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Abstract 

The geometric measurement of parts using a coordinate measuring machine (CMM) 

has been generally adapted to the advanced automotive and aerospace industries. 

However, for the geometric inspection of deformable free-form parts, special 

inspection fixtures, in combination with CMM’s and/or optical data acquisition 

devices (scanners), are used. As a result, the geometric inspection of flexible parts is a 

consuming process in terms of time and money. The general procedure to eliminate 

the use of inspection fixtures based on distance preserving nonlinear dimensionality 

reduction (NLDR) technique was developed in our previous works. We sought out 

geometric properties that are invariant to inelastic deformations. In this paper we will 

only present a systematic comparison of some well-known dimensionality reduction 

techniques in order to evaluate their accuracy and potential for non-rigid metrology. 

We will demonstrate that even though these techniques may provide acceptable results 

through artificial data on certain fields like pattern recognition and machine learning, 
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this performance cannot be extended to all real engineering metrology problems 

where high accuracy is needed. 

 

Keywords: Computer Aided Inspection, Geometric inspection, Flexible parts, 

Dimensionality reduction. 

 

1. Introduction 

Geometric inspection, geometric modeling, range data acquisition and analysis have 

developed as separate fields of engineering among the various engineering and 

scientific communities. However, all these fields share common scientific concepts, 

and there are many missed opportunities because of a lack of mutual connection and 

wasted synergy. Computer-Aided Inspection is one of these connection points, while 

nonrigid geometric inspection shares a profound degree of understanding of all the 

mentioned disciplines. Currently, a flexible workpiece must be constrained or 

clamped during the measurement process in order to simulate the use state. To that 

end, expensive and special inspection fixtures need to be designed and manufactured 

[1]. On the other hand, some inspection stages cannot be fully automated with this 

conventional approach. As a result, the geometric inspection of flexible parts remains 

a time and money consuming process. Typically some inspection set-up processes for 

nonrigid parts in aerospace industry request over 60 hours of operations. On the other 

hand, even for simple parts, the quality of a planned inspection depends on the ability 

https://www.researchgate.net/publication/239523658_Nonrigid_parts'_specification_and_inspection_methods_Notions_challenges_and_recent_advancements?el=1_x_8&enrichId=rgreq-4190a3833a1caa28cf9454f8e6374984-XXX&enrichSource=Y292ZXJQYWdlOzI2MDU5NjU3NjtBUzoxMjM4OTY4NzEyNjQyNjNAMTQwNjU1MDcyNDQ2Mw==
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and experience of the operator. Despite the multitude of papers and research that have 

been produced in the CAD, CAM and CAI fields, the inspection of flexible parts 

continues to pose difficulties and significant costs to industries because they need 

special fixation devices. This is also evidence of the lack of knowledge and theoretical 

foundations surrounding this special field. Our approach [2-4] was an effort to 

eliminate the use of special inspection fixtures in the metrology of flexible parts. We 

tried to provide a better understanding of the developed algorithms by having the 

comparison between different existing methods. We also added some techniques to 

robustify our Generalized Numerical Inspection Fixture (GNIF) [5]. Our philosophy 

was based on the fact that the interpoint shortest path (geodesic distance) between any 

two points on the parts remains unchanged during an isometric deformation. We 

called this property distance preserving property of nonrigid parts. In fact GNIF was 

inspired by a real industrial inspection process. When a flexible part is put on an 

inspection fixture, the prevailing idea is that we are going to simulate the state of use. 

But more specifically, one can say that we are looking for some correspondence 

between distorted parts and inspection fixtures, which represents our CAD-model. In 

spite of the accuracy of the presented methodology, the similarity detection process 

was extremely slow even for simple parts with zero Gaussian curvature. In this paper 

we will present a comparison of some well-known dimensionality reduction 

techniques in order to evaluate their accuracy and potential for non-rigid metrology. 

