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Abstract In mobile Web conferencing, enterprise documents are generally adapted
into JPEG-based Web pages to be visualized on mobile devices. Dynamically iden-
tifying the optimal adapted content is very challenging, as a compromise between
high visual quality and small delivery time must be made. In this paper, we pro-
pose a robust prediction-based dynamic content adaptation framework for JPEG
and XHTML formats that computes near-optimal transcoding parameters dynam-
ically with very few computations. The proposed framework is comprised of five
methods making different compromises between computational complexity and
accuracy. For JPEG, the average deviation from optimality (exhaustive method)
is 6% and 3% respectively for two of the proposed methods. For XHTML, the
average deviation from optimality is 3% and 1% respectively using the same two
methods. Moreover, the methods reached optimality 30% and 59% of the time
on the tested documents for JPEG and XHTML respectively, which makes the
proposed framework very appealing.
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1 Introduction

1.1 Motivation

Enterprise documents, such as PowerPoint slides and Word documents are widely
used and shared between peers in many Web collaborative applications (e.g.,
GoogleDocs and Zoho). This has been largely facilitated by the ubiquity of the
Web used as a content delivery platform. Besides, the Web has allowed the holding
of collaborative meetings with slide decks shared and presented synchronously to
all participants, connected via their Web browsers. In this regard, many solutions
have been proposed for PCs and laptops [27,1]. However, when mobile devices are
involved in such conferencing applications, the content (e.g.: presentation slides)
must be adapted to meet the target mobile device constraints (supported formats,
maximum resolution and file size) [22,20,11], but more importantly, to provide
the end-user with the best experience possible.

Enterprise documents adaptation used in current products is not device inde-
pendent; that is, documents are optimized only for a few specific mobile devices [7,
35]. The adaptation of Web content has been studied extensively and numerous
solutions have been proposed. However, in spite of the ubiquitous use of enterprise
documents, adapting them has not attracted the same attention as audiovisual
adaptation, and their portability to mobile Web browsers and their interoperabil-
ity are still a challenge.

In this paper, we concentrate on the dynamic adaptation of slide decks for Web
enabled mobile devices. We also focus our work on JPEG and XHTML formats.
The former is a required format, since it is widely supported by mobile devices
and used in so many Web applications [7,35,16]. However, this is a raster format
lacking interactivity and scalability. Consequently, we consider the use of XHTML
as well, which is more flexible, in that it allows text editing and keyword searching.
Technically, when JPEG is used, an entire document page is converted into a
JPEG image and wrapped in a Web page skeleton. In contrast, when XHTML is
used, that page’s embedded components are converted separately, and individually
wrapped in a Web page. Since presentation slides are mostly composed of text
and images, the embedded images are converted into JPEG images and the text
elements are resized, which leads to the creation of a conventional Web page,
comprising both text and images. As a result, in this paper, we consider only slide
decks composed of text and image components.

1.2 Static and dynamic adaptation

Globally, two major trends have emerged in content adaptation: static adaptation
and dynamic adaptation. In the area of static content adaptation different versions
of the original content are created and stored on a server [24,22,20,11,34]. At
runtime, when the content is requested, the optimal version, evaluated using a
specific quality criterion, is selected for delivery. The static content adaptation
approach leads to high processing complexity for generating all the versions and a
great deal of disk space to store them, and the adaptation is often performed offline.
The issue of granularity becomes important, as it determines the compromise
between the quality of the delivered content (the more versions are available,



Robust QoE-aware Prediction-based Dynamic Content Adaptation Framework 3

the better the quality) and the associated processing complexity, as well as the
storage space available [19]. In dynamic content adaptation, also called just-in-
time adaptation, a customized version is created on-the-fly, based on the target
mobile device’s context (resolution, memory size, etc.) [12,8,10]. With the dynamic
approach, the adaptation is performed on-the-fly, when the terminal’s context is
known, while the end-user waits. With this approach, we can eliminate the need
to store several versions on disk as well as reducing the number of transcoding
operations. But, this is a very challenging task, as the time required to adapt and
deliver the content is extremely important. In this case, the server could easily be
overwhelmed with a large number of requests, which would negatively affect the
end-user’s experience [2,19]. This is another reason why reducing the amount of
computations in the dynamic approach is very important.

To adapt a document dynamically (on-the-fly), the desired transcoding param-
eter values must be determined. These comprise the selected output format (JPEG
or XHTML), the resolution scaling parameter, and the JPEG quality factor. Most
of the existing dynamic solutions use the mobile device’s resolution as the target
image resolution to determine the scaling parameter and a quality factor value be-
tween 75 and 80. Although such solutions provide good visual quality, they don’t
control the resulting file size, which has a negative impact on the delivery time
and the usability of the adapted content. That is, under certain network condi-
tions, the user might even lose interest in that content, owing to an unreasonable
wait time. A better user experience can often be achieved by reducing the visual
quality slightly, in order to permit a shorter delivery time. In other words, we need
to identify the adapted content that provides the best compromise between the
visual quality of the adapted content and the time it takes to reach the recipi-
ent. Such a compromise has been considered in context-aware adaptive E-learning
applications [13], and in the adaptation of mobile users’ interfaces [9].

1.3 Quality of experience

To compute the best adapted content, we need to define an objective measure that
quantifies the end-user’s experience, and then determine the optimal transcoding
parameter values maximizing this measure with as little computational complexity
as possible. Therefore, in this paper, we propose to use a quality of experience mea-
sure (QoE) that provides a compromise between the visual aspect of the adapted
content and its delivery time.

Although performing an actual transcoding operation for each combination of
transcoding parameter values and identifying the combination that maximizes the
defined measure is theoretically feasible, it is far too complex to implement in
a viable communication system. This is because the number of combinations of
transcoding parameter values grows exponentially with the number of parameters,
and because the adaptation itself is performed online while the end-user waits. Such
an exhaustive approach would require far too much computational complexity to
be a viable solution. While a certain number of transcoding operations is required
for the adaptation, that number should be minimized if possible [22,21,11]. Clearly,
we can expect that compromises will need to be made between the computational
complexity permitted in searching for the optimal parameter values and how far
from the optimal value our solution will be.
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1.4 Objectives and contributions

Based on the proposed QoE measure, we propose a robust QoE-aware prediction-
based framework which has the advantages of the two previously presented ap-
proaches (static and dynamic), without their drawbacks. The proposed framework
allows the computation of near-optimal (compared to static approach) transcod-
ing parameters at delivery time without performing exhaustive transcoding oper-
ations. The proposed dynamic framework is comprised of five methods. The first
one, which is presented in [18], produces near-optimal transcoding parameters dy-
namically with a single transcoding operation. In most cases, the estimated results
were very reliable and close to those obtained using an exhaustive static approach,
which is considered to be optimal. However, for certain documents, the estimated
results were not close to optimality (especially when using the JPEG format),
for several reasons. First, the visual quality prediction errors were amplified by
the conversion of the estimated visual quality values to human perception scores.
Similarly, file size estimation errors were amplified when the Zmf function (Z-
shaped built-in membership function) [31] was used to model the transport quality
as a function of the delivery time. Finally, these errors were further amplified by
the multiplication used to combine the visual and transport qualities in the QoE
computation.

Therefore, in this paper, we improve the accuracy of the estimated results
obtained by the proposed dynamic framework by allowing the system to perform
more than one transcoding operation. For JPEG, we showed in [17] that it is
possible to improve significantly the estimated results if a small number (1 to 5) of
transcoding operations is performed. However, additional experiments are required
to show the behaviour of the proposed framework in different network conditions.
Besides, we want to improve the estimated results in the case of XHTML as well.
Therefore, we modify slighly the estimation method presented in [18] to improve
the estimated quality of the documents that were not close to optimality. Then,
based on this method, we present four other methods, which are variants of the first
one, but with improved accuracy. Each method offers an interesting compromise
between performance (how close it is to optimality) and complexity (number of
transcoding operations required). In this framework we exploit visual quality and
file size predictors of JPEG images subject to changing their resolution and quality
factor [26,3,4].

We show that the quality of the content adapted using our framework is near-
optimal. For instance, with JPEG, the results obtained were 6% and 3% far from
optimality respectively, using methods 2 and 5. In the case of XHTML, they
were 3% and 1% far from optimality, using methods 2 and 5 respectively. More
importantly, from the set of documents tested, we were able to reach optimality in
30% and 59% of the documents for JPEG and XHTML respectively, which make
the proposed framework very attractive.

