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Abstract Production control policy and economic sampling plan design problems have 
been studied separately in previous research. This paper considers a joint production 
control policy and economic single sampling plan design for an unreliable batch 
manufacturing system. The production is controlled by a modified hedging point policy 
which consists in building and maintaining a safety stock of finished product to avoid 
shortages during corrective maintenance. The main objective of this paper is to 
determine simultaneously the economic production quantity, the optimal safety stock 
level and the economic sampling plan design which minimize the expected overall cost. 
A stochastic mathematical model is developed and solved using a simulation 
optimization approach based on the response surface methodology. Simulation is used 
to imitate the complex dynamic and stochastic behaviour of processes as in the real-life 
industrial systems. The obtained results show clearly strong interactions between 
production quantity, inventory state and sampling plan design which confirm the 
necessity of jointly considering production and quality control parameters in an 
integrated model. Moreover, it is shown a significant impact of production system 
reliability on the economic sampling plan design and therefore on the quality of finished 
product delivered to consumers. Numerical example and sensitivity analyses are 
presented for illustrative purposes.   

Keywords: Unreliable manufacturing system, sampling plan, economic production 
quantity, simulation, response surface methodology. 

1. Introduction

In the literature, batch manufacturing systems are controlled using the economic 
production quantity (EPQ) model. The classical EPQ model has been widely extended 
by many researchers to control various real-life manufacturing situations such as 
production equipment failures and quality imperfection. The impact of stochastic 
machine breakdowns and corrective maintenance on the economic batch size and the 
optimal safety stock decisions has been investigated in the pioneered works of 
Groenevelt et al. (1992a, 1992b) which provided a framework for many extensions of 
EPQ model to unreliable production systems as in Kim et al. (1997) and Chung (2003). 
On the other hand, Porteus (1986) and Rosenblatt and Lee (1986) were the first who 
studied the effect of quality imperfection on the EPQ model. In both studies, the 
researchers assumed that the deterioration of production system is a random process 
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characterized by two states: ‘in-control’ state when all items produced are conforming 
of quality and ‘out-of-control’ state when some percentage of items produced are 
defectives. Lee and Rosenblatt (1987) incorporated maintenance by inspection feature 
into EPQ model to monitor the production process deterioration. They focused on 
simultaneously determining of the optimal batch size and the optimal inspection 
schedule. Many subsequent extensions have been undertaken based on Rosenblatt and 
Lee’s models such as in Kim and Hong (1999) and Chung and Hou (2003). In recent 
years, the joint production system breakdowns and process quality deterioration 
problems have been investigated in EPQ model by Chiu et al. (2007), Liao et al. (2009), 
Chakraborty et al. (2009) and Sana and Chaudhuri (2010).  

In most existing EPQ models, the researchers did not specify how the product-quality 
control is performed. Most of them used inspection schedules to mainly control the 
production process deterioration and not to consistently control the quality of product. 
In addition, they did not indicate how the nonconforming items produced between two 
successive inspections can be discovered and treated. Also, many authors assumed that 
the inspection is made instantly during batch processing and the inspection delay is 
negligible. However, inspection is in itself an important part of quality assurance that 
should be fairly represented in EPQ model. In real-life manufacturing organisations, it is 
recommended to use statistical quality control techniques, such as control charts or 
acceptance sampling plans, especially when the cost of 100% inspection is higher than 
the cost of delivering a certain proportion of nonconforming items (Besterfield, 2009). 
Only few researchers have integrated statistical quality control techniques into EPQ 
models such as Rahim and Ben-Daya (1998) who presented an integrated model for a 
continuous production process for joint economic determination of production quantity, 
inspection schedule and x -control chart design. 

To the author’s knowledge, quality control using lot-by-lot single acceptance sampling 
plan by attributes has not been investigated in the production context, although 
extensive research in its different aspects and properties has been carried out (Wetherill 
and Chiu, 1975).  In fact, one can find several researches which have attempted to 
design economically the single sampling plan but without considering production and 
system reliability factors. Among these, Ercan et al. (1974) developed a mathematical 
model to derive minimum cost single acceptance sampling plans by attribute 
recognizing the interrelations among average incoming quality limit, process quality 
level and average outgoing quality limit. Moskowitz and Berry (1976) presented a 
Bayesian algorithm for determining optimal single acceptance plan parameter values 
when discrete distributions are used to measure product quality, and when the sampling 
cost is either a linear or strictly convex function. Moreover, Moskowitz et al. (1979) 
developed a two-stage optimization algorithm for determining the optimal economic 
single sample acceptance plan when the prior distribution of lot quality and the 
sampling distribution are discrete. The proposed algorithm gives a minimal 
improvement in solution quality compared to the Bayesian algorithm, but the minimum 
cost plan is obtained much faster. Ravindran et al. (1986) presented two nonlinear 
integer goal programming models (with a constant/prior probability distribution of the 



