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Abstract
In video surveillance, person re-identification refers to recog-
nizing individuals of interest from faces captured across a net-
work of video cameras. Face recognition in such applications
is challenging because faces are captured with limited spatial
and temporal constraints. In addition, facial models for recog-
nition are commonly designed using limited reference samples
from faces captured under specific conditions. Given new ref-
erence samples, updating facial models may allow maintain-
ing a high level of performance over time. Although adaptive
ensembles have been successfully applied to robust modeling
of an individual’s face, reference data samples must be stored
for validation. In this paper, a memory management strategy
based on Kullback-Leiber (KL) divergence is proposed to rank
and select the most relevant validation samples over time in
adaptive individual-specific ensembles. When new reference
data becomes available for an individual, updates to the corre-
sponding ensembles are validated using a mixture of new and
previously-stored samples. Only the samples with the high-
est KL divergence are preserved in memory for future adapta-
tions. The strategy is compared with reference classifiers using
videos from the FIA data set. Simulation results show that the
proposed strategy tends to select samples of statistically differ-
ent subjects (so-called “wolfs”) for validation, thereby reduc-
ing the number of samples per individual by up to 80%, yet
maintaining a high level of performance.

1 Introduction
In many video surveillance applications, automated face recog-
nition (FR) is increasingly employed to alert a human operator
to the presence of individuals of interest appearing in either live
(real-time monitoring) or archived (post-event analysis) videos.
FR in video surveillance (FRiVS) is employed in a range of ap-
plications that involve still-to-video FR (e.g., watchlist screen-
ing) and video-to-video FR (e.g., person re-identification).
This paper deals with the problem of re-identifying individu-
als in video streams coming from surveillance cameras, which
can be used for search and retrieval, face tagging, video sum-

marization and other security-related applications.
Given an individual of interest, the operator of a human-

centric decision support system for person re-identification
captures reference facial trajectories1 corresponding to an in-
dividual appearing in video feeds, and designs a facial model
(e.g. templates or statistical representation) to be stored in a
gallery. Facial models are typically designed a priori using
high quality captures (reference trajectories) obtained under
controlled conditions. Then, during operations, facial trajec-
tories captured in live or archived video streams are compared
against facial models of individuals enrolled to the system.

Person re-identification in video surveillance is typically
performed across a network of surveillance cameras. Accurate
and timely responses are required for face trajectories captured
in potentially complex semi-constrained (e.g., inspection lane,
portal and checkpoint entry) and unconstrained (e.g., cluttered
free-flow scene at an airport or casino) environments. Auto-
mated systems require robust operation under a wide variety of
conditions, and must be fast and scalable to several enrolments
and input videos from several IP cameras.

Moreover, the unobtrusive capture of video sequences with
target individuals provides only a limited amount of high qual-
ity reference samples to design facial models. Abundant non-
target facial trajectories are regrouped in the cohort model
(CM, non-target individuals enrolled to the system) and univer-
sal model (UM, non-target individuals from operational trajec-
tories). These models provide a great source of information for
designing discriminant face models, leading the need to select
the most relevant samples that avoid biasing matchers towards
the negative class [11]. Finally, changes in the physiognomy of
individuals lead to changes in the classification environment,
and facial models may not be representative of all operational
conditions, thus, exhibiting poor performance. Updating facial
models has been shown to improve or maintain a high level of
performance over various operating conditions [1, 3].

This paper is focused on adaptive video-to-video FR using
multi-classifier systems (MCSs). It is assumed that faces cap-

1A facial trajectory is defined as a set of facial ROIs (produced by
face segmentation) that correspond to the same high quality track of
an individual across consecutive frames.

flangevin
Zone de texte 
Accepted in Int. Conference on Imaging for Crime Detection and Prevention (ICDP), 2013



tured within trajectories (obtained from post-analysis of video
feeds) are used for supervised incremental learning of facial
models. Although adaptive ensembles have been applied to
face modeling [1, 3, 18], they require the storage of reference
validation samples in a long term memory (LTM) to preserve
accuracy. One challenge for practical implementation is bound-
ing the growing number of reference samples collected over
several updates. Bounding the size of LTMs raises the issue of
selecting the most relevant samples to be preserved in memory
to maintain performance [5]. The selection of the most relevant
validation samples, as well as the size of individual-specific
LTMs also depends on the specific target individual.