1.5 Structure of the paper

This paper is structured as follows. In section 2, we present a global overview of the
proposed framework architecture as well as the adaptation process. In section 3,
we review, in more details, the problem statement, which was presented in [18]. In
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section 4, we present the proposed quality of experience measure. Section 5 details
the proposed prediction-based framework as well as various methods it comprises.
In section 6, we present the experimental setup used to validate the performance of
our framework. The experimental results are presented and discussed in section 7.
Lastly, section 8 concludes the paper.

2 Overview of the proposed adaptation framework

The overall architecture of the proposed content adaptation framework is presented
in Fig. 1. It is comprised of four tiers:

1. The client tier is represented by the mobile Web browser.
2. The server tier is designated by the Web server and comprised mainly of

a request handler (e.g. servlet) and a bean application. The request handler
plays the role of middleware between the client tier and the business tier, but
via a bean, which can be a java class helper. The bean parses the information
received from the servlet, extracts the context information(the user’s profile,
the mobile terminal characteristics, the requested content, etc.), converts it
into a processable format (e.g. JSON or XML), and sends it to the business
tier.

3. The business tier is represented by the transcoding engine and comprises two
units: a decision unit (DU), and a content adaptation unit (CAU). The DU
computes the best, ideally optimal, transcoding parameters using the context
information received from the request handler, and the composition of the
requested content. The CAU converts the content into an adapted version,
using the transcoding parameters, to be returned to the terminal.

4. The persistence tier consists of a repository database used to store content,
such as presentations loaded by users and their adapted versions (along with
the transcoding parameters used in their creation). If desired, these adapted
contents can be delivered to other users, depending on the policy adopted, that
is, always transcoding or, when possible, selecting a version that has already
been created and stored.

Fig. 1: Architecture of the proposed dynamic content adaptation framework.

To be processed, the user’s request goes through several steps, as shown in Figure 1.
Typically, these steps are the following:
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1. An HTTP request is sent to the Web server to download the main page
(XHTML) of the Web application (e.g. meeting application).

2. The servlet receives the request, extracts the important data, such as the user
profile and the file name of the document requested, among other things. Then,
these data are sent to the bean.

3. The DU receives the data and requests certain meta data of the document
to be adapted (its composition), which have already been extracted from the
document and stored in the repository. Using these data, it computes the best,
ideally optimal, set of transcoding parameters and sends them to the CAU.

4. The CAU requests the enterprise document from the repository, and uses the
transcoding parameters received from the DU to generate an adapted content.

5. The characteristics of the created adapted content are extracted and compared
to the terminal’s constraints to ensure that it satisfies those requirements.
If it does not, the DU must calculate new transcoding parameters until the
terminal’s constraints are met.

6. Once a compliant adapted content has been created, it is first stored in the
repository (along with the parameters used in its creation), and then sent back
to the bean in the Web server.

7. The bean receives the adapted content and sends it back to the servlet.
8. The servlet forwards the adapted content to the mobile terminal.
9. The dashed line in the figure represents the information being sent back and

forth between the mobile terminal and the persistent adapted content. This
sequence can occur if the user has received an editable version of the content.
Each time the content is updated, a request (XMLHttpRequest) is fired to
update the content in the repository. The content sent from the servlet to the
Web browser is received first by an AJAX engine, which decides how the data
should be presented on the Web browser, and interprets the user’s interactions
with the content.

2.1 The content adaptation process

From the architecture presented in Fig. 1, we focus on the business tier, which
comprises the transcoding engine and its components, as depicted in Fig. 2. To
highlight what is novel in this architecture, we present the transcoding engine and
the elements with which it interacts, namely the Web server and the preprocessing
subsystem.

2.1.1 The preprocessing subsystem

In most mobile Web conferencing services, a PowerPoint presentation is uploaded
by the presenter prior to the meeting. To save the precious time of the transcoding
engine, the document is processed offline (before making it available to users) to
extract its characteristics. These are used later by the transcoding engine when
the document is requested. This feature is called the Preprocessing subsystem.
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Fig. 2: Proposed prediction-based dynamic content adaptation system.

2.1.2 The Web server

When the enterprise document is requested, the users’ requests are captured on
the Web server by a request handler module, which keeps track of these requests
and computes the time they spent on the server before they were processed. The
device’s capabilities and the user preferences are extracted and resolved on the
Web server, with the option of using a cached UAProf database. These data,
comprising the device capabilities, the user preferences, and the waiting time are
sent to the decision unit in the transcoding engine. Although the user’s preferences
are presented in the architecture for completeness, we do not focus on this aspect in
the content adaptation process proposed in this framework. Such user’s preferences
can be conveyed using the mechanisms presented in [5], including HTTP’s User-
Agent header and UAprof.

2.1.3 The transcoding engine

The core of the proposed architecture is the transcoding engine, which consists
of the DU and the CAU. In the DU, the constraints and quality parameters are
extracted from the device capabilities by the Constraints parameters extraction
and the Quality parameters extraction modules respectively. Then, they are evalu-
ated by the Constraints parameters evaluation and Quality parameters evaluation
modules respectively. To be accepted by the target mobile terminal, the adapted
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content should satisfy its constraints (memory, resolution, etc.). The quality pa-
rameters are used in the computation of the quality of each adapted content, al-
lowing the identification of the optimal one. Besides, the time spent by the user’s
request in the server before it is processed is evaluated by a Waiting time evaluation
module. After these data have been evaluated, they are sent to the Content opti-
mization module, which comprises a Quality prediction and a Optimal transcoding
parameters selection module. The first module uses the constraints and quality
parameters evaluated, the user preferences, and the waiting time to predict the
quality of the adapted content as a function of a set of transcoding parameter
combinations. The second module selects the optimal transcoding parameter com-
bination that corresponds to the best predicted quality. These parameters are then
used by the CAU to adapt the enterprise document into the best adapted content
version (it is expected to be near optimal, as it is based on predicted transcoding
parameters). Before sending it back to the end-user, the adapted content is sent to
the DU, where its file size is extracted and evaluated against the mobile terminal
memory. If this evaluation fails, another set of transcoding parameters should be
predicted and sent to the CAU. Lastly, when an acceptable version of the content
is created, it is sent back to the target mobile device and cached in the repository.

In the remaining sections, we focus on the Content optimization module, that
is, the computation of the optimal transcoding parameters.

3 Problem statement

Let C be an enterprise document, referred to here as “the original document” or
“the content”, composed of a set of pages (or slides) ck made up of various com-
ponents ck,i (e.g. text or images). We can write this formally as follows:

C = {ck}nk=1

ck = {ck,i}m(k)
i=1

(1)

where n is the total number of pages in C, and m(k) is the total number of com-
ponents of the kth page. For instance, C could be a PowerPoint presentation and
ck the kth slide composed of various components ck,i. Theoretically, a component
can be any object. For instance, in a slide ck composed of a text box and a JPEG
image, ck,1 represents the text box and ck,2 represents the JPEG image.

To be rendered by the target mobile device, the original document must often
be adapted. Various adaptation operations can be used to achieve this, and, in
principle, different transcoding parameter combinations can be used by the adap-
tation operations for each page. In this paper, for simplicity we concentrate on the
adaptation of enterprise documents comprising text and JPEG images, bearing in
mind that the concepts can be extended to other media types and formats. For
instance, images encoded in other formats (e.g. GIF) can be converted into JPEG
using a quality factor value of 80 to preserve their original quality. Regarding the
output formats into which enterprise documents can be adapted, two formats are
considered in this research, namely, JPEG- and XHTML-based Web pages. Let
P be the possible transcoding parameters that can be used to adapt the original
document’s pages and their components. Thus, we have:

P = {f, z,QF} (2)
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where:

– f ∈ {JPEG,XHTML} is the output format into which the original page is to
be transcoded.

– z ∈ [0, 1] is a scaling factor that defines the output resolution of the adapted
page.

– QF ∈ [0, 100] represents the quality factor of the outputted JPEG images on
the adapted page.

Depending on the output format, the transcoding parameters of P are applied as
follows:

– If, for a given page ck, the selected output format is JPEG, the whole page
is rasterized into a JPEG image and wrapped in an XHTML skeleton. As a
result, the whole page is adapted into a Web page that contains only one JPEG
image. In this case, the parameters z and QF are used to create that JPEG
image.

– If the selected output format is XHTML, the whole page is adapted into an
XHTML file, which may include both text and images. As a result, the output
XHTML file will contain the same number of components (text and images)
as the original document. In this case, to preserve the initial intentions of the
author of the original document, the same z is used for all the components of
the original pages and the same QF for all the embedded JPEG images. By
preserving the author’s intentions, the adapted page will have the same layout
(relative sizes and positions of embedded components) as the original one.