lot fraction defective) for the determination of optimal acceptance sampling plan which 
explicitly considered the two conflicting criteria of average lot inspection cost and 
average outgoing quality. Much later, Ferrell and Chhoker (2002) developed 
mathematical models that can be used to design both 100% inspection and single 
sampling plans, with and without inspector error when a Taguchi-like loss function is 
used to describe the cost associated with any deviation between the actual value of a 
product’s quality characteristic and its target value. The above models, which are 
mainly designed to control received commodity from suppliers, are commonly 
developed to minimize an expected total cost including inspection, batches acceptance 
and rejection costs. Finally, economic single acceptance sampling plan have been 
integrated with economic ordering quantity (EOQ) model by Peters et al. (1988), Ben-
Daya et al. (2006) and Ben-Daya and Noman (2008).  

In this paper, we propose a joint economic production and quality control design model 
for unreliable manufacturing systems, which has the following three features: the 
production is controlled by a modified hedging point policy (HPP), the quality control is 
performed by a single acceptance sampling by attributes, and the batch sizing, the 
hedging level and the sample size are decision variables. Our choice to use the HPP for 
the production-inventory control is motivated by its flexibility, feedback and optimality 
properties ((Bielecki and Kumar, 1988), (Bouslah et al., 2012)). The single sampling 
plan by attributes is the most commonly applied sampling procedure in industry because 
of its simplicity compared to double, multiple and sequential sampling (Wetherill and 
Chiu, 1975). The problem is formulated as a stochastic mathematical model considering 
all production and quality control tasks with non-negligible processing delays. Given 
that the proposed optimization problem is complex and no analytical solution is 
available, we developed a simulation model to imitate the real dynamic and stochastic 
behaviour of the manufacturing system. Then, we used simulation with optimization 
techniques (design of experiments and response surface methodology) to jointly 
optimize production and quality decision variables which minimize the total incurred 
cost including quality control costs, holding and backlog costs and transportation cost of 
batches produced. 

The remainder of this paper is organized as follows. Section 2 presents the notation. 
Section 3 describes the problem under study. The optimization problem formulation is 
presented in section 4. Section 5 explains the resolution approach. An illustrative 
numerical example of the resolution approach with a thorough sensitivity analysis is 
given in section 6. Finally, section 7 concludes this paper. 

2. Notation 

The following are the notations used in this paper: 

q(t) 
x(t) 
y(t) 
u(.) 

Batch-in-process level at time t (units) 
Inventory level at time t 
Inventory position at time t 
Production rate (units/time) 



ui 
umax 
d 
p(.) 
pi 
n 
c 
Q 
Z 
θi 
δi 
N∞ 
TTF 
TTR 
τinsp 
τrect 

C+ 
C- 
Ctr 
Cinsp 
Crect 
Crep 

Production rate of the ith batch (units/time) 
Maximum production rate (units/time) 
Constant demand rate (units/time) 
Proportion of nonconforming items (random variable) 
Proportion of nonconforming items in the ith batch (random variable) 
Sample size (decision variable)  
Acceptance number on the second sample (decision variable) 
Production batch size (units) (decision variable) 
Hedging level of inventory position (decision variable) 
Production start time of the ith batch 
Production end time of the ith batch 
Long-term cumulative total number of batches produced  
Time To Failures (random variable) 
Time To Repair (random variable) 
Inspection delay per unit (time/unit) 
Rectification delay per unit (time/unit) 
Unit holding cost ($/unit) 
Unit backlog cost ($/unit) 
Cost of batch transportation ($/load) 
Unit inspection cost ($/unit) 
Unit rectification cost ($/unit) 
Unit replacement cost ($/unit) 

3. Problem description 

3.1. Production system 

Consider an imperfect production system subject to stochastic breakdowns and repairs 
and supplying a downstream stock	ݔሺ. ሻ. The production system produces one single 
item in batches of size Q in order to meet a constant and continuous demand d. The 
batch-in-process is stored in a downstream area of the system (as illustrated in Figure 1) 
until the production of the actual batch is completed. The system availability state can 
be described at each time t by a stochastic process ሼߙሺݐሻሽ taking values in ሼ0,1ሽ. 
ሻݐሺߙ ൌ 1, if the production system is available at time t, and, ߙሺݐሻ ൌ 0, if not. When a 
failure occurs during the production cycle, the production of interrupted batches is 
always resumed after repair. Let ݍሺݐሻ be a piecewise continuous variable which 

describes the batch processing progress at time t. Let 0 ( )q t Q   be the capacity 
constraint of the batch-in-process level. 



 
Figure 1. Unreliable and imperfect production system with quality control. 

Because the production process is imperfect, a certain random proportion p(.) 
of nonconforming items is always produced. We assume that the proportion of 
nonconforming items p(.) varies from batch to batch. As in Salameh and Jaber (2000), 

we consider that the number of nonconforming items in each ith batch is equal to ip Q

proportionally to the batch size Q, where pi is the proportion of nonconforming items in 
the ith batch following a prior known probability distribution of p(.). Once produced, a 
quality control is performed on the batch to decide whether it is acceptable or not. 