In this paper, a strategy is proposed to select the most repre-
sentative validation samples for an individual to be stored in a
fixed size LTM. It is assumed that an ensemble of 2-class clas-
sifiers or detectors per target individual (EoD, target vs. non-
target) is used for face matching. When a new reference tra-
jectory becomes available, its ROI samples are combined with
non-target samples from the CM and UM selected using one
sided selection (OSS) [11]. The corresponding EoD is updated
and validated using a mixture of new and pre-stored samples in
LTM. The least relevant samples are discarded. Among differ-
ent relevance measures inspired by techniques in active learn-
ing, analysis on synthetic data shows that the Kullback-Leibler
(KL) divergence is able to accurately rank samples in the over-
lapping area between target and non-target populations.

The strategy proposed to manage a LTM is evaluated on
face trajectories collected in semi-constrained environments
from the CMU-FIA database. Three capture sessions with
three months separation are considered for experiments. In
this test case, the adaptive MCS is composed of an ensem-
ble of 2-class Probabilistic Fuzzy ARTMAP (PFAM) classi-
fiers for each enrolled subject. Average performance is pre-
sented and Doddington zoo [13] analysis is employed to com-
pare individual-specific parameters for LTM management. Us-
ing the menagerie terminology introduced in [12], this analysis
allows to categorize subjects into 4 groups: sheep, goat, wolf
and lamb-like individuals according to their performance.

2 Adaptive Face Recognition in Video
Assume that video streams are captured from one or more
video cameras. During operations, FRiVS involves several
processing steps. First, segmentation isolates the facial ROIs
corresponding to faces appearing in each frame using, e.g.,
the Viola-Jones algorithm. In order to build face trajectories,
a tracker (e.g., CAMSHIFT) simultaneously follows the face
of individuals in scene and assigns a same ID to facial ROIs
from the same individual. Then, feature extraction extracts
and selects discriminant features for classification from the ex-
tracted ROIs and arranged into feature vectors. Common fea-
ture extraction-selection techniques include the Local Binary
Pattern (LBP) algorithm and Principal Component Analysis
(PCA). Input feature vectors are compared with facial models,
producing matching scores that are compared to individual spe-
cific thresholds. In video surveillance applications, the system
detects all matching identities where matching scores surpass
thresholds. Finally, a decision fusion allows to combine track-

ing IDs with the output classifier predictions and accumulate
responses over a face trajectory. This process allows for reli-
able spatio-temporal detection of persons of interest [15].

In literature, matching for FRiVS has been addressed as an
open-set problem, where the number of individuals of interest
is greatly outnumbered by non-target individuals. Multi-class
classifiers have been used in video surveillance with a rejec-
tion threshold for unknown individuals. A multi-class classifier
designed to address the open set problem in video face recog-
nition is the TCM-kNN [12]. This matcher takes advantage
of transductive inference to generate a class prediction based
on randomness deficiency. Modular architectures with a de-
tector (1- or 2-class classifier) per individual have been pro-
posed, allowing to set individual-independent parameters [8].
An individual-specific approach is based on the identification
of the decision region(s) in the feature space of individual spe-
cific faces, and training a dedicated feed forward neural net-
work for each individual of interest [10]. Another example
is an SVM-based modular system that was applied to an ac-
cess control scenario [4]. To improve accuracy and reliability
ensembles of 2-class classifiers or detectors (EoD) have been
proposed to implement individual-specific detectors. EoDs are
co-jointly trained using a dynamic particle swarm optimization
(DPSO) based training strategy, generating a diversified pool
of ARTMAP neural networks. Trained detectors are selected
and combined using boolean combination (BC) [17].