We define T as the transcoding operation that adapts the document page (or
slide) ck into a Web page using the transcoding parameters f , z, and QF , as
follows:

T : C× P→ C
f,z,QF

ck × (f, z,QF ) 7→ cf,z,QFk

(3)

where Cf,z,QF is the set of all the possible adapted content versions that can be
created by T from C, using all the parameters from P. In other words, cf,z,QFk

represents the adapted content version of ck created by T using f , z, and QF .
Given a page ck, let W(ck) and H(ck) be its width and height, in pixels,

respectively.
Let D be the target mobile device and W(D), H(D), S(D), and F(D) be its

maximum permissible image width, image height, file size (in bits), and supported
formats respectively.

From the set of adapted content versions that can be created from ck using
T, only a subset can be rendered by D. Let R(ck, D) be the set of transcoding
parameter combinations that can be used to create these renderable versions:

R(ck, D) =
{

(f, z,QF ) |W(cf,z,QFk ) = zW(ck) ≤W(D) and

H(cf,z,QFk ) = zH(ck) ≤ H(D) and

S(cf,z,QFk ) ≤ S(D) and

f ∈ F(D)
} (4)
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where S(cf,z,QFk ), W(cf,z,QFk ), and H(cf,z,QFk ) are the file size, and the width and

height of the adapted content cf,z,QFk respectively.
Since there could be multiple transcoding parameter combinations leading to

adapted content versions renderable byD, the objective is to compute the ones that
maximize the user’s quality of experience, which we denote here by QE (cf,z,QFk , D),
and which will be defined in the next section. Let R∗(ck, D) ⊆ R(ck, D) be the sub-

set of optimal transcoding parameter combinations that maximize QE (cf,z,QFk , D).
It is given by:

R
∗(ck, D) =

{(
f∗(ck, D), z∗(ck, D), QF ∗(ck, D)

)}
= arg max

(f,z,QF )∈R(ck,D)

QE (cf,z,QFk , D)
(5)

Note that there may be several solutions to (5). In this case, the parameters
leading to the best visual quality are arbitrarily selected.

4 Proposed quality of experience measure

The quality of the delivered content, as experienced by the end-user, QE , is affected
by three factors [14]:

1. The quality of the content at the source, that is, the quality of the adapted
content before delivery.

2. The quality of service QoS, which is affected by the delivery of the adapted
content over the network.

3. The human perception of the adapted content.

In other words, QE is affected by the visual quality and transport quality (quality
associated with the total delivery time). The first expresses how the content is
appreciated visually, and the second expresses the impact of the total delivery
time on the appreciation of the content. Based on these qualities, for a target
mobile device D, we propose to evaluate the QE of the adapted content cf,z,QFk as
follows:

QE (cf,z,QFk , D) = QV (cf,z,QFk , D)QT (cf,z,QFk , D) (6)

where 0 ≤ QV ≤ 1 and 0 ≤ QT ≤ 1 represent the visual quality and the transport
quality respectively. This is not the only way of evaluating the quality of expe-
rience, and, as explained in [14], the QE and the QoS evaluation are completely
separate research topics. In our framework, we propose the product of QV and
QT rather than their sum, to prevent large disparities in QV and QT from being
able to produce a high QE . Indeed, the product is more appropriate than the sum,
since QV and QT are not compensatory attributes. In our problem here, when a
JPEG image is aggressively transcoded, its QT will be close to 1 (a very lightweight
image) and its QV close to 0 (a very distorted image). If QV and QT are summed,
the resulting QE will be close to 1, which is misleading. Unlike the sum, the prod-
uct will be close to 0, which is more reasonable. In fact, before combining two or
more attributes to obtain a single measure that reflects the nature of the problem
in context, these attributes should first be classified into compensatory and non
compensatory attributes. The former can be summed, whereas the latter cannot.
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This is the fruit of research performed elsewhere, particularly in the marketing
and decision making fields [15,6].

Although further research and validation are required to establish a metric that
accurately matches the user’s experience, the proposed metric is adopted here to
illustrate the benefits over existing methods of performing prediction-based dy-
namic content adaptation. Similar benefits are expected with other metrics which
consider a compromise between visual quality and delivery time.

4.1 Visual quality evaluation

Let ck = {ck,i}m(k)
i=1 be a page composed of a set of components, and cf,z,QFk its

adapted version created by T, which comprises a set of adapted components and
can be formulated as follows:

cf,z,QFk =
{
cf,z,QFk,1 , cf,z,QFk,2 , . . . , cf,z,QFk,m(k,f)

}
(7)

where cf,z,QFk,i is the ith transcoded component and m(k, f) is the total number
of components. Ignoring the XHTML wrapper, which has no impact on quality in
either case, m(k, f) is given by:

m(k, f) =

{
m(k) if f = XHTML

1 if f = JPEG
(8)

Of course, the visual quality of the adapted content depends on the visual quality
of its components, but it also depends on the area occupied by each component
(the larger the area, the larger the weight it should have in terms of quality ).
Therefore, we propose to compute the visual quality as a weighted sum of the
visual quality of each of its components, each weight being the area that they
occupy. So, we have:

QV (cf,z,QFk , D) =

m(k,f)∑
i=1

A(cf,z,QFk,i )QV (cf,z,QFk,i , D)

m(k,f)∑
i=1

A(cf,z,QFk,i )

(9)

QV (cf,z,QFk,i , D) =

{
QI (cf,z,QFk,i , D) if cf,z,QFk,i is an image

1 if cf,z,QFk,i is text
(10)

where:

– QI measures image quality, such as PSNR or SSIM [33] (or any other reliable
full reference objective metric).

– We have assumed that the text is rendered perfectly, and, without loss of
generality, the visual quality of the text components is set to 1. However, more
sophisticated metrics could be used to take into account the resizing of the
text components. The other textual characteristics, such as color, font, and
the like, should not be affected, in order to preserve the original intentions of
the document’s author.
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– A(cf,z,QFk,i ) is the visible (not hidden) area occupied by cf,z,QFk,i . We always

have A(cf,z,QFk,i ) ≤ H(cf,z,QFk,i )W(cf,z,QFk,i ), since two components are allowed
to partially overlap one another. For instance, a text region can completely
or partially overlap an image region. However, if they do, the hidden regions
of an image should not be considered for computing either its region A or
its visual quality QI . This is particularly important when the page contains a
background.

– When the adapted content cf,z,QFk comprises one image (e.g. JPEG), its visual
quality is reduced to the visual quality of that image, as is the case when the
output format to be used is f = JPEG.

4.2 Transport quality evaluation

The second factor that affects the user’s quality of experience is transport quality.
This factor is itself affected by the total delivery time, which is made up of the
time required to perform the adaptation operation, plus the time taken by the
adapted content to reach the target mobile device. For adapted content cf,z,QFk

and a target mobile device D, the total delivery time Td can defined as:

Td
(
cf,z,QFk , D

)
=

S
(
cf,z,QFk

)
NB (D)

+NL(D) + SL(D) + TL(cf,z,QFk ) (11)

where:

– S(cf,z,QFk ) is the file size in bits of cf,z,QFk .
– NB (D) and NL(D) are the bitrate and latency of the network to which D is

connected respectively.
– SL(D) is the server latency. For a device D, it represents the time spent by the

request on the server (i.e. in the queue) waiting to be processed. This period
of time depends on the performance of the server, but also on the number
of requests waiting for the service. So, for a given server, this value may be
different for each device.

– TL(cf,z,QFk ) is the transcoding latency. It represents how long the adaptation
operation takes to complete, and depends on the original content, ck, and the
transcoding parameters f , z, and QF in use. It can be estimated based on past
transcoding operations. On high-end computers, this value should be small.

There is no doubt that the longer it takes to deliver the adapted content, the
less it is appreciated by the end-user. As the total delivery time increases, its
perceived quality is reduced accordingly. That is, transport quality is inversely
proportional to total delivery time. We therefore propose to evaluate transport
quality using a normalization Z-shaped built-in membership function (Zmf) [31].
This was inspired by the work of [20,34], in which the authors used the sigmf
and gaussmf membership functions to normalize various parameters, such as the
network bandwidth and latency. This function, (Zmf), expresses the end-user’s
appreciation of (or frustration with) the adapted content, as a function of the wait
time, in terms of a behavior. An example of such a behavior is depicted in Fig. 3. In
fact, the appreciation or frustration varies from one individual to another, which
is why the values of α and β (see Fig. 3) are used. These values can be determined



Robust QoE-aware Prediction-based Dynamic Content Adaptation Framework 13

Fig. 3: Transport quality behavior for α = 5 and β = 10

by experience or defined by the end-user. The value α expresses the period of
time in which the end-user is fully satisfied with the response time. The value
(α + β)/2 expresses the period of time in which that appreciation is reduced to
50%. When the total delivery time reaches the value β, the user’s appreciation
falls to 0. According to research performed to estimate the wait time that users
will tolerate when accessing Web content [23,28], the values α and β can be set
to model the user’s actual behavior regarding wait time. Thus, transport quality
can be formulated as follows:

QT (cf,z,QFk , D) = Zmf(x, [α, β])

=



1 if x ≤ α

1− 2
(
x−α
β−α

)2
if α ≤ x ≤ α+β

2

2
(
x−β
β−α

)2
if α+β

2 ≤ x ≤ β
0 if x ≥ β

(12)

where x = Td
(
cf,z,QFk , D

)
.