3.2. Quality control policy 

The quality control policy consists of a lot-by-lot single acceptance sampling plan with 
parameters n and c. A sample of size n is drawn randomly from the batch, and inspected 
item-by-item by attributes. The sample inspection duration is equal to 

inspn . If the 

number of nonconforming items in the sample does not exceed the acceptance numberc
, the batch is accepted and the k  nonconforming items are replaced, from a stock of 
known good items, before the transport of the entire batch to the final stock area. 
Otherwise, the batch is rejected. We assume in our study that all inspection operations 
are performed with free error. Rejected batches are 100% inspected and all 
nonconforming items are sorted by inspection personnel. The duration of this operation 
is equal to ( ) inspQ n  . Then, the nonconforming items are rectified. The delay of 

rectification of the nonconforming items discovered in the ith batch is equal to i
rectp Q  . 

After that, the entire batch is transported to the serviceable stock. Let ξi be the arrival 
time of the ith batch to the on-hand serviceable inventory x(.). Then, i i inspn    , if 

the ith batch is accepted, and i
i i insp rectQ p Q      , if not. We assume that always we 

have  1 1..i i i N     which means that the quality control operations of the ith batch 

is finished before the end of the production cycle of the next (i+1)th batch.  

The probability aP  of accepting the ith batch containing k  nonconforming items can be 

calculated using the binomial probability distribution (Besterfield, 2009), as follows: 
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As the accepted batches do not receive 100% inspection, some nonconforming items 
will remain in the outgoing batches and therefore transmitted to the consumer. The 
long-term average proportion of nonconforming items existing in the final stock, also 
named the Average Outgoing Quality AOQ, can be calculated using the following 
formulae (Schilling and Neubauer, 2009): 

             

   [ ] [ ]aE p P E p Q n
AOQ

Q

  
               (2) 

We assume that all nonconforming items transmitted to the consumer are returned and 
replaced by good ones. While the demand/backlog is filled, the replaced quantity at 
each time t can be considered proportional to the demand rate d. Consequently, the 

instantaneous real demand rate becomes equal to  1 ( )d t AOQ , where, ( )t

measures the instantaneous service level of the demand/backlog. ( ) 1t  , if ( ) 0x t  or

( ) 1t  , and ( ) 0t  , otherwise.  

3.3. Production control policy 

In the literature, it was shown that the optimal production control policy for continuous-
flow unreliable manufacturing systems is of a hedging point policy (HPP) type (Bielecki 
and Kumar, 1988). For unreliable batch manufacturing systems with delays which 
cannot be considered as continuous-flow systems, Bouslah et al. (2012) showed that the 
optimal feedback control policy can be closely approximated by a base-stock policy 
expressed by a modified HPP. When the batches produced need to be transported for a 
non-negligible delay to the serviceable stock, the authors assumed that the feedback 
inventory control is based on the concept of the inventory position which includes the 
on-hand inventory in the final stock and the total pending quantities in transportation as 
in Mourani et al. (2008) and Li et al. (2009). In our study, we define the inventory 
position y(t) at each time t as the sum of the stock (inventory/backlog) level x(t) and the 
total amount of  batches under sampling, 100% inspection and rectification. Considering 
the effect of the outgoing quality on the real demand rate, the modified HPP is 
formulated as follows:  
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In fact, the production rate ui(.) of the ith batch can take three possible levels depending 
on the inventory position state and the instantaneous system availability, as follows: 

1. If the inventory position at the beginning of the the ith production cycle (t=θi) is 
strictly below the threshold level Z, and while the production system is available 
(α(t)=1), the corresponding ith batch is manufactured at the maximum production rate 



umax. Such a case happens when the production is restarting just after a corrective 
maintenance.  

2. If the inventory position at the beginning of the ith production cycle is exactly equal 
to the threshold level Z, and while the production system is available (α(t)=1), the 
production rate of the ith batch is set to the demand rate d/(1-AOQ) in order to maintain 
the on-hand inventory position.  

3. If the inventory position at a time  1,i it    becomes strictly greater than the 

threshold level Z the manufacturing is stopped (u(.)=0) until the inventory position 
takes back the threshold level Z by the effect of the demand. Also, when the production 
system becomes unavailable (α(t)=0),  the production is stopped immediately. 

4. Optimization problem formulation 

The dynamics of production q(.), inventory position y(.) and final inventory level x(.) 
can be described respectively by the following difference and differential equations: 
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(4) 

where, q, x and y denote respectively the WIP level, the inventory position and the 
finished product inventory level at initial time. ߜ௜

ି and ߜ௜
ା denote the left and right 

boundaries of the ith production cycle end time ߜ௜, and 
i
 and 

i
 denote the left and 

right boundaries of the arrival time ξi of the ith batch to the final stock x(.).  