Adaptive systems for FR in video have also been proposed
in literature to maintain a high level of performance. These
allow to update facial models over time through supervised in-
cremental learning of new data. An incremental learning strat-
egy based on DPSO has been proposed for video-based access
control. It allows to evolve an ensemble heterogeneous multi-
class classifiers from new data, using a LTM to store validation
samples for fitness estimation and to stop training epochs. This
approach reduces the effect of knowledge corruption [1]. An-
other adaptive MCS for FRiVS is composed of an ensemble of
binary 2-class classifiers per individual, a DPSO module and a
LTM. ARTMAP neural networks are used as ensemble mem-
bers, and the combination function is updated using BC [3].
Learn++ is another well-known ensemble-based technique for
incremental learning that has been applied to FR. It employs
Adaboost to generate a new set of weak classifiers every time
new data becomes available, and combines old and new classi-
fiers using weighted majority voting [18].

To assure a high level of accuracy, adaptive MCSs require
the storage of reference validation samples in a LTM. How-
ever, memory limitations imposed by real-world systems pre-
vent the indefinite growth of the amount of stored validation
samples. In literature, editing algorithms like the condensed
nearest neighbor have been used to manage a gallery of tem-
plates in template matching systems, and bound the amount of
reference samples stored in memory [5]. In this paper adaptive
MCSs are considered for FRiVS, where an ensemble of 2-class
classifiers is used to estimate the facial model of individuals of
interest [3]. An individual-specific strategy is proposed to man-
age (rank and select) the most informative validation samples
over time for each adaptive ensemble.



3 Selection of Representative Samples

Some methods in literature allow to select a subset of repre-
sentative samples for validation, and the criteria for represen-
tativeness is related to the level of information provided for the
specific system. Fig. 1 presents the levels of selection that are
relevant for ensembles of binary 1- or 2-class classifiers.

Figure 1. Levels of ranking that are relevant for an ensemble of
detectors (1 or 2-class binary classifiers) for individual k.

At the input data level (A) the dataset itself is used to filter
out redundant samples, information about data distributions of
samples is not required. At the classifier level (B) the relevance
measure of samples is retrieved from the internal response of
the classifiers in the ensemble, to an input sample a. At the
classifier score level (C), the output scores S+

m(a) of M classi-
fiers in the ensemble may be combined to produce a measure of
relevance. When probabilistic classifiers are used as base clas-
sifiers, the computation of relevance measures is based on the
combined estimated posterior probability (classification scores
S+
m). At the classifier decision level (D), the output predic-

tions dm(a) of classifiers in the ensemble are combined. Vot-
ing strategies can be used to generate a relevance measure like
vote entropy. Finally, at the ensemble decision level (E), the
global output of the ensemble can be used as a measure of the
informativeness of the input sample.

Uninformed Selection. Unlike other levels, methods from
level A do not require previously trained classifiers to pro-
vide information in the selection process. For instance, ran-
dom under-sampling is the easiest non-heuristic method that
randomly eliminates samples from the majority class. Other
methods exploit the geometric relationship between samples in
feature space, like the condensed nearest neighbor rule (CNN)
and one sided selection (OSS) [7].

OSS is considered in this paper to select representative
samples from the CM and UM. It aims to eliminate the sam-
ples from the majority (non-target) that are distant from the
decision boundary in the original set D. It starts by building
a training set D′ with all target samples and one randomly se-
lected non-target sample. Then, 1-NN is trained on D′, and
used to classify the remaining non-target samples. Misclassi-
fied non-target samples are incorporated to D′, which at the
end will constitute a consistent subset of D.

Informed Selection. Methods at levels C and D are inde-

pendent of classification algorithm used in the ensemble as well
as combination strategy, and allow to rank and select represen-
tative samples. The only constraint imposed by level C lies in
the compatibility of scores produced by classifiers, a limitation
that can be defeated by using normalization strategies.

A method that operates at level C is the average margin
sampling. It is inspired on the margin sampling proposed by
Scheffer et al in [19], and is defined as

AMS(a) = 1
M

M∑
m

MSm(a) , (1)

where M is the number of ensemble members, and MSm(a)
is the margin sampling estimated for each ensemble member
cm given the input sample a. Margin sampling is computed by

MS(a) = S(ωmax, a) − S(ω2max, a) , (2)

where ωmax, ω2max are the first and the second most proba-
ble class labels respectively, and S(ω) is the output score (e.g.
posterior probability) of a given classifier for class ω. Margin
sampling aims to incorporate the posterior probability of the
second most likely class label to the relevance measurement.