5 Proposed prediction methods and models

In [18], we proposed a prediction-based dynamic content adaptation framework to
solve equation (5), in which near-optimal transcoding parameters are computed.
In this paper, we generalize the proposed framework by proposing a set of models
and methods designed to improve the accuracy of these near-optimal transcoding
parameters. Let us call the solution presented in [18], Method 1 - Estimation. There
are some inaccuracies in these estimated transcoding parameters, but they nev-
ertheless represent a good starting point from which the other proposed methods
improve. These methods are, in fact, variants of method 1. They improve accuracy,
but at the expense of increased complexity (number of transcoding operations).
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Fig. 4: Example of estimated transcoding parameters computed for a given docu-
ment using a QE table. The shaded cell contains the estimated optimal QE obtained
by method 1

5.1 Method 1 - Estimation

In [3,26,4], and also in [18], quantized values of z and QF are used instead of
continuous ones, in order to limit the parameter space; that is, using a granularity
of ∆z = 0.1 and ∆QF = 10, the quantized values of z and QF used are as follows:

z̃ ∈ {0.1, 0.2, 0.3, . . . , 1}

Q̃F ∈ {10, 20, 30, . . . , 100}
(13)

Thus, the solution space consists of 200 distinct combinations of parameters (100
combinations for each format: JPEG and XHTML). With this solution space, an
exhaustive static method will perform 200 transcoding operations and select the
best one.

With method 1, for a content ck and a target mobile device D, QE (cf,z,QFk , D)
can be estimated for f ∈ {JPEG,XHTML} and the quantized values z and QF .
By solving (5) in the estimated solution space, we can identify the near-optimal
solution, which consists of the transcoding parameter combinations that maximize
QE . For instance, Fig. 4 shows the estimated QE values for f = JPEG and the

various combinations of z̃ and Q̃F computed for a document. The shaded cell
represents the estimated near-optimal QE obtained by method 1. This method
is based on predicted file size and visual quality of transcoded JPEG images,
tabulated in [26,3], and indexed by z̃ and Q̃F parameters. A full description of
this method can be found in [18].

Let R∗1(ck, D) be the subset of near-optimal transcoding parameter combina-
tions obtained by this method. It is a modified formulation of equation (5). We
added the index 1 to clearly indicate that the near-optimal transcoding parameters
were obtained using method 1. So, we have:

R
∗
1(ck, D) =

{(
f∗1 (ck, D), z∗1(ck, D), QF ∗1 (ck, D)

)}
= arg max

(f,z,QF )∈R(ck,D)

QE (cf,z,QFk , D)
(14)

In terms of complexity, as presented in [18], method 1 requires a single transcod-
ing operation.
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Fig. 5: (a) Example of the estimated transcoding parameters computed for a
given document. The shaded cell contains the estimated optimal QE obtained by
method 1. (b) The bivariate quadratic function used to model the region covered
by this optimal point and its four nearest neighbors

5.2 Method 2 - Estimation and interpolation

In this method, instead of using quantized values of z and QF , we let the solution
space be continuous. Since the estimated solution obtained by method 1 is near-
optimal, the optimal solution should be in the same neighborhood. Consequently,
using the estimated near-optimal solution and its four nearest neighbors, we sup-
pose that the optimal solution is within the region covered by these five points.
We fix the near-optimal format f∗1 (ck, D) (which is known from method 1) and
model QE in this region using a bivariate quadratic function defined as follows:

f(x, y) = ax2 + bx+ cy2 + dy + e (15)

where x and y represent z and QF in a continuous space respectively.

The optimal point in this region is where the gradient is null:


∂f

∂x
= 2ax+ b = 0

∂f

∂y
= 2cy + d = 0

(16)

Using the estimated near-optimal point and its four estimated nearest neigh-
bors, we compute the coefficients a, b, c, d, and e. Then, using (16), we com-
pute the estimated interpolated near-optimal transcoding parameters z∗I (ck, D)
and QF ∗I (ck, D). We expect the interpolated near-optimal point to be close to
the actual optimal. Two adapted contents are created using the estimated and
interpolated transcoding parameters, and the best of the two is selected as the
near-optimal adapted content obtained by method 2. Fig. 5 shows, for a given
document, the estimated near-optimal QE obtained by method 1 and its four
nearest neighbors, and the bivariate quadratic function obtained by modeling this
region. On the surface of this function, we have two points: the one obtained by
method 1, and the one obtained by interpolation (where the gradient is null).
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Fig. 6: Example of estimated transcoding parameters and their computed QE for a
given document. The shaded cell contains the near-optimal computed QE obtained
by method 1. The diamond shows its four computed nearest neighbors

Formally, the near-optimal transcoding parameters obtained by method 2 are
given by:

R
∗
2(ck, D) =

{(
f∗2 (ck, D), z∗2(ck, D), QF ∗2 (ck, D)

)}
= arg max

(f,z,QF )∈N2
e

QE (cf,z,QFk , D)
(17)

where N2
e is a set comprising two elements: the estimated and the interpolated

(the index of which is denoted I below) near-optimal parameter combinations.
Formally, we have:

f∗2 (ck, D) = f∗1 (ck, D) (18)

N
2
e =

{(
f∗1 (ck, D), z∗1(ck, D), QF ∗1 (ck, D)

)
,(

f∗1 (ck, D), z∗I (ck, D), QF ∗I (ck, D)
)} (19)

In terms of complexity, this method requires two transcoding operations, one from
method 1 and the other from the interpolation.

5.3 Method 3 - Estimation and one-step Diamond search

In this method, we use the estimated near-optimal adapted content (computed
from method 1) and its four nearest neighbors. Unlike method 2, here, these five
points are transcoded versions, rather than merely estimated content, and the
best of them is selected. For instance, Fig. 6 shows the computed QE array for the
same document presented in the previous methods. The shaded cell contains the
computed QE obtained using the estimated near-optimal transcoding parameters
of method 1, and diamond search points formed by its four nearest neighbors.
In this example, the left neighbor represents the near-optimal point obtained by
method 3.
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Formally, the optimal transcoding parameters obtained by this third method
are as follows:

R
∗
3(ck, D) =

{(
f∗3 (ck, D), z∗3(ck, D), QF ∗3 (ck, D)

)}
= arg max

(f,z,QF )∈N5
e

QE (cf,z,QFk , D)
(20)

where N5
e is a set containing five elements: the estimated near-optimal parameters

of method 1 and their four nearest neighbors. So, we have:

f∗3 (ck, D) = f∗1 (ck, D) (21)

N
5
e =

{(
f∗1 (ck, D), z∗1(ck, D), QF ∗1 (ck, D)

)
,(

f∗1 (ck, D), z∗1(ck, D)±∆z,QF ∗1 (ck, D)
)
,(

f∗1 (ck, D), z∗1(ck, D), QF ∗1 (ck, D)±∆QF
)} (22)

Regarding complexity, this method requires five transcoding operations. One op-
eration is from method 1 and the others are from its four nearest neighbors.

5.4 Method 4 - Estimation and two-steps diamond search

Like method 3, in this method, we identify and create the estimated optimal
adapted content and its four nearest neighbors. From these five points, we identify
the best one (equal to that obtained by method 3) and use it as a starting point to
explore its four nearest neighbors. This is the origin of the term two-steps diamond
search. If the best point is equal to that obtained by method 1, there is no need to
perform the second step in the search, and so the near-optimal point returned by
this method is the one obtained by method 3

(
f∗3 (ck, D), z∗3(ck, D), QF ∗3 (ck, D)

)
.

Otherwise, we identify and create its four nearest neighbors, one of which had
already been created by method 3. The best of these points becomes the near-
optimal point computed by method 4. Fig. 7 shows the same example presented in
method 3, in which the two diamond search points are outlined. In this example,
the neighbor below the optimal solution obtained by method 3 represents the
optimal point of this method (z = 0.4 and QF = 60).