Figure 2 depicts graphically the dynamic of production (batch-in-process level q(t)), and 
the evolution of the serviceable inventory level x(t) as function of instantaneous system 
availability α(t), production cycle length, and acceptance or not of batches produced. 
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Figure 2.  Production and inventory level dynamics. 

Our objective is to determine the optimal batch size Q, the optimal hedging level Z and 
the economic sampling plan design (n, c) which minimize the long-term expected total 
cost ETC(.) per unit time including; the average total holding cost which includes the 
storage of the work-in-process (batch-in-process, batches under sampling, 100% 
inspection and rectification) and the final inventory stock x(.), the average backlog cost, 
the average cost of sampling, the average costs of 100% inspection and rectification of 
the rejected batches, the average cost of transportation, and the average cost of 
replacement of nonconforming items sold to the consumer. Note that the consumer 
satisfaction is considered in the expected total cost function by penalizing the backlog 
(product availability in the producer serviceable inventory) and the replacement of 
returned nonconforming items (quality of product).   

Any admissible solution (Q, Z, n, c) must satisfy the following constraints:  

 max max

max

max

0 min ,

0

0

, , , : integers

bip inspQ Q Q

Z Z

c n n

Q Z n c

 

 
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                   (5) 



where, ܳ୫ୟ୶
௕௜௣  is the maximum batch-in-process storage capacity, ܳ୫ୟ୶

௜௡௦௣ is the maximum 
inspection area capacity, ܼ௠௔௫	is the maximum storage capacity of the inventory 
position and ݊௠௔௫ is the maximum sample size. The constraint of the maximum sample 
size was used by Ravindran et al. (1986) and in practice it represents the capacity 
constraint of resources allowed to sampling. 

Therefore, the optimization model associated to the problem under study can be 
described as follows:  
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T
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T
  , E[N∞] is the long-term expected number of batches 

produced per unit time, and [ ]E p  is the expected proportion of nonconforming items. 

The decision variables (Q, Z, n, c) are integer numbers. Moreover, the expected total 

cost function (.)ETC
 
is nonlinear due to the [ ]E q , [ ]E y , [ ]E x and (.)aP terms. Also, 

the constraints (3) and (4) are nonlinear and stochastic. Hence, this model is a 
stochastic, nonlinear and integer programming problem which is difficult and complex. 
However, the expected total cost (.)ETC  is convex in Q and Z. In fact, the sum of the 

inventory, backlog and transportation costs is a convex function in Q and Z as shown in 
Bouslah et al. (2012), while 100% inspection, rectification and replacement costs are 
linear with respect to Q. In addition, when the sampling cost is assumed to be linear or 
strictly convex function in the sample size n, the existence of a global optimum 
sampling plan (n*, c*) which minimizes the sum of all quality related costs was proved 
by Moskowitz and Berry (1976) and Moskowitz et al. (1979). These objective function 

(.)ETC properties are exploited in developing the resolution approach procedure.  

5. Resolution approach  

5.1. Resolution approach procedure 

In this section, we propose a resolution approach which combines an enumeration 
procedure with respect to the acceptance number c and a simulation based-optimization 

approach to optimize the expected total cost  , ,cETC Q Z n for each given acceptance 



number. The enumeration procedure approach has been used by Peters et al. (1988) and 
Ben-Daya and Noman (2008) to determine the optimal single sampling plan design for 
supplier quality control. However, the simulation based-optimization approach which 
combines simulation, design of experiments, statistical analysis and response surface 
methodology has been widely employed in literature to design manufacturing control 
policies as in Safizadeh and Thornton (1984) and Gharbi and Kenne (2000). To 
implement the resolution approach we developed and validated a simulation model 
representing the real dynamic of the system as described in section 4. The simulation 
model is used to calculate the expected total cost for given (Q, Z, n, c). The proposed 
procedure can be summarized by the following steps: 

Step 0. Set 0c  . 

Step 1. For a fixed acceptance number c, determine  , ,c Q Z n a quadratic 

approximation function of the expected total cost  , ,cETC Q Z n using a combination of 

design of experiments, regression analysis and response surface methodology. Optimize 

 , ,c Q Z n under constraints (5). Find *
cQ , *

cZ  and *
cn and calculate  * * *, ,c c c cQ Z n . If 

0c  , set 1c  . 

Step 2. If    * * * * * *
1 1 1 1, , , ,c c c c c c c cQ Z n Q Z n      and *

maxcn n , set 1c c  . Go to step 1. 

Step 3. If *
maxcn n , the optimal control batch size, the optimal hedging level, the 

optimal sample size and acceptance number are respectively *
1cQ  , *

1cZ  , *
1cn   and 1c  . 