The disagreement between base classifiers on a test sam-
ple a has also been used as a measure of relevance. For in-
stance, the Kullback-Leibler (KL) divergence (or relative en-
tropy), proposed by McCallum and Nigam, operates at level C
[9]. The KL divergence is defined as

KL(a) = 1
M

M∑
m=1

(∑
i∈Ω

Sim(a) log Sim(a)
P̂ i
EoDk

(a)

)
, (3)

where M is the number of classifiers in the ensemble, and
P̂ iEoDk(a) given by Eqn. 4 is the consensus probability that
the class i ∈ Ω is the correct label for sample a, given the
scores Sin(a) produced by the base classifiers.

P̂ i
EoDk (a) = 1

M

M∑
n=1

Sin(a) . (4)

For KL divergence, the most informative samples are those
with the largest average difference between the class distribu-
tions of any one of the committee members and the consensus.

An example of level D relevance measure is the vote en-
tropy [2], defined as

V E(a) = −
∑
i∈Ω

V (ωi, a)
M

log V (ωi, a)
M

, (5)

where V (ωi,a) is the number of votes for the class ωi ∈ Ω
provided by the ensemble. Similarly to KL divergence, VE
increases with the disagreement in the ensemble members, but
its resolution (e.g., ranking levels) is bounded by the number of
base classifiers in the ensemble.

Synthetic Analysis. For more insight on the selective ca-
pacity of the relevance measures, two synthetic 2-class prob-
lems were designed in the 1D space. Fig. 2 shows the original
probability distributions of data. Central Gaussian distribution
in Fig. 2a and 2b have a center of mass µ2 = 0.5. Centers of
mass of the non-target distributions in Fig. 2a are µ1 = 0.2 and
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Figure 2. Data distributions used to generate the training data
for both problems. Central Gaussian distributions in both fig-
ures generate the positive (+) samples, and left and right distri-
butions generate negative (-) samples.

µ3 = 0.8, and in Fig. 2b the non-target samples are randomly
drawn according to a uniform distribution. All Gaussians have
a variance of σ = 0.01.

An ensemble of 7 probabilistic Fuzzy ARTMAP (PFAM)
classifiers was trained for both problems on balanced train-
ing sets. The PFAM classifier combines the Fuzzy ARTMAP
learning to encode category prototypes and update centers of
mass of estimated class distributions [14]. A DPSO learning
strategy was used for base classifiers generation and hyperpa-
rameter optimization [1].

3 Gaussians
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Figure 3. Value of relevance measures obtained over the fea-
ture space with an EoD (PFAM) for the 3 Gaussians (top) and
Gaussian vs. uniform (bottom) problems.

The value of relevance measures produced by the ensem-
bles are presented on Fig. 3. The three measures show a
good characterization of the overlapping region between tar-
get and non-target populations, specially on the problem with
three Gaussians. Vote Entropy shows a lower resolution than
KL divergence and AMS, and the smoothness of the KL diver-
gence curve shows a better representation of the overlapping
area. In this paper, the KL divergence is employed to imple-
ment a strategy to assess the relevance of reference samples to
manage a fixed size memory.

4 Individual-Specific Management of LTM

Fig. 4 presents the modular architecture for FRiVS that al-
lows for supervised adaptation of facial models from new tra-
jectories. During operations, the system will process ROIs seg-
mented in each frame, and along input trajectories. ROI fea-
ture vectors are extracted and presented to each EoDk. Using

a face tracking algorithm, different faces in a video sequence
are followed frame to frame and regrouped, and the succes-
sive predictions pk from EoDk for each trajectory are accu-
mulated over time for spatio-temporal recognition, in order to
provide an overall prediction for each track ID. Finally, an indi-
vidual specific threshold is applied to the accumulation curves
of each EoDk in order to generate an overall decision dk for
each EoDk. Note that there are several accumulation modules
per track ID, to simultaneously recognize several people at a
time in the scene.