In Section (2) a brief introduction to six NLDR methods will be presented concisely 

with theirs mathematical fundaments. Then in Section (3), described methods will be 



4 
 

evaluated using some typical world engineering data. The aim is to illustrate a 

systematic comparison and precision for each method. 

 

2. Dimensionality Reduction 

Most problems in pattern recognition, such as image processing and speech 

recognition, begin with the preprocessing of high-dimensional signals. The 

complexity of most learning algorithms depends on the number of input dimensions D

. This is why we are interested in reducing the embedding dimensionality with 

minimizing the loss of information, of course. In the literature there are two 

techniques for dimensionality reduction: feature selection and feature extraction. In 

feature selection the aim is to find d of D dimensions (where d D ) which gives us 

the most information. In other words, we are interested in finding the best subset of 

the set of the features. In metrology, feature selection is not a good approach for 

dimensionality reduction because the individual vertices do not carry much 

information on their own. It is the combination of vertices that provides the most 

discriminative information. This is the idea behind the feature extraction techniques. 

We therefore consider the following problem. Given a high dimensional data 

 1, , nX x x  where D
ix  the aim is to compute the output data d

iZ  that is the 

low dimensional representation of X . For techniques used in this paper only general 

information, including the steps for each method, will be included without going into 

derivation. Our focus in this paper is to compare the dimensionality reduction methods 
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on the geometric metrology view point. Consequently, the aim is not to provide the 

details of the algorithms. We invite the reader to refer to the original paper of each 

algorithm for further details. However, we will sketch a concise summary of each 

algorithm for comparison and reference purposes. Next section deals with methods 

that reduce the dimensionality of data by using distance and topology preservation as 

the criterion. 

 

2.1 Distance Preserving DR techniques 

For linear dimensionality reduction, some simple criteria like maximizing the variance 

preservation leads to one of the robust dimensionality reduction methods like 

Principal Component Analysis (PCA) [6]. However, in nonlinear cases the use of the 

same simple criteria requires more complex data models. On the other hand, every 

manifold can be described by its pairwise point distances whether by Euclidean, graph 

or geodesics metrics. Tons of research has been undertaken and motivated by a simple 

fact: if close points are  kept close and far points kept far, then the high dimensional 

data set and its low dimensional embedding share the same shape [7]. This section 

attempts to review some of the best-known existing methods. 

 

2.1.1 Multidimensional Scaling (MDS) 

Given the pairwise distance ijd  between n points and assuming that we don’t know the 

exact coordinates of the points and how the distance is  calculated, MDS (also known 
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as Principal Coordinates Analysis [8]) tries to place these points in low dimensional 

space in such a way that the Euclidean distance between them is as close as possible 

to ijd . Historically, the most significant achievement on MDS begins with 

Torgerson’s work  in 1952 [9]. Before then, Young and Householder [10] used the 

Euclidean distance as a metric of similarity measure. Let X andY be metric spaces and 

:f X Y an arbitrary map. The distortion of f is defined by:
        

 

.
dis  sup ( ( ), ( )) ( , )Y X

a b X
f d f a f b d a b


                                        (1) 

The distance ( , )Xd a b  between a pair of points in X is mapped to the distance 

( ( ), ( ))Yd f a f b  between the images of a  and b  under f [11]. In our point cloud 

setting, where the shape X  is sampled at N points  1, , NX x x  , the distortion 

criteria will be: 

, 1,...,
max ( ( ), ( )) ( , )m i j X i j

i j N
d f x f x d x x


 


                                        (2) 

In MDS literature, the function which measures the distortion of distances is called 

stress. Historically 2 is used as the distortion criterion. Assume that  i iZ f x is a 

matrix of canonical form coordinates and ( ) ( , )mij i jd Z d z z


, then: 

2

2 ( ; ) ( ) ( , )X ij X i j
i j

Z D d Z d x x


                                              (3) 