Otherwise, find the optimal solution *
cQ , *

cZ , *
cn  and *c  such that 

      * * * * * * * * *
1 1 1 1 1 1 1 1, , , , , ,c c c c c c c c c c c cQ Z n Q Z n Q Z n           . 

In step 1, we use, for given acceptance number c, an experimental design plan to define 
how the control factors (Q, Z, n) should be varied in order to determine the effects of the 
design factors and their interactions (i.e. analysis of variance ANOVA) on the incurred 
total cost. Then, the effects (design factors and their interactions) are considered as 
input to a regression analysis which is used in conjunction with the response surface 
methodology, to fit the relationship between the cost and the input factors 

(Montgomery, 2008). Given the convexity of the  , ,cETC Q Z n , as mentioned in section 

4, it can be approximated by a second-order function precisely when the experimental 
region of (Q, Z, n) is chosen correspondingly to the region of the global optimum. We 
denote by (.)c the continuous function of Q, Z and n for a fixed acceptance number c, 

fitting a second-order regression model and relating the response variable (.)cETC  to 

the design factors. This function is called the response surface and takes the following 
equation: 

  2 2 2
0 1 2 3 12 13 23 11 22 33, ,c Q Z n Q Z n QZ Qn Zn Q Z n                            (7) 

where,  β0, βi (i = 1, 3), β12, β13, β23, βii (i = 1, 3) are unknown parameters to be 
estimated from the collected simulation data, and ε is a random error.  

5.2. Simulation model 



A combined discrete-continuous model was developed using the SIMAN simulation 
language with C++ subroutines (Pegden et al., 1995), and then executed through the 
ARENA simulation software. The advantage of using a combined discrete-continuous 
model is to reduce the execution time (Lavoie et al., 2007), and to model accurately the 
real production and inventory dynamics of the manufacturing system. 

The simulation model can be described following the sequence of numbers appearing in 
Figure 3, as follows:  

0  INITIALIZATION: setting the values of the parameters (umax, d, c, τinsp, τrect), the 
simulation run-time T∞, the decision variables (Q, Z, n), the unit partial costs (C+, C-, 
Cinsp, Crect, Crep, Ctr), the initial states (q, x, y) and the probability distributions of the 
proportion of defective items p(.), Time To Failures TTF and Time To Repair TTR. The 
simulation run-time T∞ is set long enough to guarantee that the random events during 
the simulation run are observed sufficiently and that the steady-state of the model is 
reached. Note that the model is developed to accept any probability distribution for the 
p, TTF and TTR.  

1  The DEMAND RATE is used as an input of the state equations. In order to represent 
the real system operation, we define the instantaneous real demand rate as 

 / 1 ( )d AOQ t , where, ܱܳܣሺݐሻ is the instantaneous average outgoing quality. The 

AOQ(t) can be calculated using the following formulae: 
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                                    (8) 

where, ai=1, if the batch is accepted, and ai=0, if not. N(t) is the cumulative number of 
batches arrived to the serviceable inventory x(.) at time each t. 



 

Figure 3.  Simulation block diagram. 

2  The STATE EQUATIONS are described by the differential equations of (4) and are 
modeled with a C++ language insert. When a batch is released at the end of production 
cycle or a batch enters into the serviceable inventory x(.), a signal is send to the C++ 
routines to update the values of the variables q(.), y(.) and x(.) using the difference 
equations of (4). 

3  The PRODUCTION CONTROL POLICY is implemented using equation (3). At the 
end of each production cycle, the control policy is triggered to determine the production 
rate of the next production cycle depending on the current position inventory and the 
system availability. 

4  The PRODUCTION block models the processing delay which is calculated by 
dividing the batch size Q by the production rate ui(.). When the batch production is 
completed, the original entity is sent back to the PRODUCTION CONTROL POLICY 
block and a duplicated entity is created and sent to an UPDATE block where the batch-



in-process level is impulsively annulled and the batch size is added to the inventory 
position.  

5  The blocks FAILURE and REPAIR model respectively the failure and repair events 
as a close loop following the TTF and TTR distributions. 

6  A random proportion of nonconforming items pi is attributed to each batch produced 
following the p(.) probability distribution, and the associated probability of acceptance 
Pa(.) is calculated using Eq. (1). 

7  Then, the entity (batch produced) holds in QUALITY CONTROL block for sampling 
during n×τinsp. The decision to accept or reject the batch is modeled by a probabilistic 
branch function of SIMAN using the probability of acceptance Pa(.) attributed to each 
batch. Rejected batches hold in an additional block for 100% inspection and 

rectification during i
insp rectQ p Q  . 

8  When a batch arrives to the serviceable final stock, the corresponding entity 
impulsively updates the inventory level as in (4). The average outgoing quantity AOQ(.) 
is also updated using Eq. (8). 

9  This block updates instantly the incurred cost according to the instantaneous values 
of the different variables and the unit costs.  
10  Simulation run-time control: if the current time Tnow exceeds the predefined 
simulation run-time T∞, the simulation run is stopped.  