During design/update, each EoDk performs independent
supervised incremental learning. When a new trajectory Tk
becomes available for a person k, OSS is used to form a con-
sistent individual-specific training set Dk with all target sam-
ples and non-target samples selected from CM and UM. Then,
a DPSO-based strategy is employed to generate a new pool of
diversified binary classifiers that are combined with previously
trained detectors corresponding to person k [3]. A fixed size
LTM is maintained with validation samples that are represen-
tative of the overlapping zone between target and non-target
distributions. The KL divergence measure (Eq. 3) is employed
to rank reference samples and store the λk most representative
in the LTM, where λk is the size of the LTM for person k en-
rolled to the system. At each adaptation step, new validation
samples are combined with those stored in the LTM to accu-
rately estimate a new fusion function and select an operations
point.

Algorithm 1 shows the procedure followed by the manage-
ment strategy to rank and select representative validation sam-
ples to be stored in the LTMk. When a new validation set D
with target and non-target samples becomes available for in-
dividual k, all samples are ranked according to the KL diver-
gence. Then, the λk/2 highest ranked target samples, as well
as the λk/2 highest ranked non-target samples are preserved,
whereas the rest are discarded.

Algorithm 1: KL relevance subsampling for the EoDk.
Input : D, Sk(ai), λk // Validation data, scores

// and size of LTMk

Output : Dr // Representative samples

1 for ai ∈ D do
2 ri = KL(Sk(ai)) // Rank with Eq. 3

3 D ⇐ sort(D, r, d) // Sort D according to ri

4 Dr+ ⇐ first pos(D, dλk2 e)
5 Dr− ⇐ first neg(D, dλk2 e)
6 Dr ⇐ Dr+ ∪Dr−

The new set Dr is formed from old and new validation
samples that are difficult to classify by old and new classi-
fiers. Then, the selection is based on past and present infor-
mation retrieved from the classifiers by choosing the samples
in the overlapping area of the target and non-target distribu-
tions. Thus, the proposed selection strategy allows to store the
samples that contain the most relevant information to define the
decision frontier.



Figure 4. Adaptive MCS for FRiVS. In the design/update phase, when a new face trajectory Tk becomes available for a person
k, a training set Dk is formed with all its target samples, and non-target samples selected from CM and UM using OSS. Then, an
evolutionary optimization strategy is employed to generate a new pool of diversified classifiers with optimized hyper parameters,
and the decision-level fusion function is updated based on new data and pre-stored reference samples (from the LTM). Finally
the λk most relevant samples from previous and newly-learned trajectories are stored in LTM according to the KL divergence.

5 Experimental Methodology
The proposed LTM management strategy is characterized for
person re-identification scenario, using the CMU Face in Ac-
tion (FIA) database [6]. The FIA database consists of 20 sec-
ond videos of face data from 180 participants mimicking a
passport checking scenario. Faces are captured at 30 frames
per second, with a resolution of 640 × 480 pixels. An array
of 6 cameras horizontally positioned at the face level capture
the scene. Pairs of cameras were positioned at 0o (frontal) and
±72o (left and right) angle with respect to the individual. Three
cameras were set to an 8-mm focal-length (zoomed), resulting
in face areas around 300 × 300 pixels, and the other three to a
4-mm focal-length (unzoomed) resulting in face areas around
100 × 100 pixels. The cameras utilize the Sony ICX424 sen-
sor, with a maximum resolution of 640x480 pixels and a 6mm
diagonal image size. Data has been captured on three sessions
separated by a three months interval for each individual.

Facial trajectories are formed with frontal facial regions
segmented using the Viola-Jones algorithm [20], and an ideal
face tracker is assumed. All images are scaled to the resolution
of the smallest face obtained after face detection (70x70 pix-
els). The Multi Scale LBP [16] feature extractor has been used
with three different block sizes (3× 3, 5× 5 and 9× 9), along
with pixel intensities features. Resulting features are combined
into feature vectors, and PCA is applied to select the 32 most
discriminant projected features.

Ten individuals were randomly selected for re-
identification (with FIA ID 2, 58, 72, 92, 147, 151, 176,
188, 190 and 209), and one EoDk is designed for each. 88 of
the remaining individuals are selected as part of the universal
model (UM), and the rest are considered as never seen test
individuals. It is important to highlight that individuals from

the UM never appear in test. Face trajectories from individuals
of interest contain between 80 and 239 facial regions, and
non-target training and test samples differ in each dataset.