Here XD  is a matrix of geodesic distances and ( )ijd Z is the Euclidean distance 

between the points on the canonical form. The minimization algorithms which 

minimize the stress function known as Multidimensional scaling. Historically MDS is 

https://www.researchgate.net/publication/24061253_Multidimensional_Scaling_I_Theory_and_Method?el=1_x_8&enrichId=rgreq-4190a3833a1caa28cf9454f8e6374984-XXX&enrichSource=Y292ZXJQYWdlOzI2MDU5NjU3NjtBUzoxMjM4OTY4NzEyNjQyNjNAMTQwNjU1MDcyNDQ2Mw==
https://www.researchgate.net/publication/225107077_Discussion_of_a_set_of_points_in_terms_of_their_mutual_distances?el=1_x_8&enrichId=rgreq-4190a3833a1caa28cf9454f8e6374984-XXX&enrichSource=Y292ZXJQYWdlOzI2MDU5NjU3NjtBUzoxMjM4OTY4NzEyNjQyNjNAMTQwNjU1MDcyNDQ2Mw==
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classfied as a dimensionality reduction method. Scaling by Majorizing a COmplicated 

Function (SMACOF) is one of the well-known MDS algorithms for minimizing the 

stress function 2 ( ; )XZ D with respect to Z. This algorithm was proposed by De 

Leeuw [12]. This algorithm is the core of our study in [4]. Here we present a brief 

introduction on SMACOF. We refer the reader to [13] for an account. Before 

summarizing the SMACOF algorithm, we describe some relations and notations. 

Equation (3) can be written in matrix form: 

 2
2 ( ; ) ( ) 2 ( ( ; ) ) ( , )T T

X X X i j
i j

Z D tr Z VZ tr Z B Z D Z d x x


                   (4) 

Here V is a constant N N matrix with elements: 

1

1ij

i j
v

N i j

 
   

                                                               (5) 

and ( ; )XB Z D  is an N N matrix with elements: 

1( , ) ( ) ( )...

...

0

( ; ) 0 ( ) 0
X i j ij ij

ij X ij

iki k

d x x d Z i j and d Z

b Z D i j and d Z

b i j





  


  
   

                                 (6) 

Thus, the SMACOF algorithm can be summarized as: 

Algorithm 1 : SMACOF algorithm 

input            :  matrix of geodesic distances  X N N
D

  

output          :  canonical form Z* 

1   set some initial 
(0)Z  and 0k   

2   compute the raw stress 
(0)

2 ( ; )XZ D  

3   repeat 

https://www.researchgate.net/publication/230221658_Modern_Multidimensional_Scaling_Theory_and_Applications?el=1_x_8&enrichId=rgreq-4190a3833a1caa28cf9454f8e6374984-XXX&enrichSource=Y292ZXJQYWdlOzI2MDU5NjU3NjtBUzoxMjM4OTY4NzEyNjQyNjNAMTQwNjU1MDcyNDQ2Mw==
https://www.researchgate.net/publication/239417876_Application_of_Convex_Analysis_to_Multidimensional_Scaling?el=1_x_8&enrichId=rgreq-4190a3833a1caa28cf9454f8e6374984-XXX&enrichSource=Y292ZXJQYWdlOzI2MDU5NjU3NjtBUzoxMjM4OTY4NzEyNjQyNjNAMTQwNjU1MDcyNDQ2Mw==
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4   compute 
( 1) 1 ( ) ( )( ; )k k k

XZ N B Z D Z    (Guttman transform) 

5   compute the stress for this iteration , 
( 1)

2 ( ; )k
XZ D 

 

6   compute the difference  

7  1k k   

8   until convergence 

9   set 
( )* kZ Z  

 

Step 6 of SMACOF algorithm contains  findings for the difference in the stress values 

between the two previous iterations. If it is less than some predefined tolerance, or if 

the maximum number of iterations has been reached, then the algorithm  stops. 