This can be formulated as follows:

R
∗
4(ck, D) =

{(
f∗4 (ck, D), z∗4(ck, D), QF ∗4 (ck, D)

)}
= arg max

(f,z,QF )∈N5,8
e

QE (cf,z,QFk , D)
(23)

where N5,8
e is the set of transcoding parameter combinations used in this method.

Thus, we have:
f∗4 (ck, D) = f∗1 (ck, D) (24)

N
5,8
e = N

5
e ∪

{(
f∗3 (ck, D), z∗3(ck, D)±∆z,QF ∗3 (ck, D)

)
,(

f∗3 (ck, D), z∗3(ck, D), QF ∗3 (ck, D)±∆QF
)} (25)

The complexity of this method is either five or eight transcoding operations:
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Fig. 7: Example of estimated transcoding parameters and their computed QE for a
given document. The shaded cell contains the near-optimal computed QE obtained
by method 1. The two diamonds show its evaluated neighbors

– If
(
f∗3 (ck, D), z∗3(ck, D), QF ∗3 (ck, D)

)
=
(
f∗1 (ck, D), z∗1(ck, D), QF ∗1 (ck, D)

)
, then

we have N5,8
e = N5

e, and so only five transcoding operations are required. One
operation from method 1 and the others from its four nearest neighbors.

– Otherwise, we have N5,8
e ⊃ N5

e, and so eight transcoding operations are per-
formed. One operation from method 1, four from its nearest neighbors, and
three from the neighbors of the optimal obtained by method 3 if it is different
from that obtained by method 1.

5.5 Method 5 - Estimation and greedy search

In this method, we use the estimated near-optimal point (from method 1) as a
starting point and explore its neighborhood, seeking to improve the QE obtained
until convergence is reached; that is, until this QE cannot be improved any further.
We tested various patterns and found that, for the problem at hand, following one
of these patterns: LRUD, LRDU, RLUD, RLDU, UDLR, UDRL, DULR, or DURL,
improved this QE significantly with the fewest transcodings, compared to other
patterns. Note that, using these selected patterns, the performance of this method
(optimal QE versus complexity) varies slightly from one pattern to another. But
the difference is so small that it can be neglected, and so these patterns can be
used interchangeably. Before detailing this method, we explain what the letters L,
R, U, and D stand for. For a given point, they constitute its nearest left-hand,
right-hand, upward, and downward neighbors respectively. For instance, the four
nearest neighbors of the estimated point of method 1 are given by:

Left neighbor :
(
f∗1 (ck, D), z∗1(ck, D)−∆z,QF ∗1 (ck, D)

)
Right neighbor :

(
f∗1 (ck, D), z∗1(ck, D) +∆z,QF ∗1 (ck, D)

)
Up neighbor :

(
f∗1 (ck, D), z∗1(ck, D), QF ∗1 (ck, D)−∆QF

)
Down neighbor :

(
f∗1 (ck, D), z∗1(ck, D), QF ∗1 (ck, D) +∆QF

) (26)

Using the LRDU pattern, for example, this method proceeds as follows: We start
from the point

(
f∗1 (ck, D), z∗1(ck, D), QF ∗1 (ck, D)

)
, then, we verify whether or not

the neighbor to the left provides a better solution. If it does, we move towards the
left until there is no further improvement. Otherwise, we verify whether or not the
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Fig. 8: Example of estimated transcoding parameters and their computed QE for a
given document. The shaded cell contains the near-optimal computed QE obtained
by method 1. The points evaluated by this method are outlined

neighbor to the right provides a better solution, and, if so, we move towards the
right until there is no further improvement. The same process is then performed in
the downward and upward directions. Each time a new point is evaluated, a new
transcoding is performed. For instance, Fig. 8 shows, for the same example, the set
of points visited when an LRDU greedy search is performed on the computed QE

array. The optimal point in this example corresponds to z = 0.4 and QF = 80. The
pseudo-code of the proposed greedy search algorithm (LRDU pattern) is presented
in Algorithm 1. Formally, the near-optimal transcoding parameters combinations
obtained by this fifth method are given by:

R
∗
5(ck, D) =

{(
f∗5 (ck, D), z∗5(ck, D), QF ∗5 (ck, D)

)}
= arg max

(f,z,QF )∈Ngreedy
e

QE (cf,z,QFk , D)
(27)

where Ngreedye is the set of points evaluated in this method, which can vary greatly,
depending on ck and D. Similarly, f∗5 (ck, D) = f∗1 (ck, D).

The number of transcoding operations can be very high if either the starting
point is chosen randomly or an exhaustive search is performed. However, in this
method, we take advantage of the prediction of the estimated transcoding param-
eters, which are very reliable. Unlike an exhaustive search, we start here from an
estimated point that is relatively close to the optimal. Indeed, experimental results
(see section 7) show that the number of transcoding operations is between 4 and
7 - 5.2 on average, which means that we are still in the same range of transcoding
operations as with previous methods.

6 Experimental setup

To validate the performance of the proposed set of methods, and particularly the
QE improvements made by methods 2 to 5 over method 1, we used the same
experimental setup as presented in [17,18]. That is, a corpus that contains 120
OpenOffice Impress presentation documents was created. To this end, we created
a Java-based application that uses OpenOffice APIs (known under the name of
UNO) to create these Impress documents [25]. For simplicity, each document was
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1 function LRDU Search(ck, D)
2 begin
3 z ← z∗1 (ck, D), QF ← QF ∗1 (ck, D)

4 QE ← QE (cz,QFk , D))

5 (z,QF,QE )← LR Search(ck, D, z,QF,QE )
6 (z,QF,QE )← DU Search(ck, D, z,QF,QE )
7 return (z,QF,QE )

end

8 function LR Search(ck, D, z,QF,QE )
9 begin

10 if QE (cz−∆z,QFk , D)) > QE then
11 (z,QF,QE )← search(ck, D, z,QF,QE ,−1, 0)

else

12 if QE (cz+∆z,QFk , D)) > QE then
13 (z,QF,QE )← search(ck, D, z,QF,QE ,+1, 0)

end

end
14 return (z,QF,QE )

end

15 function DU Search(ck, D, z,QF,QE )
16 begin

17 if QE (cz,QF+∆QF
k , D)) > QE then

18 (z,QF,QE )← search(ck, D, z,QF,QE , 0,+1)
else

19 if QE (cz,QF−∆QFk , D)) > QE then
20 (z,QF,QE )← search(ck, D, z,QF,QE , 0,−1)

end

end
21 return (z,QF,QE )

end

22 function search(ck, D, zo, QFo,QE , λz , λQF )
23 begin
24 z ← zo + λz∆z, QF ← QFo + λQF∆QF

25 while QE (cz,QFk , D)) > QE do

26 QE ← QE (cz,QFk , D)

27 z ← z + λz∆z, QF ← QF + λQF∆QF

end
28 return (z,QF,QE )

end

Algorithm 1: LRDU greedy search pseudo-code

composed of one slide, with these slides themselves composed of one text-box
and one image, and their positions set randomly. To span a wide variety of slide
characteristics, quantized values, representing the percentage of areas occupied by
images (I) and text-boxes (T ), were used as follows:

I ∈ {0%, 10%, 20%, . . . , 100%}
T ∈ {0%, 10%, 20%, . . . , 100%}

Note that it is allowed for a slide to be comprised of text and images sharing the
same area or the same part of the area (partial or total overlap). No background
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was set, but an inserted image covering the whole slide could be considered too.
Text and images were collected from different websites such as [32].

Let V be this set of Impress documents. Let D be a target mobile device that
has a resolution of 640×360, and is connected to a GPRS network that has a
bitrate BR(D) = 50 kbps and network latency NL(D) = 488 ms [30]. Note that,
similar results were obtained with other mobile device characteristics and network
conditions.

We want to compare our framework with a set of optimally adapted contents,
using an exhaustive static method, to be used as references (ideal targets to attain).
These optimally adapted contents would be used to evaluate the performance
of the proposed set of methods. To that end, using the OpenOffice JPEG- and
XHTML-based filters, each document ck from V, was converted into a set of Web
pages by varying the transcoding parameters values z̃ ∈ {0.1, 0.2, 0.3, . . . 1} and

Q̃F ∈ {10, 20, 30, . . . 100}. As explained in [18], the OpenOffice XHML-based filter
was very limited and contains numerous bugs that we fixed.

