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Abstract—A tracking scenario comprising a mobile emitter
node moving through an indoor environment covered by multiple
anchor receivers is investigated in this work. A localization
method based on received signal strength indicators (RSSI) and
making use of the extended Kalman filter (EKF) and circularly
polarized (CP) antennas is proposed. The EKF implements the
position-velocity (PV) model, which assumes that the target is
moving at a near-constant velocity during any given short time
interval ∆t. The measurement vector is composed of velocities in
addition to RSSI values, which allow to deal with the error term
between measurements and the propagation model directly. CP
antennas are used on both the anchor nodes and the mobile node.
These antennas are known to reduce the effects of multipath,
especially those caused by single reflections. As a result, the RSSI
values received in line of sight are more accurate and stable
than those received from linearly polarized antennas. We tested
our approach by tracking the movement of a robot following a
predefined trajectory. The maximum location estimation error
(LEE) is found to be 0.52 m. In addition, velocity changes are
easily tracked during the target movement, which demonstrates
the effectiveness of the proposed approach.
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I. INTRODUCTION

Wireless indoor positioning systems have received a lot of
attention in recent years. Various types of wireless sensor
networks have been investigated for different types of sensors
(radio-frequency, infrared, optical, inertial, etc.) and estimation
algorithms [1]. For radio-frequency-based systems, several
signal metrics, such as time of flight measurements (TOA,
TDOA) and direction of arrival measurements (AoA), were
detailed in [2], [3]. Systems based on received signal strength
indicators (RSSI) have also been studied extensively, as they
have a comparatively low cost and can leverage pre-existing
infrastructure, such as Wi-Fi and Bluetooth networks [4].

However, the RSSI-based indoor positioning technique is
highly dependent on the propagation environment, which can
lead to significant localization errors. For instance, permanent
changes in the physical environment can yield inaccuracies
with respect to the propagation model. Those permanent
changes can be caused by multipath fading due to signal

reflections, which is problematic in RSSI-based localization
systems.

In order to mitigate those issues, many improvements were
proposed [1]. The first type of improvements is mainly algo-
rithmic. In fact, different estimators were investigated in order
to enhance the positioning accuracy.

In [4], [5], a least square (LS) estimator was proposed
for RSSI-based location estimation. This linear estimator at-
tempts to minimize the error term between measurements and
propagation model. An adaptive approach was proposed in
[5], taking into account the dynamic changes in the propa-
gation environment. Specifically, a joint estimation technique
of unknown location coordinates and path-loss exponent was
investigated. However, in order to apply the non-linear LS
algorithm, a linearization step based on the first-order Taylor
series expansion and the Levenberg-Marquardt method is
required, which leads to additional complexity.

A maximum likelihood (ML) based estimator was detailed
in [6]. The proposed approach also dynamically estimates the
propagation parameters, based on real-time RSSI measure-
ments. The main drawback of such approach is again the
amount of calculations needed to perform the algorithm.

A second type of location estimation improvements were
investigated in [7]–[9]. Those improvements involve the fusion
of RSSI measurements with data from other types of sensors
(inertial, laser, etc.). This approach was shown to clearly
increase the accuracy of the proposed localization techniques.

The Kalman filter (KF) is one of the well-known prediction-
correction algorithms. It can be easily adapted to tracking
scenarios [10], [11]. However, since RSSI measurements relate
to physical coordinates in a non-linear fashion, the extended
Kalman filter (EKF) is more suitable, as it applies some
linearizations and approximations around the current estimate
using the partial derivatives of the process and measurement
functions [11], [12]. In [13], adaptive approaches using the
EKF with direct RSSI measurements were proposed, and
better results were obtained compared to more traditional LS
estimators.
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Recently, circularly polarized (CP) antennas have shown
much promise in mitigating the effects of multipath fading
in indoor environments [14], [15]. Such antennas also allow
a more flexible reciprocal orientation of the transmitter and
the receiver. As such, they are becoming widely used in
several wireless applications, such as the global positioning
system (GPS), synthetic aperture radar (SAR), as well as radio-
frequency identification systems (RFID) [14].