 

2.1.2 ISOmetric feature MAPping (ISOMAP) 

This technique described by Tenenbaum et al.[14] is the variant of MDS which uses 

graph distance (obtained by Dijkstra algorithm [15]) as an estimation of geodesic 

distance, and applies MDS to lower the dimension of input data. The ISOMAP 

technique can be summerized as: 

 

Algorithm 2 : ISOMAP algorithm 

1   construct the graph of input data 

2   calculate the shortest pairwise distance between all points 

3   apply the MDS to the shortest path found in step 2 

 

2.1.3 Maximum Variance Unfolding (MVU) 

https://www.researchgate.net/publication/242562037_A_Note_on_Two_Problems_in_Connexion_with_Graphs?el=1_x_8&enrichId=rgreq-4190a3833a1caa28cf9454f8e6374984-XXX&enrichSource=Y292ZXJQYWdlOzI2MDU5NjU3NjtBUzoxMjM4OTY4NzEyNjQyNjNAMTQwNjU1MDcyNDQ2Mw==
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Weinberger et al. [16] developed MVU algorithm (also known as Semidefinite 

Embedding) based on mapping the high dimensional data set into a low dimensional 

space that preserves the distance and angle between nearby input patterns. In MDS, 

the pairwise Euclidean distance of input date sets was used as they were. In ISOMAP, 

Euclidean distance was replaced by geodesic distance. In MVU, the transformation of 

distance is somehow more complicated than in MDS and ISOMAP. Distances are 

assumed to be preserved locally, while nonlocal distances are optimized in such a way 

that suitable embedding can be found. For instance, in 3D data sets the pairwise 

Euclidean distance is shorter than 2-dimensional embedding. Therefore MVU is 

considered to maximize the long distances while maintaining the shortest ones. 

To this end, the aim of the MVU is to unfold data by maximizing pairwise distances, 

i.e.: 

2

i jij
Max z z  

                                                (7) 

subject to 

 
2 2

..( , ) ; . i j i ji j edges x x z z    
   

                                  (8) 

and 

0ii
z 


                                                         (9) 

The latter constraint was put in place to eliminate translational degrees of freedom in 

the lower space by centering the output on the origin. The aforementioned 

optimization objective is a non-convex problem (multiple local minima) because it 

https://www.researchgate.net/publication/4082326_Unsupervised_learning_of_image_manifolds_by_semidefinite_programming?el=1_x_8&enrichId=rgreq-4190a3833a1caa28cf9454f8e6374984-XXX&enrichSource=Y292ZXJQYWdlOzI2MDU5NjU3NjtBUzoxMjM4OTY4NzEyNjQyNjNAMTQwNjU1MDcyNDQ2Mw==
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means maximizing a quadratic form subject to quadratic equality constraints. In [16] 

the authors propose a Semidefinite Programming [17] technique by using dot products 

instead of squared distances. If D denotes the square matrix of squared Euclidean 

distances, and K the Gram matrices of X ; i.e. .ij i jK x x , without going into detail, 

the MVU algorithm can be summarized as follows: 

Algorithm 4 : MVU algorithm 

1   Compute all squared pairwise distances in matrix D 

2   determine the k-nearest neighbours G, of each data point  

3   find   Max trace(K) subject to: 

                

2
...2 ( , )

0

0

ii jj ij i j

ijij

k k k x x for i j G

k

K

     





  

4   perform classical metric MDS on matrix K 

 

2.1.4 Sammon’s Mapping  

The main weakness of MDS is that it tries to maintain large pairwise distances and 

does not retain the small ones [18]. Sammon’ Mapping (SM) [19] tries  to overcome 

MDS’ weakness by weighting the contribution of each pair. To this end, SM 

minimizes the following stress function: 

2

1

( ( , ) ( , ))1

( , ) ( , )
X i j Z i j

SM
iX i j X i jij
i j

d x x d z z
E

d x x d x x



 