Prior to computer simulations, four data subsets have been
prepared. Trajectories in the design dataset D are comprised
of target ROIs from the the zoomed view of capture session 1.
The test/adaptation datasets D1 to D3 have been constructed
with ROIs from the unzoomed view of capture sessions 1 to
3 respectively. Non-target samples are independently selected
for each of the training/validation sets picked from the cohort
model (CM) and UM, using OSS [11]. The CM comprises
trajectories from non-target individuals enrolled to the system.

The classifiers were initially trained using trajectories in the
design set D, and tested on trajectories in D1 for the first eval-
uation. For an evaluation in a gradually changing environment,
after performance evaluation on D1 the classifiers were up-
dated with trajectories in D1 and tested on D2. The same pro-
cess was repeated for update/test on D2 and D3 respectively.
The proposed approach was updated with only the new labeled
dataset. In contrast, TCM-kNN was trained on batch mode,
learning from scratch the previous and new samples.

The MCS used for LTM analysis was composed of an en-
semble of 2-class Probabilistic Fuzzy ARTMAP (PFAM) clas-
sifiers per individual, EoDk (PFAM). The DPSO learning strat-
egy was used for classifiers generation and hyperparameters
optimization, and BC was applied for decision level fusion of
classifiers on the ROC space [3]. The LTM was managed ac-
cording to the KL divergence with six individual-specific val-
ues of λk were explored: 0, 25, 50, 75, 100 and∞.

Evaluation was performed following 2 × 5-fold cross-
validation for 10 independent trials. Target samples from the
learning set were randomly split according to a uniform dis-



fpr (%) ↓ tpr (%) ↑ F1 ↑ pAUC (5%) ↑
TCM-kNN (batch learning)

20.13
±0.419 → 22.81

±0.414 → 18.32
±0.187

90.65
±1.425 → 54.26

±3.220 → 87.91
±1.666

0.0935
±0.00339 → 0.0580

±0.00391 → 0.1747
±0.00442

88.71
±1.47 → 48.54

±3.34 → 83.16
±2.29

PFAM
0.95
±0.184 → 1.20

±0.122 → 1.91
±0.235

80.84
±2.048 → 54.06

±3.465 → 84.52
±2.315

0.6648
±0.01930 → 0.4377

±0.02880 → 0.6656
±0.02432

90.40
±1.21 → 69.18

±2.86 → 87.75
±1.66

Learn++
0.60
±0.068 → 0.57

±0.038 → 1.19
±0.108

16.90
±2.365 → 11.87

±1.804 → 20.57
±2.780

0.1613
±0.01669 → 0.1278

±0.01368 → 0.1917
±0.01953

47.87
±2.71 → 36.81

±2.45 → 34.19
±2.64

EoDk (PFAM) LTMKL,λk=∞
0.62
±0.09 → 0.67

±0.05 → 0.84
±0.07

77.02
±2.10 → 45.51

±3.63 → 76.70
±2.71

0.6789
±0.0177 → 0.4041

±0.0308 → 0.6909
±0.0231

92.88
±0.81 → 72.03

±2.76 → 93.64
±0.84

Table 1. Average performance of the system on 10 individuals and 10 trials, forD1 → D2 → D3. Operations point at fpr = 1%.

tribution, in 5 folds of the same size. The folds were first
distributed in three different design sets, including two folds
for training (Dt

t), 1 1
2 folds to stop training epochs (De

t ), and
1 1

2 folds for fitness evaluation (Df
t ). Once the classifiers were

trained, De
t and Df

t are combined, randomized and divided in
two equally distributed subsets to produce a validation data for
threshold/fusion function estimation (Dc

t ), and to select the op-
erations point (Ds

t ). Each fold was assigned to a different train-
ing/validation set at each replica of the experiment. At replica-
tion 5, the five folds were regenerated after a randomization of
the sample order for each class, and the process was repeated
to generate a standard error on ten different assignments.