5.3. Validation of the simulation model 

To validate that the conceptual simulation model represents accurately the system under 
study, we graphically verify that the dynamics of production and inventory operates 
correctly according to Eq. (3) and Eqs. (5). Figure 4 represents a sample of the 
trajectories evolution of the production rate, the inventory position and the inventory 
during simulation run. The graphic shows how the production rate value changes in 
response to changes in the inventory position and the system availability states as 
intended. The impact of batches rejection on the inventory level dynamic is clearly 
shown by a significant time lag between the inventory level and the inventory position 
trajectories due to the 100% inspection and rectification operations. In addition, we 
verified the behaviour of the observed operating characteristic (OC) curve (obtained by 
simulation) of various given sampling plans comparing with their associated theoretical 
OC curves (obtained using Eq. (1)). We always found that the observed OC curve 
coincides with the theoretical OC curve which confirms the accuracy of the quality 
control modeling in the simulation model. 



 

 
Figure 4. Production rate and inventory position/level evolutions during simulation run. 

 6. Numerical example and results analysis 

In this section, we present a numerical example to illustrate the resolution approach 
procedure and to conduct a sensitivity analysis of the optimal solution with respect to 
the model parameters. Let us consider the following parameters in appropriate units: 

umax=600, d=400, nmax=130, Zmax=4500, max max
bip inspQ Q =1500, τinsp =5×10-4, τrect =10-3, 

C+=0.1, C-=1.5, Ctr=250, Cinsp=0.25, Crect=5, Crep=12.5. The stochastic variables are as 
follows: p~Uniform(0.02,0.04), TTF~LogNormal(50,5) and TTR~Gamma(0.5,10). The 
expected proportion of nonconforming items E[p] is equal to 0.03. We define the 

expected system availability rate as [ ] ( )E MTTF MTTF MTTR   where MTTF is the 

mean time to failure and MTTR is the mean time to repair. From the above TTF and TTR 
distributions, the expected system availability rate E[α] is equal to 90.91%. 

For given acceptance number c, simulation runs are carried out according to a three 
factors Box-Behnken experimental plan (15 runs) with four replications for each 
combination of factors (Q, Z, n). This type of design is desired because of its rotatable 
feature and its efficiently in terms of number of required runs (Montgomery, 2008). In 
order to ensure that the steady-state is reached, the duration of each simulation run is set 
to 500,000 units of time. The simulated data is carried out using statistical software 
(STATISTICA) to seek a second order regression model fitting the response variable 
ETCc(Q, Z, n).  



   Table 1. Results of the application of the resolution procedure. 

c R2
adjusted Q* Z* n*  * * *, ,c Q Z n  

0 0.9842 1176 2658 5 534.61 

1 0.9826 1154 2664 12 533.12 

2 0.9831 1148 2665 26 532.42 

3 0.9829 1138 2665 51 531.29 

4 0.9824 1127 2680 92 530.32 

5 0.9804 1104 2681 143 529.04 

Table 1 presents the results obtained from the application of the resolution approach 
procedure to the present numerical example. We remark that the R-squared adjusted 
value for all acceptance number is always greater than 98.00%. This states that more 
than 98.00% of the observed variability in the expected total costs is explained by the 
models. This confirms that the expected total cost ETCc(Q, Z, n) for each fixed 
acceptance number c can be closely fitted by second-order model (Montgomery, 2008). 
It should be mentioned here that ANOVA analysis of fitting models for all acceptance 
number showed that the linear and quadratic effects of the factors (Q, Z, n) and their 
interactions, Q.Z, Q.n and Z.n, are significant for the response variable at a 0.05 level of 
significance. Figure 5 shows the Pareto chart of standardized effects for the Box-
Behnken design when the acceptance number is equal to 4.  

 
Figure 5. Pareto chart of standardized effects for the three factors  

Box-Behnken experimental design (c = 4). 

From Table 1, the optimal acceptance number c* is 4 because it corresponds to the 

minimum expected total cost that satisfies the constraint maxn n .  For all acceptance 

number greater than c*, the optimal sample size n* exceeds the maximum sample size

maxn . Using STATISTICA the related second order cost function is given by:
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Figure 6. Contour plots of the (.)cETC predicted from the quadratic model (c = 4). 



The optimization of the quadratic function  4 , ,Q Z n gives a minimum expected total 

cost 530.32 located at Q* = 1127, Z* = 2680 and n* = 92 as shown in Figure 6. Also, 

from Table 1, we remark that the differences between the  * * *, ,c Q Z n for all 

acceptance number c (c ≠ c*) and  * * *
* , ,c Q Z n are less than 1%. This can be explained 

by the possible existence of several local minima around the global optimum of the 
expected total cost as shown by Moskowitz and Berry (1976) and Peters et al. (1988). 