                            (10) 

https://www.researchgate.net/publication/4082326_Unsupervised_learning_of_image_manifolds_by_semidefinite_programming?el=1_x_8&enrichId=rgreq-4190a3833a1caa28cf9454f8e6374984-XXX&enrichSource=Y292ZXJQYWdlOzI2MDU5NjU3NjtBUzoxMjM4OTY4NzEyNjQyNjNAMTQwNjU1MDcyNDQ2Mw==
https://www.researchgate.net/publication/285688992_Semidefinite_programming?el=1_x_8&enrichId=rgreq-4190a3833a1caa28cf9454f8e6374984-XXX&enrichSource=Y292ZXJQYWdlOzI2MDU5NjU3NjtBUzoxMjM4OTY4NzEyNjQyNjNAMTQwNjU1MDcyNDQ2Mw==
https://www.researchgate.net/publication/228657549_Dimensionality_Reduction_A_Comparative_Review?el=1_x_8&enrichId=rgreq-4190a3833a1caa28cf9454f8e6374984-XXX&enrichSource=Y292ZXJQYWdlOzI2MDU5NjU3NjtBUzoxMjM4OTY4NzEyNjQyNjNAMTQwNjU1MDcyNDQ2Mw==
https://www.researchgate.net/publication/3045219_A_Nonlinear_Mapping_for_Data_Structure_Analysis?el=1_x_8&enrichId=rgreq-4190a3833a1caa28cf9454f8e6374984-XXX&enrichSource=Y292ZXJQYWdlOzI2MDU5NjU3NjtBUzoxMjM4OTY4NzEyNjQyNjNAMTQwNjU1MDcyNDQ2Mw==
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where d is measured by Euclidean metrics. The minimization of Sammons’s stress 

function can be performed using a pseudo-Newton optimization method. 

 

2.1.5 Curvilinear Component Analysis (CCA) 

Originally developed by Demartines and Herault [20], Curvilinear Component 

Analysis (CCA) is an improvement of Sammon’s mapping. This technique combines 

some of the attitudes of SM and MDS along with artificial neural network strategies in 

order to map the higher dimensional data to lower dimensional space. At first, CCA 

processes a vector quantization step [21] as a way to reduce the data set size. Then, 

like MDS, the authors defined a stress function in such a way as to preserve the 

interpoint distances during mapping. The CCA stress function closely resembles 

Sammon’s stress function: 

 2

1 1

1
( , ) ( , )) ( ( , )

2

N N

CCA X i j Z i j Z i j
i j

E d x x d z z F d z z
 

               (11) 

While we would like to have ( , ) ( , )i j i jd x x d z z , this is not always possible without 

distortion, so they introduced a weighting function F . The choice of F is based on 

the fact that preserving the short distances is more significant than the longer ones, 

because the long distances on the manifold have to be stretched to unfold the 

manifold. Thus, F  was choosing as monotically decreasing function [21]. In order to 

minimize cost function, Demartines and Herault [20] developed a novel variant of 

gradient descent techniques. We refer the reader to their original work for an account. 

https://www.researchgate.net/publication/3302253_Curvilinear_Component_Analysis_a_Self-Organizing_Neural_Network_for_Nonlinear_Mapping_of_Data_Sets?el=1_x_8&enrichId=rgreq-4190a3833a1caa28cf9454f8e6374984-XXX&enrichSource=Y292ZXJQYWdlOzI2MDU5NjU3NjtBUzoxMjM4OTY4NzEyNjQyNjNAMTQwNjU1MDcyNDQ2Mw==
https://www.researchgate.net/publication/3302253_Curvilinear_Component_Analysis_a_Self-Organizing_Neural_Network_for_Nonlinear_Mapping_of_Data_Sets?el=1_x_8&enrichId=rgreq-4190a3833a1caa28cf9454f8e6374984-XXX&enrichSource=Y292ZXJQYWdlOzI2MDU5NjU3NjtBUzoxMjM4OTY4NzEyNjQyNjNAMTQwNjU1MDcyNDQ2Mw==
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In our study we didn’t sampled the range data. Therefore, the vector quantization is 

considered an optional processing. Curvilinear Distance Analysis (CDA) developed 

by Lee et al. [22] is considered a variant of CCA which uses graph distance instead of 

Euclidean distance.  