Reference approaches in comparison include TCM-kNN,
single PFAM in incremental learning mode and Learn++ with
7 PFAM base classifiers. TCM-kNN was trained with a fixed
k = 1 on a batch learning scheme. PFAM classifiers used in
all other approaches, were trained using DPSO based learning
strategy to optimize hyperparameters. Validating the number
of training epochs for classifier convergence was performed on
De
t , whereas particle fitness was evaluated on Df

t . The DPSO
algorithm was initialized with a swarm of 60 particles, and a
maximum of 5 particles within each of the 6 subswarms. The
algorithm was set to run a maximum of 30 iterations, allowing
5 extra iterations to ensure convergence. Once the global best
particle is found, its classifier and the 6 local bests from each
subswarm were added to the EoD.

6 Simulation Results

Table 1 presents the average performance obtained after incre-
mental learning of data blocks D, D1 and D2 (test on D1, D2
and D3 respectively) for the 10 individuals of interest. Re-
sults are compared in the ROC space with the partial AUC for
0 ≤ fpr ≤ 0.05 (pAUC (5%)), and at a specific operations
point selected on the validation ROC curve for an fpr = 1%.
In that table, the EoDs (PFAM) with a LTM managed with KL
divergence (LTMkl,λk ) generally provides a higher level of per-
formance in terms of pAUC (5%) w.r.t. reference systems.

By analyzing the performance at (fpr = 1%), it can be
noticed that EoDs allow for a lower fpr versus incremental
PFAM. Conversely, TCM-kNN yields the highest fpr due to
the difficulty faced by multi-class classifiers in finding multi-
ple boundaries during the same optimization process: within
the cohort, and between individuals of interest. In contrast,
TCM-kNN shows the highest tpr, followed by the PFAM, even

though the operating point is selected using the same validation
data for all approaches. The PFAM can provide good general-
ization for the target class, but face difficulties establishing the
limit to non-target samples. Ensemble based classifiers provide
accurate rejection of non-target samples.

Table 2 presents the performance of the ensemble during in-
cremental learning for two individuals, using λk = 25, 75 and
100. EoD58 (for individual with ID 58) was selected because
of its good initial performance (pAUC (5%) ≥ 95%). This in-
dividual is easy to detect by the system (tpr > 80%), and easy
to differentiate against non-target individuals (fpr < 1%) – it
is a sheep-like subject in the Doddington zoo taxonomy [12].
Conversely, EoD188 was selected because of its low initial per-
formance (pAUC (5%)< 95%). It corresponds to an individual
that even though is easy to detect by the system (tpr > 80%), it
is also easy to impersonate (fpr > 1%). For this EoD188, the
test on D1 throws 32 non-target individuals that are wrongly
detected more than 1% of the time (wolves). Given the number
of wolves, the EoD188 corresponds to a lamb-like individual.