To compute the QE of these adapted contents, QV and QT were evaluated
first. The adapted content visual quality, QV , was computed using SSIM [33]. To
evaluate the quality of a transcoded image, SSIM requires both the original image
and its transcoded version. In our case, we have slides and not images. In the case
of adapted content generated by the XHTML-based filter, we still have the original
images, which were used in the SSIM evaluation. In the case of the JPEG-based
filter, each slide was converted into a JPEG image using z = 1 and QF = 80, from
which a set of JPEG images were created using the various values of z̃ and Q̃F .
Then, these images were wrapped into Web page skeletons. This way, the images
created using z = 1 and QF = 80 were used as original images in the process
of visual quality and file size estimation, as detailed in [18]. We used z = 1 and
QF = 80 in the creation of the original image as this combination preserves the
image visual quality and ensures lower file size [3]. Moreover, to use SSIM, we
needed to provide a resolution at which the two images (original and transcoded)
should be scaled for comparison. Since the slides are to be rendered on D and
their default resolution, as rendered on PC by OpenOffice, was 1058 × 794, the
resolution to be used by SSIM can be determined, following the methodology of [3],
by: min

(
640
1058 ,

360
794

)
≈ 45%. This suggests a comparison of images at a resolution

of 40% of the original image resolution (zv = 0.4).

Note that, the SSIM index exhibits a highly non-linear relationship with the
MOS (Mean Opinion Score), which represents a true measure of the human per-
ception of image quality [29]. Therefore, to address the third element regarding the
QE design [14] (see section 4), the computed SSIM values were not used directly,
but rather, were converted into their corresponding continuous MOS values.

To evaluate the QT and QE of these adapted contents. Based on researches
conducted to estimate waiting time that users tolerate when accessing Web con-
tent [28,23], the actual behavior of QT can be determined by α = 5s and β = 10s
(see Fig. 3). In addition, to facilitate the validation, the values of SL(D) and

TL(cf,z,QFk ) (see equation (11)) were set to zero.

Besides the exhaustive static system, we want to compare our framework with
a typical dynamic system, denoted fixed-QF, which performs a single transcoding
operation using a quality factor QF = 80 (which provides good visual quality)
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Fig. 9: Optimal QE obtained by the proposed dynamic framework vs. that of the
exhaustive static system when f = JPEG. The slides are sorted according to the
QE of the exhaustive static system

and a scaling parameter z = 0.4 (which corresponds to the target mobile device
resolution).

Regarding our framework, using method 1 [18], the estimated transcoding pa-
rameters were very reliable overall. However, in the case of JPEG, there were some
outlier combinations. That is, for certain documents, the QE of the estimated near-
optimal transcoding parameters was not as close to optimality as the rest of the
documents. To visualize this, the QE obtained by the proposed dynamic frame-
work and the exhaustive static system were sorted according to the QE obtained by
the latter and plotted (see Fig. 9). We tested the framework with various bitrate
values, and reached the conclusion that these outlier points vary with the commu-
nication network conditions (e.g. bitrate). After analyzing the curve behavior of
QE , we found that these outliers were caused by the nature of the Zmf curve (see
Fig. 3) used to model the QT , which was set using α = 5 and β = 10. Indeed, the
Zmf curve for this scenario decreases aggressively between the two values α and β,
which makes the QE curve highly sensitive to delivery time (file size and network
conditions). Therefore, in method 1, since the file size prediction error in [26] can
reach 15%, we have increased the predicted file size by this amount to ensure that
the transcoded file size will not lead to a drastically lower QT than predicted. We
sacrifice the quality slightly to ensure a good QT , as it is much more sensitive to
file size. In this scenario, it was not necessary to increase the estimated file size in
the case of XHTML, as the estimated XHTML parameters were very precise [18].
However, for lower bitrate values, we observed the same behavior as that observed
in the JPEG case, which can be corrected by adjusting the predicted file size (i.e.
adding a safety factor). Some experiments with lower bitrate values exhibiting this
phenomenon are presented later in section 7.4.

Based on the estimated near-optimal transcoding parameters obtained by method 1,
the near-optimal QE obtained by method 2 to method 5 were computed for each
slide by solving equations (17), (20), (23), and (27) respectively.
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As a result, for each slide ck, its computed (using the exhaustive static and
fixed-QF dynamic systems) and estimated (using methods 1 to 5) best transcoding
parameters and their QE were stored in arrays, as follows:

W ∗E,k =
[
ck, f

∗
E

(ck, D), z∗
E

(ck, D), QF ∗
E

(ck, D),QE (c
f∗
E

(ck,D),z∗
E

(ck,D),QF∗
E

(ck,D)

k , D)
]

W ∗FQF,k =
[
ck, f

∗
FQF

(ck, D), 0.4, 80,QE (c
f∗
FQF

,0.4,80

k , D)
]

W ∗i,k =
[
ck, f

∗
i (ck, D), z∗i (ck, D), QF ∗i (ck, D),QE (c

f∗i (ck,D),z∗i (ck,D),QF∗
i (ck,D)

k , D)
]

(28)

where:

– W ∗E,k is an array that contains the optimal transcoding parameters
(f∗

E
(ck, D), z∗

E
(ck, D), QF ∗

E
(ck, D)) that were computed by the exhaustive static

system, and their corresponding QE .
– W ∗FQF,k is an array containing the best transcoding parameters

(f∗
FQF

(ck, D), 0.4, 80), as computed by the fixed-QF dynamic system, and their
QE .

– W ∗i,k is an array that contains the near-optimal transcoding parameters
(f∗i (ck, D), z∗i (ck, D), QF ∗i (ck, D)) attained by method i ∈ {1, 2, 3, 4, 5}, and
its QE .

Lastly, for each of the five proposed methods, the near-optimal transcoding
parameters obtained and their corresponding QE are compared to that of the ex-
haustive static system (optimality) and fixed-QF dynamic system (typical dynamic
system), the results of which are presented in the next section.

7 Experimental results and discussion

7.1 Optimal QE attained by each method

For each slide ck, the near-optimal QE obtained by methods 1 to 5, as well as those
computed by the exhaustive static method (from W ∗E,k) and the fixed-QF dynamic
method (from W ∗FQF,k), were plotted. To visualize this, all the QE obtained were
sorted according to those of the exhaustive static system, and presented in Figs. 10
and 11 for JPEG and XHTML respectively. Overall, the proposed methods have
a QE close to that of the exhaustive static system. However, the QE obtained
by the fixed-QF dynamic system is highly variable, and this is very obvious for
lower QE values. The fixed-QF dynamic system is especially problematic for large
documents and low network bitrate values. Note that the outlier points shown in
Fig. 9 were corrected in method 1, and, of course, in methods 2 to 5.

7.2 QE improvement made by method 2 to method 5 over method 1

To show the improvements obtained by methods 2 to 5 over method 1, their
relative gains in QE were computed. For instance, given a slide ck, the relative
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Fig. 10: Optimal QE obtained by methods 1 to 5 vs. that of the exhaustive static
and fixed-QF dynamic systems when f∗1 (ck, D) = JPEG. The slides are sorted
according to the QE of the exhaustive static system

Fig. 11: QE obtained by methods 1 to 5 vs. that of the exhaustive static and fixed-
QF dynamic systems when f∗1 (ck, D) = XHTML. The slides are sorted according
to the QE of the exhaustive static system

gain obtained using method i is computed as follows:

QE (c
f∗
i (ck,D),z∗i (ck,D),QF ∗

i (ck,D)

k , D)− QE (c
f∗
1 (ck,D),z∗1 (ck,D),QF ∗

1 (ck,D)

k , D)

QE (c
f∗
1 (ck,D),z∗1 (ck,D),QF ∗

1 (ck,D)
k , D)

× 100%

(29)
These computed QE relative gains were plotted as scattered points, as depicted
in Figs. 12 and 13 for JPEG and XHTML respectively. For instance, for JPEG,
sub-figures 12(a), 12(b), 12(c), and 12(d) show the QE relative gain obtained by
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(a) (b)

(c) (d)

Fig. 12: QE relative gains for methods 2 to 5 with respect to method 1, when
f∗1 (ck, D) = JPEG. (a) Method 2 - Estimation and interpolation, (b) Method 3 -
Estimation and one-step diamond search, (c) Method 4 - Estimation and two-steps
diamond search, (d) Method 5 - Estimation and greedy search

methods 2, 3, 4, and 5 respectively. In the case of XHTML, the relative gain
obtained by methods 2 to 5 are presented in sub-figures 13(a), 13(b), 13(c), and
13(d) respectively. The diagonal line represents the target relative gains, which
were computed from W ∗E,k. The scattered points represent the different slides,
and their positions indicate the relative gain obtained versus the target relative
gain.