 

2.2 Topology preserving techniques 

As depicted in the previous section, dimensionality reduction can be reached by 

distance preservation. In this category numerous methods were discussed. While the 

comparative distances seem to give sufficient information on manifold, most distance 

functions make no distinction between manifold and its surrounding space. Topology 

preserving methods are another class of dimensionality reduction techniques that tend 

to preserve important structures of the data in the geometric structure of the mapping. 

One simple example of topology preserving maps is a Mercator projection of the earth 

into 2D space. While this kind of mapping gives invaluable visual information, 

distortion can’t be prevented in some areas. In metrology, the topology gives the 

neighbourhood relationship between defect areas and the rest of the shape. The most 

problematic area in topology preserving techniques is how to represent a topology. All 

physical objects subjected to metrology are continuous. Unfortunately, continuous 

topology representation is not always possible. This is why discrete representation is 

used by a ‘lattice’ (or grid). In this category we have selected the most well-known 

technique which we will summarize in the next section.  

 

https://www.researchgate.net/publication/2551965_Curvilinear_Distance_Analysis_versus_Isomap?el=1_x_8&enrichId=rgreq-4190a3833a1caa28cf9454f8e6374984-XXX&enrichSource=Y292ZXJQYWdlOzI2MDU5NjU3NjtBUzoxMjM4OTY4NzEyNjQyNjNAMTQwNjU1MDcyNDQ2Mw==
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2.2.1 Locally Linear Embedding (LLE) 

Locally linear embedding [23] is an eigenvector based technique (like PCA and MDS) 

where  optimization doesn’t involve local minima and iterative optimizations. It tries 

to preserve the local angles. LLE supposes that each point with its neighbors on the 

manifold lies on, or close to, a locally linear patch. Then it tries to characterize the 

local geometry of the patches by finding linear coefficients that reconstruct each point 

by using its k-nearest neighbors. Saul and Roweis [23] measured the reconstruction 

error by : 

2

( ) i ij ji j
w x w x                                                   (12) 

where jx is the k-nearest neighbors of ix . ijw  summarizes the contribution of the jth 

data point to the ith reconstruction and are found by optimizing the equation (12) 

subject to 1ijj
w  . The authors found optimal weights by using a least squares 

method. The final step of the algorithm is to reconstruct a representation iz of the ix in 

a low dimensional space. This was performed by minimizing the embedding cost 

function:  

2

( ) i ij ji j
z z w z                                               (13) 

The authors also proposed a sparse eigenvector problem in order to minimize the 

aforementioned cost function. We refer the reader to LLE’s original paper for more 

details on the minimization technique.  

https://www.researchgate.net/publication/284035345_Nonlinear_Dimensionality_Reduction_by_Locally_Linear_Embedding?el=1_x_8&enrichId=rgreq-4190a3833a1caa28cf9454f8e6374984-XXX&enrichSource=Y292ZXJQYWdlOzI2MDU5NjU3NjtBUzoxMjM4OTY4NzEyNjQyNjNAMTQwNjU1MDcyNDQ2Mw==
https://www.researchgate.net/publication/284035345_Nonlinear_Dimensionality_Reduction_by_Locally_Linear_Embedding?el=1_x_8&enrichId=rgreq-4190a3833a1caa28cf9454f8e6374984-XXX&enrichSource=Y292ZXJQYWdlOzI2MDU5NjU3NjtBUzoxMjM4OTY4NzEyNjQyNjNAMTQwNjU1MDcyNDQ2Mw==
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The comparison and review of DR methods on Pattern classification and Data 

visualization can be found in [24, 25]. 

 

3. Experiment and results 

In the previous section we summarized some well-known NLDR techniques. In this 

section, the systematic comparison of the methods, along with their accuracy 

(minimum correspondence error) and performance in typical mechanical parts, will be 

investigated. To this end, we have categorized the very real engineering problems to 

four groups. Flexible parts with:  

1) Zero Gaussian curvature with sharp edge (study case A);  

2) More complex shape with mostly zero Gaussian curvature (study case B); 

3) Free-form high curvature (study case C); 

4) Combination of both (study case D). 