Circular polarization was also shown to reduce the root-
mean-square delay spread by about one-half compared to
linear polarization (LP), and the bit error rate (BER) due
to multipath propagation in high-speed transmission channels
[16], [17]. In [14], circular polarization was applied to an
RSSI-based localization system. A direct comparison between
measured and estimated position based on a standard Hata-
like model was proposed for both LP and CP antennas. It was
clearly shown that lower localization errors were obtained us-
ing CP antennas. In our work, we extend the study investigated
in [14] by proposing a solution to reduce the estimation errors
in tracking scenarios.

This paper aims to design and evaluate the accuracy of
a simple and robust algorithm based on the EKF estimator,
suitable for indoor tracking of mobile nodes. The proposed
algorithm processes raw RSSI measurements directly, taken
from wireless receivers equipped with CP antennas. The
combination of the CP antennas, which yield more stable RSSI
values, and the EKF, which offers excellent tracking perfor-
mance, is evaluated. To the best of the authors’ knowledge,
it is the first time CP antennas are combined with an EKF
estimator to perform RSSI-based indoor localization.

The remainder of this paper is organized as follows: Sec-
tion II presents the tracking approach based on the extended
Kalman filter and CP antennas. Section III describes the ex-
perimental setup used to validate our proposed technique, and
presents performances results. Finally, Section IV concludes
this paper.

II. SYSTEM COMPONENTS

This section describes each component of our proposed
localization system.

A. Extended Kalman Filter

As mentioned in the previous section, our tracking approach
is based on an extended Kalman filter, operating in the discrete
time domain. This filter recursively estimates the state of a
dynamic system modeled by the following state equation [13]:

Xk = f(Xk−1) + wk, (1)

where Xk is the state vector at time k, f(·) is the state
transition function which projects a state vector Xk−1 forward
in time, and wk ∼ N (0,Qk) is a random variable modeling
random process noise, normally distributed with zero mean
and covariance matrix Qk.

We use the position-velocity model [13] to characterize the
state vector X, which is defined as:

X = [x y vx vy]T , (2)

where x and y are the coordinates of the node on a two-
dimensional plane, and vx and vy are the corresponding
velocities along those axes, respectively. The node’s height
is assumed constant in this model.

We also assume that the mobile node moves with a constant
velocity between adjacent time intervals. Any change in target
velocity is modeled as acceleration noise included in wk; it
also models non-linearities and system perturbations.

The transition function models a constant-speed, linear
motion:

f(Xk−1) = FkXk−1 =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

Xk−1, (3)

where ∆t is the short time interval during which the mobile
node velocity is assumed constant. The value of ∆t is chosen
to be 0.1 s due to hardware limitations.

Qk is computed assuming the acceleration as a white
noise random vector. This assumption takes into consideration
different forces that could temporally cause changes in target
directions as described in [18] :

Qk = a2


∆t3

3 0 ∆t2

2 0

0 ∆t3

3 0 ∆t2

2
∆t2

2 0 ∆t 0

0 ∆t2

2 0 ∆t

 , (4)

where a is the maximum amplitude of the process noise.
The measurements are considered during the update phase.

They are incorporated into the filter using:

Zk = h(Xk) + vk, (5)

where vk ∼ N (0,Rk), Zk is the measurement vector at
instant k, and h(·) is the observation function which estimates
the expected measurements at the true state Xk. vk is the
measurement noise vector, modeled as a normally distributed
random variable with zero mean and covariance matrix Rk,
which we set to a diagonal matrix as we assume that the
measurements errors are independent.