EoD58 EoD188

LTMKL,λk=25

fpr 0.23
±0.09 → 0.87

±0.07 → 3.92
±0.71

2.54
±0.57 → 1.01

±0.10 → 0.84
±0.24

tpr 84.43
±3.33 → 39.49

±7.01 → 90.93
±3.02

89.58
±4.26 → 84.88

±5.36 → 97.29
±0.82

F1
84.92
±2.29 → 40.29

±6.07 → 57.10
±4.27

47.20
±5.37 → 65.94

±3.81 → 87.30
±2.70

pAUC (5%) 98.45
±0.23 → 72.46

±3.74 → 97.18
±1.09

91.12
±2.41 → 96.43

±0.80 → 99.64
±0.07

LTMKL,λk=75

fpr 0.23
±0.09 → 0.84

±0.10 → 4.29
±0.62

2.54
±0.57 → 1.02

±0.10 → 1.07
±0.31

tpr 84.43
±3.33 → 41.49

±7.76 → 94.65
±3.25

89.58
±4.26 → 89.53

±3.21 → 97.60
±0.64

F1
84.92
±2.29 → 41.71

±6.41 → 56.19
±5.23

47.20
±5.37 → 68.38

±2.57 → 85.11
±3.27

pAUC (5%) 98.45
±0.23 → 71.92

±3.50 → 98.60
±0.77

91.12
±2.41 → 96.21

±0.67 → 99.63
±0.09

LTMKL,λk=100

fpr 0.23
±0.09 → 0.84

±0.08 → 3.64
±0.73

2.54
±0.57 → 1.09

±0.14 → 0.84
±0.19

tpr 84.43
±3.33 → 38.28

±8.46 → 95.81
±1.63

89.58
±4.26 → 88.08

±3.06 → 97.60
±0.52

F1
84.92
±2.29 → 38.08

±7.05 → 61.68
±5.25

47.20
±5.37 → 66.69

±3.20 → 87.20
±2.19

pAUC (5%) 98.45
±0.23 → 71.91

±3.56 → 98.36
±0.79

91.12
±2.41 → 96.25

±0.55 → 99.67
±0.09

Table 2. Average performance of the EoD58 and EoD188 after
tests on D1 → D2 → D3.

Regarding the F1 measure for EoD58 after test on D2, re-
sults show a performance that declines more importantly for
EoD58 with λ58 = 100. In this case, with λ58 = 75 it allows
for a better performance. On the other hand, after update onD2
(test on D3) the appearance of new representative samples in
the LTM leads to a recovery in the performance. Performance
shown by EoD58 after testing on D3 suggests that sheep-like
individuals benefit from high λk values.



A different trend is shown by EoD188, which in general
increases in performance every time it is updated. A compari-
son between λ188 values shows that there is no significant dif-
ference between using a large or small LTM, indicating that
the performance of the EoD188 for this lamb-like individual
is maintained using this KL-based selection, even with small
λ188 values (e.g. λ188 = 25). Note that the average number of
samples selected by OSS for validation in experiments is 139.1
±5.07 (global average for the 10 individuals over the 10 trials),
and λ188 = 25 samples constitutes the 17.97% of the data.

Samples from wolf-like individuals degrade the fpr of
EoDs for lamb-like individuals, and are useful for system’s val-
idation, allowing for better discrimination. Fig. 5 shows the
average percentage of samples from wolf-like individuals se-
lected by the KL algorithm for the EoD58 and EoD188, using a
λk that grows up to 1000 samples from D1. It can be seen that
the percentage of samples from wolf-like individuals remains
close to 80% for EoD188. These proportions indicate effec-
tiveness of the KL selection to retain wolf-like samples in the
LTM of lamb-like individuals. Conversely, it is less than 10%
for the EoD58, suggesting that the most informative non-target
samples are not associated with wolf-like individuals.
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Figure 5. Percentage of samples from wolf-like individuals and
F1 performance after test on D3 for EoD188 and EoD58.

Finally, when a new trajectory for an individual of interest
becomes available, it takes around 150 min. to update its facial
model2, and the modular architecture allows for parallel update
of multiple facial models. This makes the system appropriate
for off-line update from, e.g., daily police reports.

7 Conclusion
In this paper, an individual-specific strategy was proposed for
management of reference samples used for validation of adap-
tive ensembles applied to person re-identification. When new
reference samples becomes available for an individual enrolled
to the system, its facial regions are combined with non-target
samples from the universal and cohort models selected with
OSS. Old and new validation samples are combined and ranked
using Kullback-Leibler divergence, and the highest ranked are
stored in a LTM for future validations. Its theoretical foun-
dation lies on the relative entropy, for which the disagreement
between ensemble members is an indicator of the informative-
ness of reference samples.

This strategy was tested on real-world CMU-FIA video
data, and simulation results indicate that using the proposed

2Algorithm implemented in Matlabr R2010B, running on Linux
Gentoo, on a 2.53GHz Intelr Xeonr processor.

strategy allows ensembles to maintain a level of performance
comparable to that achieved by an ensemble where all valida-
tion samples are preserved, yet storing less than 20% of this
samples. Comparing different LTM sizes (λk) for individual-
specific ensembles suggests that sheep-like individuals benefit
from high λk values, whereas low λk values may be selected
for lamb-like individuals. This is related to the capacity of the
management strategy to select samples from wolf-like individ-
uals. Future research includes investigating strategies to find
the optimal amount of samples required for each EoD, affect-
ing a trade-off between performance and resources.
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