The aim of this study is to investigate the performance of NLDR methods on nonrigid 

parts from the viewpoint of metrology. To this end, all case studies (CAD-model & 

range data) are considered to be intrinsically similar [2]. This means that all case 

studies considered are geometrically defectless. “Figure 1” illustrates four case studies 

investigated for this study. The models were created by CATIA® V5.  Afterwards, a 

finite element analysis of the model was performed to simulate the free-state range 

data. At this point, a displacement and/or a force were applied to the model to 

simulate spring back deformations. Then arbitrary translational and rotational 

displacements were added to the range data. In this way, the CAD-model and range data 

https://www.researchgate.net/publication/226804701_Nonlinear_dimensionality_reduction_and_data_visualization_A_review?el=1_x_8&enrichId=rgreq-4190a3833a1caa28cf9454f8e6374984-XXX&enrichSource=Y292ZXJQYWdlOzI2MDU5NjU3NjtBUzoxMjM4OTY4NzEyNjQyNjNAMTQwNjU1MDcyNDQ2Mw==
https://www.researchgate.net/publication/221252879_A_Comparison_of_Dimensionality_Reduction_Methods_Using_Topology_Preservation_Indexes?el=1_x_8&enrichId=rgreq-4190a3833a1caa28cf9454f8e6374984-XXX&enrichSource=Y292ZXJQYWdlOzI2MDU5NjU3NjtBUzoxMjM4OTY4NzEyNjQyNjNAMTQwNjU1MDcyNDQ2Mw==
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were simulated in different coordinate systems. “Table 1” represents the geometric and 

mechanical properties of the case studies. In order to compare similarities between the 

CAD-model and range data after reducing the dimensionality, a Procrustes analysis 

was performed. Then the Euclidean distances between all corresponding points have 

been calculated. As an instance the performance study on the case study D is 

presented in “Figure 2”. All case studies were performed on an AMD Phenom(tm) II 

X4 B95 Processor 3.00GHz PC using a 64-bit operating system. “Table 2” 

demonstrates the computational time for each NLDR algorithm. The results of the 

analysis as mean (Accuracy) and standard deviation (Precision) for all study cases 

were illustrated in “Table 3”. The effect of registration error is considered to be equal 

for all case studies.  

 

4. Discussion 

According to the results of means and standard deviations, “Table 4” illustrates the 

overall performance of dimensionality reduction methods for each study case. For free 

form high curvature parts (Study case C), a graph distance based ISOMAP perform 

better than other methods. This is something we already expected. In [2-4] the authors 

used geodesics instead of graph distance as a similarity measure. However 

experiments shows that ISOMAP stands behind Sammon’s nonlinear mapping as one 

of the computationally high casting methods. Classical MDS can be effectively used 

in simple parts with zero Gaussian curvature. On the other hand, classical MDS stands 

to be the fastest among the others. The performance of ISOMAP is notably worse than 
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classical MDS in cases where parts have zero Gaussian curvature with sharp corners. 

The reason behind this phenomenon is the error of the geodesic/graph distance 

computation where the sharp bends occur. However, where the complexity increases 

(in the absence of sharp bends), ISOMAP offers more chances to achieve good 

precision. Although MVU uses the graph distance, it doesn’t perform in the same 

manner as ISOMAP. Classical scaling cost functions used by Isomap retain the large 

geodesic/graph distances, while MVU focuses on keeping the local/small structure 

data. MVU should be avoided in the case of free form highly curved parts with large 

deformations where the curvature changes instantly. 

Unlike classical MDS and MVU, Sammon’s mapping can effectively handle all kinds 

of linear and nonlinear manifolds. While its global convergence is not always 

guaranteed it is also the most time-consuming NLDR technique. 