In order to take advantage of the non-linear capabilities of
the EKF, the system makes direct use of the RSSI measure-
ments Pref produced by the receivers in the observation vector
Z, in addition to the measured velocities:

Z = [vx vy Pref1 ... PrefL ]T . (6)

The measurements vx and vy contained in the measurement
vector gives additional information regarding the node’s state,
which the algorithm uses to improve tracking accuracy. Inac-
curacies related to the measured velocities are also taken into
account through the measurement noise covariance matrix:

Rk = diag(σ2
vx σ

2
vy σ

2
dBmref1,k

... σ2
dBmrefL,k

). (7)

Matrix Rk characterizes the errors between measured and
propagation-model-based RSSI values. More stable RSSI mea-
surements allow us to have smaller error variances, thus the
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Fig. 1: Experimental and modeled propagation characteristics
of CP and LP antennas
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Fig. 2: High-level description of the acquisition system

EKF trusts actual RSSI measurements more than the predicted
ones. Good tracking performance can therefore be achieved
provided that the RSSI measurements are accurate.

The observation function is derived from the log-normal
propagation model applied to each receiver:

h(Xk) =


vx
vy

P01 − 10α1 log10(dist(Xk,Xref1)/d0)
...

P0L
− 10αL log10(dist(Xk,XrefL)/d0)

 , (8)

where αi is the path loss exponent related to receiver i, L is
the number of receivers, P0i is the mean power received at a
distance d0 (typically 1 m) from the receiver i, Xrefi is the
position of the receiver i, and dist(·) is the Euclidean distance
function.

B. CP Antennas

Compared to LP antennas, CP antennas offer better per-
formances by reducing multipath effects, which yields more
stable RSSI measurements. Those characteristics reduce esti-
mation errors, especially those due to first-order signal reflec-
tions. Indeed, when a circularly polarized wave is reflected,
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Fig. 3: Experimental configuration

its handedness is reversed. Thus, if the transmitting and
receiving antennas are circularly polarized with the same
handedness (both right-handed or left-handed CP), multipath-
delayed waves caused by single reflections will be effectively
rejected by the receiving antennas. This characteristic is of
great interest because channel fading is generally caused
by first-order reflections, and because the field amplitude of
such reflections is much higher than those of higher-order
reflections [14], [15].

In order to characterize the advantages of using CP antennas
compared to LP antennas, we carried out RSSI measurements
using both types. Those results are presented in Figure 1.
High RSSI fluctuations are obtained for the LP case, due to
the superposition of incident and reflected waves, resulting in
constructive and destructive interference. Conversely, reduced
oscillations can be observed when CP antennas are used,
as expected, due to the reduced amplitude of the first-order
reflections. The RSSI error-term variance σ2

dBmLP
was found to

be 19.87 dBm2 for LP antenna, compared to 7.73 dBm2 for
CP one. Propagation parameters were determined in both cases
ensuring minimum error term variances between the measure-
ments and the propagation model. The same transmitted power
was used for both experiments. Note that the higher values of
RSSI obtained with the CP antenna is related to its higher gain
compared to the LP one.

III. EXPERIMENTATION

In order to test the performance of the proposed system, a
localization experiment was devised.

A. Experimental Setup

Our experimental setup consists of four sensor nodes, or
anchor nodes, positioned outside a capture area of 4 m ×
4 m, as illustrated in Figure 3a. Both the transmitter and the
receivers are equipped with circularly polarized, omnidirec-
tional antennas operating at 2.4 GHz.

Experiments were carried out using custom-built re-
ceivers based on Texas Instruments CC2510 2.4 GHz radio
transceivers [19], and equipped with the four-leaf receiver
antennas shown in Figure 4a. Those receivers are connected,
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Fig. 5: Log-normal channel model of different receivers

(a) Receiver (anchor nodes) (b) Emitter

Fig. 4: Custom-built receiver and emitter, equipped with
circularly polarized 2.4 GHz antennas

via ethernet links, to a central processing server where data is
saved for offline processing.

The emitter also consists of a CC2510 module, programmed
to permanently transmit a sinusoidal signal on an unused
channel of the 2.4 GHz ISM band. The mobile node makes use
of a three-leaf transmitter antenna, as presented in Figure 4b.
We installed the emitter on top of an iRobot Roomba robot,
depicted in Figure 3b, programmed to follow a piecewise-
linear trajectory at a constant speed of 0.2 m/s. This trajectory
is illustrated in Figure 3a.

