

 
triangle index 
 

t workpiece thickness  
 

tr(V) Trace of matrix V 

VT Transpose of matrix V 
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X, Y surface  

YM space Y sampled by M points 
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