By comparison, CCA proves to be much more flexible and can handle most linear and 

nonlinear data sets mostly because it gives the user the possibility of choosing the 

weighting function F . In spite of the fact that CCA’s cost function is mostly like 

Sammon’s mapping, its convergence is faster. 

The results of our experiments show that in spite of LLE’s simplicity (there are only 

two parameters to be set); this topology preserving technique doesn’t outperform the 

distance preserving techniques. In fact, the performance of LLE is somehow 

disappointing for the majority of real-world parts. LLE suffers from a fundamental 

weakness in its cost function [26]. 

https://www.researchgate.net/publication/220637718_Locally_linear_embedding_A_survey?el=1_x_8&enrichId=rgreq-4190a3833a1caa28cf9454f8e6374984-XXX&enrichSource=Y292ZXJQYWdlOzI2MDU5NjU3NjtBUzoxMjM4OTY4NzEyNjQyNjNAMTQwNjU1MDcyNDQ2Mw==
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5. Conclusion 

With [2-4] the authors have pioneered the concept of dimensionality reduction 

methods in 3D geometric metrology. In this paper we presented a review and 

systematic comparison between NLDR methods in order to evaluate their 

performance for applications on the metrology of flexible parts. We showed that even 

though these techniques may give acceptable results by artificial data on some fields 

like pattern recognition and machine learning, their performance cannot be extended 

to real engineering problems such as geometric metrology where high accuracy is 

needed. In spite of their undeniable performance for the metrology of flexible parts, 

special attention should be paid to each case for selecting the particular nonlinear 

dimensionality reduction technique. 
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Nomenclature 

  stress (loss function) 

(X, dX) metric space where d is a metric on X 

DX symmetric matrix of pair-wise geodesic distances.  
(For n points, it requires ( 1) / 2n n calculations) 

dX(a, b) distance between a pair of points on X 

n  
 

n-dimensional Euclidean space 
 

VT Transpose of matrix V 

X, Y surface  

YM space Y sampled by M points 
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(A) (B) 

 

(C) (D) 

Figure 1 : Study cases 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 2 : 2D embedding of case study (D) using:  

(a) MDS; (b) ISOMAP; (c) MVU; (d) SM; (e) CCA; (f) LLE. 
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Table 1 : Geometric and mechanical properties of case studies 

Case study Material Thickness 
[mm] 

Dimension 
[mm] 

# of nodes 

A Al-6061-T6 1.0 120x120x100 496 
B Al-6061-T6 2.0 100x100x80 701 
C Al-6061-T6 5.0 1600x1000x450 996 
D Al-6061-T6 0.5 340x130x50 1322 

 

Table 2 : Computational time [sec]  

Case study MDS ISOMAP MVU SM CCA LLE 

(A) 0.371 15.596 0.930 16.493 1.050 0.789 

(B) 0.782 33.202 3.073 40.840 2.236 1.097 

(C) 1.096 72.249 4.086 106.172 3.788 2.346 

(D) 1.912 140.833 6.004 297.410 5.345 4.525 

 

Table 3 : Mean and Standard deviation 

Case 
study 

 MDS ISOMAP MVU SM CCA LLE 

(A) mean 0.09 1.78 1.95 0.056 0.86 1.18 
std 0.06 1.42 0.99 0.03 0.44 0.78 

(B) mean 0.29 0.30 0.14 0.18 0.08 3.84 
std 0.16 0.17 0.10 0.07 0.06 2.38 

(C) mean 0.61 0.38 11.56 0.47 0.44 12.15 
std 0.26 0.23 10.24 0.19 6.04 8.52 

(D) mean 0.23 0.10 0.44 0.16 0.17 0.50 
std 0.11 0.16 0.30 0.08 0.12 0.24 

 

Table 4 : Overall performance of NLDR methods in metrology 

 Study case A Study case B Study case C Study case D 

MDS     

ISOMAP     

MVU     

SM     

CCA     

LLE     

 

 