A sensitivity analysis of the production and quality control policies is conducted with 
respect to model parameters (costs, inspection delay, system availability and proportion 
of nonconforming items) by varying their values above and below its baseline value. 
Ten sets of experiments are achieved in order to understand how the optimal control 
parameters (Q*, Z*, n*, c*) vary with changes of the model parameters and to show the 
applicability of the resolution approach for ranges of system parameters. The results are 
summarized in Table 2, where the variation of the optimal control parameters (Q*, Z*, 
n*, c*), the optimal expected total cost ETC(.) and the ‘optimal’ probability of 

acceptance * * *( [ ] | , )a aP P E p n c are highlighted (i.e., respectively ∆Q*, ∆Z*, ∆n*, ∆c*, 

∆ETC*, and ∆Pa
*). Note that the probability of acceptance *

aP  is used to measure the 

sampling plan severity. When the probability of acceptance increases the sampling plan 
severity becomes reduced. Inversely, when the probability of acceptance increases the 
sampling plan severity becomes tightened. 

 Variation of the inventory cost (Set I): When the inventory cost C+ increases, the 
optimal hedging threshold Z* decreases in order to avoid further inventory costs. 
Consequently, the optimal batch size Q* decreases to reduce production, 100% 
inspection and rectification delays and therefore ensures a better supply to the 
serviceable inventory x(.). The optimal sampling plan severity becomes reduced in order 
to minimize the holding cost of rejected batches during the 100% inspection and 
rectification operations. Note that the decrease in inventory cost produces the opposite 
effects.   

 Variation of backlog cost (Set II): When the backlog cost C- increases, the 
production-inventory control policy reacts by increasing the hedging level Z* (i.e., 
increasing the safety stock limit) to provide a better protection to the system against 
shortages. The optimal batch size Q* decreases slightly to reduce batch processing 
delays which improves the supply of the serviceable inventory. The optimal sampling 
plan becomes more tightened which means that more batches are rejected. This can be 
explained as follows: first, remind that the demand rate is time-varying depending on 
the instantaneous service level of the demand/backlog (section 3.2). Because the safety 
stock limit increases, the long-term service level increases as the sales increase also. 
Given that the quantity of nonconforming items returned from consumer is proportional 
to sales, and in order to avoid further replacement cost, the quality control policy reacts 
by tightening the batches acceptance. The decrease in backlog cost produces the 
opposite effects. 



 Variation of transportation cost (Set III):  When the transportation cost Ctr is higher, 
the frequency of batches transportation needs to be reduced in order to minimize the 
total transportation cost. Consequently, the optimal batch size Q* increases, and leads to 
a systematic increase in the optimal hedging level Z* in order to protect the system from 
backlogs. The optimal sampling plan severity becomes reduced in order to reduce 
batches rejection and give preference to keep the serviceable inventory at a high level. 
The opposite effects are well observed when the transportation cost decreases.  

 Variation of inspection cost (Set IV): When the inspection cost Cinsp increases, the 
optimal sampling plan severity becomes reduced in order to minimize rejection of 
batches produced and therefore reduce the 100% inspection cost. The optimal hedging 
level Z* slightly decreases due to the decrease of the long-term average 100% inspection 
and rectification delays. As a result, the optimal batch size Q* increases. Note that the 
decrease in inspection cost conducts to the opposite effects. 

 Variation of rectification cost (Set V): Similarly to the inspection cost, the increase in 
the rectification cost Crect results in reducing the severity of the optimal sampling plan in 
order to minimize rejection of batches and consequently reduce the long-term 
rectification cost. The optimal hedging level Z* slightly decreases because the long-term 
decrease of batch processing delays after production. This causes an increase of the 
optimal batch size. 

 Variation of replacement cost (Set VI): When the replacement cost Crep of returned 
nonconforming items increases, more 100% inspection and rectification operations are 
needed to reduce the outgoing quality which explains the severity tightening of the 
optimal sampling plan. Consequently, smaller batch size should be produced to ensure a 
regular supply of the serviceable inventory. The decrease in replacement cost conducts 
to the opposite effects. 

 Variation of inspection delay (Set VII): When the inspection delay increases, the 
‘optimal’ probability of acceptance Pa

* increases in order to reduce the long-term 
average 100% inspection delay.  Therefore, the optimal hedging level Z* decreases 
slightly and results in a minor increase of the optimal batch size. The decrease in 
inspection delay produces the opposite effects. 

 Variation of system availability (Set VIII and IX): First, recall that when the Mean 
Time To Failures MTTF increases (decreases) or the Mean Time To Repair MTTR 
decreases (increases), the average availability system increases (decreases). When the 
system availability decreases (MTTF decreases or MTTR increases), the optimal 
hedging level Z* increases in order to protect the serviceable inventory against the risk 
of shortages becoming higher. As a result, the economic sampling plan severity is 
reduced in order to save 100% inspection and rectification delays for rejected batches 
and give better supply to the serviceable inventory. Note that an increase in the MTTF 
or a decrease in the MTTR produces the opposite effects. 
  