Due to the presence of Wi-Fi signals in the same frequency
band, we were careful to choose an unused channel so as to
limit the amount of interference.

Figure 2 describes the acquisition system from a high-

level point of view. The four receivers are connected to a
computer server via an ethernet link. To reduce the number
of wires required, the receivers are powered using a power-
over-ethernet-compatible ethernet switch. The computer server
gathers RSSI measurements from each receiver at 100 ms
intervals. Those measurements are stored in a plain-text file
for offline processing using MATLAB.

B. Calibration Phase

TABLE I: Propagation parameters

Antenna i P0i (dBm) αi σ2
dBmrefi

1 -31.79 1.4 7.32
2 -30.84 3.1 7.73
3 -34.55 1.5 4.79
4 -30.035 1.2 3.06

In order to model the propagation characteristics of the
receiver antennas, an offline calibration phase was first carried
out. 100 RSSI measurements were recorded after placing the
emitter at various distances from each receiver, in 20 cm
increments.

Those received values were then imported into MATLAB
for analysis, and the parameters of each antenna were com-
puted by minimizing the error term variance σ2

dBmrefi
, assuming

a log-normal propagation model. The resulting model param-
eters are illustrated in Figure 5. The mean received power



at distance d0 = 1 m, path-loss exponent αi of the adjusted
model, and the error-term variances are summarized in Table I.

C. Localization Accuracy

−0.5 0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

xPosition (m)

y
P

o
s
it
io

n
 (

m
)

 

 

True Position of the robot

Position Estimate of the robot

Fig. 6: Position tracking performance

0 50 100 150 200 250 300 350 400 450 500
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Index of measurements

v
y
(m

/s
)

 

 

True v
y

v
y
 Estimates

v
y
 Measurements

Fig. 7: Velocity tracking performance in the y direction

After this initial calibration step, which characterized the
antennas as well as the propagation environment, we carried
out a tracking scenario to evaluate the precision of the pro-
posed system quantitatively.

The mobile node was moved along the trajectory presented
in Figure 3a. RSSI measurements were gathered from all four
receivers and sent to the computer server. A total of 471
measurements were gathered from each receiver. These mea-
surements were then processed using the EKF implemented
in MATLAB code.

After processing, the target’s estimated trajectory was com-
puted and compared to a known ground truth. Comparative

results are shown in Figure 6. The maximum location esti-
mation error (LEE) is found to be 0.52 m. We can see from
the estimation curve that changes in direction are also well
predicted by the EKF.

The tracking precision is essentially dependant on the sta-
bility of measurements obtained from CP antennas, as detailed
in previous sections, as well as the additional noisy velocity
measurements supplied to the algorithm. This latter point is
corroborated by Figure 7, which demonstrates the effectiveness
of the proposed EKF model in estimating the y-axis velocity
during the tracking scenario. It also illustrates the fluctuations
of vy caused by changes in target direction along its path. The
additional information regarding measured velocities allow us
to increase the tracking ability of the proposed system, and to
avoid the imprecisions introduced by the simplistic PV model.

IV. CONCLUSION

A cost-effective and easily-deployable tracking approach
based on the use of circularly-polarized antennas and the
extended Kalman filter is presented in this paper.

RSSI values gathered from four deployed CP receivers allow
us to track a mobile node using the EKF. RSSI measurements
are used directly in the EKF observation model, improving the
performance of the filter.

Although a small number of anchor receivers was used, the
maximum radial estimation error is found to be 0.52 m. This
allows us to consider this architecture as a candidate for indoor
localization purposes in more complex indoor environments,
although additional CP receivers will likely be required.

Future work will focus on implementing a frequency diver-
sity scheme, as well as the addition of other sensor technolo-
gies, such as inertial measurements.
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