7.3 Number of documents with an improved QE

Another view, showing the number of documents with an improved computed QE

as a result of applying the proposed methods is depicted in Figs. 14 and 15 for
JPEG and XHTML respectively. To show this aspect graphically, the QE range
has been split into 10 bins ([0,0.1], ]0.1,02],. . . ,]0.9,1]), and the documents that
are in the same QE bin were counted and their numbers plotted as a histogram.

In the case of JPEG, using the fixed-QF dynamic system, the first four bins (for
poor quality documents) contain almost 30% of the documents, while these bins
are empty for the other methods (methods 1 to 5, in addition to the exhaustive
static one). Also, unlike the other methods, for the fixed-QF dynamic system, the
last bin (for the best quality documents) contains very few documents. This can
also be seen in Fig. 10 for very low or very high QE values.
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(a) (b)

(c) (d)

Fig. 13: QE relative gains for methods 2 to 5 with respect to method 1, when
f∗1 (ck, D) = XHTML. (a) Method 2 - Estimation and interpolation, (b) Method 3
- Estimation and one-step diamond search, (c) Method 4 - Estimation and two-
steps diamond search, (d) Method 5 - Estimation and greedy search

Fig. 14: Performance of the proposed methods by QE slices of 10% when
f∗1 (ck, D) = JPEG

In the case of XHTML, the first 6 bins are empty for all the methods, except
for the fixed-QF dynamic system, for which there are some documents in bin
]0.5-06]. By contrast, the number of documents corresponding to the fixed-QF
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Fig. 15: Performance of the proposed methods by QE slices of 10% when
f∗1 (ck, D) = XHTML

dynamic system in bins ]0.6-07] to ]0.8-09] is far from that of the exhaustive static
system, although this number is closer to that of the exhaustive static system
when methods 1 to 5 are used.

These two figures show the improvements achieved by the proposed methods
in terms of the number of documents with an increased QE . They also serve as
a comparison, in terms of accuracy, between the proposed methods. Except for
method 4, the greater the complexity of the method used, the greater the accuracy
(the number of documents in each bin is closer to that of the exhaustive static
system).

7.4 Network conditions

In this section, we show the impact of the network conditions, particularly the
variation of the bitrate, on the performance of the proposed dynamic content
adaptation framework.

7.4.1 Low network bitrate

In this experiment we keep the same context parameters as in the previous section
and suppose that the actual network bitrate has decreased to NB (D) = 20 kbps.

Figs. 16 and 17 show the optimal QE obtained by the proposed dynamic frame-
work versus that obtained by the exhaustive static system for JPEG and XHTML,
respectively. These results were computed without adjusting the estimated file size.
Globally, the obtained results are close to optimality and as expected they present
some outliers points for both JPEG and XHTML. Therefore, we multiplied the es-
timated file size by a ratio of 1.15, and the results are presented in Figs. 18 and 19.
These figures show also the performance of the whole framework (methods 1 to 5)
versus the exhaustive static and fixed-QF dynamic systems. As expected, the fixed-
QF dynamic system performs very poorly under lower bitrate values whereas the
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Fig. 16: JPEG optimal QE obtained by our framework (method 1) vs. that of the
exhaustive static system computed with a file size ratio of 1, NB (D) = 20 kbps
and NL(D) = 488 ms. The slides are sorted according to the QE of the exhaustive
static system

Fig. 17: XHTML optimal QE obtained by our framework (method 1) vs. that of
the exhaustive static system computed with a file size ratio of 1, NB (D) = 20 kbps
and NL(D) = 488 ms. The slides are sorted according to the QE of the exhaustive
static system

proposed dynamic system is very close to optimality. Statistical details, showing
the average deviation from optimality and its variance, are presented in Table 1.
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Fig. 18: JPEG optimal QE obtained by our framework vs. that of the exhaus-
tive static and fixed-QF dynamic systems computed with a file size ratio of 1.15,
NB (D) = 20 kbps and NL(D) = 488 ms. The slides are sorted according to the
QE of the exhaustive static system

Fig. 19: XHTML optimal QE obtained by our framework vs. that of the exhaus-
tive static and fixed-QF dynamic systems computed with a file size ratio of 1.15,
NB (D) = 20 kbps and NL(D) = 488 ms. The slides are sorted according to the
QE of the exhaustive static system

7.4.2 High network bitrate

In this experiment, we suppose that the mobile device D is connected to an EDGE
network that has the following characteristics: NB (D) = 240 kbps and NL(D) =
504 ms [30]. The optimal QE obtained by the proposed dynamic system is compared
to that obtained by the exhaustive static and fixed-QF dynamic systems, and the
results are presented in Figs. 20 and 21 for JPEG and XHTML, respectively.
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Table 1: Average deviation form optimality and its variance as computed with a
file size ratio of 1.15, NB (D) = 20 kbps and NL(D) = 488 ms

Average deviation Variance
from optimality (×10−3)

Methods JPEG XHTML JPEG XHTML

Method 1-Estimation 0.058 0.029 0.985 1.248
Method 2-Est. and interpolation 0.055 0.027 0.997 0.959
Method 3-Est. and one step diamond search 0.027 0.014 0.785 0.530
Method 4-Est. and two steps diamond search 0.017 0.011 0.529 0.324
Method 5-Est. and greedy search 0.016 0.012 0.445 0.315

Fig. 20: JPEG optimal QE obtained by our framework vs. that of the exhaustive
static and fixed-QF dynamic systems computed with a file size ratio of 1, NB (D) =
240 kbps and NL(D) = 504 ms. The slides are sorted according to the QE of the
exhaustive static system

For JPEG, the optimal QE obtained by the proposed dynamic framework is
close to optimality, especially using methods 4 and 5. Besides, almost 50% of the
documents reached optimality, as shown in Fig. 20. Note that, these results were
computed without adjusting the estimated file size. To improve even more the
obtained results accuracy, we tested various file size ratio values (5%, 10%, 15%
and 20%) and no noticable improvement was obtained. As discused earlier, we
believe, that future research should be conducted to establish the right file size
ratio in fucntion of the network conditions. The fixed-QF-dynamic system is still
far from optimality compared to the proposed dynamic framework.

For XHTML, the obtained results are exceptional as we reached optimality
in 99% of the documents. This confirms again the fact that XHTML is more
precise than JPEG, wich makes it a very attractive format to consider in enterprise
documents adapation. On the other hand, the fixed-QF dynamic system is very
variable and gets far from optimality for a large number of documents.
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Fig. 21: XHTML optimal QE obtained by methods 1 to 5 vs. that of the exhaustive
static and fixed-QF dynamic systems computed with a file size ratio of 1, NB (D) =
240 kbps and NL(D) = 504 ms. The slides are sorted according to the QE of the
exhaustive static system

Table 2: Average deviation from optimality and its variance as computed with a
file size ratio of 1, NB (D) = 240 kbps and NL(D) = 504 ms

Average deviation Variance
from optimality (×10−3)

Methods JPEG XHTML JPEG XHTML

Method 1-Estimation 0.070 0 7.443 0
Method 2-Est. and interpolation 0.054 0 5.329 0
Method 3-Est. and one step diamond search 0.047 0 5.526 0
Method 4-Est. and two steps diamond search 0.043 0 5.449 0
Method 5-Est. and greedy search 0.043 0 5.710 0

The accuracy of the obtained results can be read also from Table 2, which
shows the average deviation form optimality and its variance for both JPEG and
XHTML.

7.5 Complexity of the proposed framework

The percentage of average QE obtained by methods 1 to 5 compared to that
obtained by the exhaustive static system, versus the average complexity of these
methods, is plotted in Fig. 22 for JPEG and in Fig. 23 for XHTML. These results
are computed with the context information used in the experimental setup section,
that is, NB (D) = 50 kbps and NL(D) = 488 ms.

In the case of JPEG, the QE obtained by method 1 (estimation only) is, on
average, close to that obtained by the exhaustive static system, that is, 94% for
JPEG and 97% for XHTML. They are even closer when the other methods are
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Fig. 22: Average QE vs. average complexity f∗1 (ck, D) = JPEG

Fig. 23: Average QE vs. average complexity when f∗1 (ck, D) = XHTML

used: from 94% to 97% for JPEG, and from 97% to 99% for XHTML. For instance,
for JPEG, method 5 reached 97%, which is only 3% away from optimality with
a complexity of close to 5 operations, and for XHTML, it is less than 1% from
optimality with a complexity near 5 operations.