 

Table 2. Sensitivity analysis for model parameters. 

Sets Parameters Changes Q* Z* n* c* ETC* Pa
* ∆Q*(%) ∆Z*(%) ∆ETC*(%) ∆Pa

*(%)

Base - - 1127 2680 92 4 530.32 0.859 - - - -

Set I C+ -50% 1275 3233 122 4 399.82 0.696 +13.13% +20.63% -24.61% -18.98%
 +50% 953 2162 110 5 634.39 0.886 -15.44% -19.33% +19.62% +3.14%

Set II C- -50% 1141 1877 123 6 481.42 0.922 +1.24% -29.96% -9.22% +7.35%
 +50% 1100 2945 112 4 551.97 0.753 -2.40% +9.89% +4.08% -12.34%

Set III  Ctr -50% 777 2418 77 3 479.41 0.799 -31.06% -9.78% -9.60% -6.93%
  +50% 1261 2776 95 5 571.39 0.933 +11.89% +3.58% +7.74% +8.66%

Set IV  Cinsp -25% 1042 2738 117 1 519.7 0.131 -7.54% +2.16% -2.00% -84.77%
  +25% 1139 2641 130 11 532.15 0.999 +1.06% -1.46% +0.35% +16.35%

Set V Crect -50% 1068 2744 105 1 518.3 0.173 -5.24% +2.39% -2.27% -79.81%
 +50% 1141 2647 127 9 532.32 0.995 +1.24% -1.23% +0.38% +15.82%

Set VI Crep -12% 1141 2655 112 9 511.82 0.998 +1.24% -0.93% -3.49% +16.17%
 +12% 1057 2702 117 2 543.57 0.315 -6.21% +0.82% +2.50% -63.36%

Set VII τinsp -50% 1116 2651 105 3 528.61 0.613 -0.98% -1.08% -0.32% -28.62%
 +50% 1134 2670 91 7 530.58 0.994 +0.62% -0.37% +0.05% +15.70%

Set VIII MTTR 
 

-50% 959 1559 128 4 418.92 0.660 -14.9% -41.83% -21.00% -23.16%
 +50% 1176 4011 113 7 638.79 0.979 +4.35% +49.66% +20.45% +13.97%

Set IX MTTF -50% 1118 3045 102 6 532.51 0.966 -0.80% +13.62% +0.42% +12.45%
  +50% 1209 2196 130 3 518.65 0.451 +7.27% -18.06% -2.20% -47.50%

Set X E[p] -15% 1144 2650 104 10 503.64 1.000 +1.51% -1.12% -5.03% +16.41%
  +15% 1040 2703 130 3 550.65 0.329 -7.72% +0.86% +3.83% -61.66%



 Variation of proportion of nonconforming items (Set X): A small increase in the average of the 
proportion of nonconforming items distribution conducts to a significant decrease in the 
probability of acceptance in order to avoid further replacement cost due the outgoing quality. As 
more batches will be rejected, the joint production and quality control policies react by reducing 
the optimal batch size Q* in order to minimize all processing delays (of production, 100% 
inspection and rectification) and give more protection to serviceable stock against shortages. The 
opposite effects are observed when the proportion of defective items decreases.   

7. Conclusion 

The joint production-inventory control policies and statistical quality control techniques have not 
been sufficiently studied in the literature although they are strongly interrelated. Inman et al. 
(2003) argued that production systems have a significant impact on quality and they observed a 
lack of research in the intersection of quality and production system design. This paper contributes 
to research on the joint design of production and quality control of unreliable batch manufacturing 
systems, where the production control policy consists of a modified hedging policy and quality 
control is performed by single sampling plan by attributes. A stochastic mathematical model has 
been developed to describe the dynamic of production and inventory, to define the system 
constraints and to calculate the overall incurred cost. Since the optimal solution cannot be obtained 
analytically due to the nonlinearity and the complexity of the optimization model, we proposed a 
resolution approach based on integrated enumeration procedure with respect to the acceptance 
number and a simulation optimization approach to optimize jointly the batch size, the hedging 
level and the sample size. From an illustrative numerical example and a thorough sensitivity 
analysis, we showed an important impact of inventory, backlog and transportation costs on the 
design of the economic sampling plan, and, vice versa, the quality costs have a considerable 
impact on the economic batch size. Also, we showed a significant impact of the system reliability 
on the optimal batch size, the optimal safety stock and the economic sampling plan design. An 
interesting result derived from this study is when the production system becomes more unreliable 
the outgoing quality increases and consumer satisfaction will be critical towards the quality of 
final product. Future research can be undertaken to investigate the joint preventive maintenance 
which improve system reliability, economic production quantity, optimal safety stock and 
economic sampling plan design. Another area for further research is the consideration of 
consumer’s quality level and consumer’s risk constraints in the economic sampling plan design.  
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