The average improvement in QE obtained by methods 2 to 5 is relatively small.
However, these figures hide the fact that the improvement in QE obtained follows
that needed to reach optimality. This is clearly visible in Figs. 12 and 13, where
we see that, when the target’s relative gain is larger, the improvement obtained is
also larger; conversely, the average relative gain is small because, for some slides,
the target gain is small as well. This conclusion is also justified by the fact that
the QE obtained by method 1 are around 94% for JPEG and 97% for XHTML,
which is already an improvement.

Figs. 12 and 13 are very interesting, as they show that we can reach the opti-
mal QE for a large number of slides using the proposed methods, especially using
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Table 3: Average deviation from optimality, and its variance as computed with
a file size ratio of (1.15 for JPEG and 1 for XHTML), NB (D) = 50 kbps and
NL(D) = 488 ms

Average deviation Variance
from optimality (×10−3)

Methods JPEG XHTML JPEG XHTML

Method 1-Estimation 0.037 0.021 0.872 0.951
Method 2-Est. and interpolation 0.034 0.018 0.676 0.729
Method 3-Est. and one-step diamond search 0.021 0.012 0.553 0.508
Method 4-Est. and two-steps diamond search 0.018 0.009 0.485 0.276
Method 5-Est. and greedy search 0.018 0.011 0.453 0.320

method 5 for JPEG and method 4 for XHTML (the scattered points that are on
the diagonal line). Statistically speaking, for JPEG, 10% and 30% of the docu-
ments of V reached optimality using methods 1 and 5 respectively. For XHTML,
45% and 59% of the documents of V reached optimality using methods 1 and 4 re-
spectively. Furthermore, overall, the results obtained were very reliable and close
to optimality, as illustrated in Table 3, where the average deviation from opti-
mality is computed, as well as the variance of these deviations, for each method.

Unlike JPEG, in the case of XHTML, method 4 is, on average, better than
method 5 in terms of performance (average deviation versus complexity). As ex-
plained in [18], XHTML is very precise, and therefore, we don’t need to search far
from the second diamond area (as detailed in method 4). Indeed, we reached 1%
of average deviation using method 4, which is very close to optimality.

On a final note, from Fig. 10, we can see that the delivery time is problematic
for only about 45% of the slides, where we see the fixed-QF dynamic system per-
forming very poorly. Obviously, transport is an issue, since the fixed-QF dynamic
system always yields good visual quality using QF = 80. With a lower bitrate, the
number of problematic slides would increase for the fixed-QF dynamic system, and
could easily reach 100% with a low enough bitrate. This would make the fixed-QF
dynamic system totally unusable. Of course, the opposite is also true, if the bitrate
is high enough, the fixed-QF dynamic system would provide an excellent QE . One
advantage of the proposed methods is that they perform as well as possible under
any circumstances. In fact, we could even exceed a QF of 80 if the bitrate were
very high (while the fixed-QF dynamic system has constant quality). This is very
important, as the bitrate can vary significantly during a Web conferencing session.

7.6 Examples of adapted versions of selected slides

In this section, we show adapted versions of two slides arbitrarily selected from
the slide corpus. For the first selected slide, sub-figures 24a, 24b, 24c, and 24d
show its optimal adapted version (computed with the static exhaustive method),
two adapted versions, and the predicted near-optimal one respectively. They were
created using f = JPEG and the following combinations of z and QF :

• (z = 0.4, QF = 70): optimal combination.
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Table 4: Computed QV , Td and QE for the example of Fig. 24, when f = JPEG.

Figures (z,QF ) QV Td QE

24a (0.4, 70) 0.621 5.163 0.620
24b (0.2, 80) 0.399 2.191 0.399
24c (0.7, 10) 0.540 3.763 0.540
24d (0.5, 40) 0.569 5.134 0.568

Table 5: Computed QV , Td and QE for the example of Fig. 25, when f = XHTML.

Figures (z,QF ) QV Td QE

25a (0.9,40) 0.767 5.358 0.759
25b (0.1,70) 0.466 1.213 0.466
25c (0.9,10) 0.583 2.470 0.583
25d (0.6,80) 0.733 5.586 0.713

• (z = 0.2, QF = 80): low resolution and high quality factor.
• (z = 0.7, QF = 10): high resolution and low quality factor.
• (z = 0.5, QF = 40): predicted near-optimal combination.

Yet visually, sub-figure 24d is the closest one to the optimal adapted content 24a,
whereas sub-figure 24b is small (z = 0.2) and becomes very blocky and blurred
when zoomed. Sub-figure 24c contains visible blocks on the right and lower sides of
the image. In addition, as shown in Table 4, the computed near-optimal adapted
content (sub-figure 24d) is the closest one to the optimal adapted content in terms
of QV , Td and QE .

Similarly, for the second selected slide, sub-figures 25a, 25b, 25c, and 25d show
its optimal adapted version (computed with the static exhaustive method), two
adapted versions, and the predicted near-optimal one respectively. They were cre-
ated using f = XHTML and the following combinations of z and QF :

• (z = 0.9, QF = 40): optimal combination.
• (z = 0.1, QF = 70): low resolution and high quality factor.
• (z = 0.9, QF = 10): high resolution and low quality factor.
• (z = 0.6, QF = 80): predicted near-optimal combination.

Visually, sub-figure 25d is the most similar to the optimal adapted version 25a.
Sub-figure 25b is very small (z = 0.1) and became very blurred and blocky
when zoomed. In sub-figure 25c, the text quality has been preserved since it is
an XHTML output. However, the image contains visible blocks on the right and
lower sides of the figure. This is also justified by the computed QV , Td and QE

presented in Table 5.

8 Conclusion

In this paper, we studied the adaptation of enterprise documents, considering
two target formats: JPEG-based and XHTML-based Web pages. In the latter,
the components of each enterprise document page are converted separately and
wrapped in a Web page, which can comprise both text and images. Unlike the
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(a) (b)

(c) (d)

Fig. 24: Adapted versions of the the first selected slide, when f∗1 (ck, D) = JPEG.
(a) Transcoded with optimal parameters (z = 0.4 and QF = 70), (b) Transcoded
with z = 0.2 and QF = 80, (c) Transcoded with z = 0.7 and QF = 10, (d)
Transcoded with near-optimal parameters computed with method 5 (z = 0.5 and
QF = 40)

(a) (b)

(c) (d)

Fig. 25: Adapted versions of the the second selected slide, when f∗1 (ck, D) =
XHTML. (a) Transcoded with optimal parameters (z = 0.9 and QF = 40), (b)
Transcoded with z = 0.1 and QF = 70, (c) Transcoded with z = 0.9 and
QF = 10, (d) Transcoded with near-optimal parameters computed with method 5
(z = 0.6 and QF = 80)

JPEG-based format, the XHTML-based format provides more flexibility, allowing
text editing and keyword searching.
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To dynamically identify the optimal transcoding parameter combinations that
provide the end-user with the best user experience possible while satisfying the
target mobile device’s constraints, we presented a prediction-based dynamic con-
tent adaptation framework and applied it to JPEG and XHTML formats. First,
we defined an objective quality of experience measure that takes into account the
visual quality of the adapted content and the time it takes that content to reach
the recipient (transport quality), and so addresses the three requirements needed
in any quality of experience design [14].

Using the proposed quality of experience measure as a quality criterion, the
proposed framework estimates, on-the-fly, near-optimal transcoding parameters
(format, scaling, and quality factor), that maximize this measure with less com-
putational complexity. It exploits the predicted SSIM and the relative file sizes of
transcoded JPEG images, subject to changing their scaling parameter and quality
factor [26,3,4].

In [18], we presented a content adaptation method that estimates near-optimal
transcoding parameters dynamically and requires only one transcoding operation.
Overall the obtained results were very close to optimality (exhaustive static sys-
tem), but the presence of some outlier points was noted. In the case of JPEG, we
showed in [17] that the results can be improved significantly if more transcoding
operations are tolerated. In this paper, we improved the estimation method of [18],
by adjusting the estimated file size, to correct these outlier points, and based on
this method, we presented four other methods, which are variants of the first one,
but with improved accuracy. For instance, for JPEG, the obtained results were
6% and 3% far from optimality respectively, using methods 2 and 5. In the case
of XHTML, they were 3% and 1% far from optimality, using methods 2 and 5 re-
spectively. Furthermore, we reached optimality in 30% and 59% of the documents
tested for JPEG and XHTML respectively, which make the proposed framework
very appealing.

In the future, it will be interesting to investigate the relationship between the
proposed QE measure and human perception. Alternatively, a mapping function
could be found to map the QE values to human perception. Finally, the proposed
framework has been applied to OpenOffice Impress presentations, which are mostly
used in Web conferencing applications. Though our framework is designed to be
general, future research could be conducted to validate its applicability to other
enterprise document types, such as MS Word and MS Excel.
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