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Video Error Correction Using Soft-Output and
Hard-Output Maximum Likelihood Decoding
Applied to H.264 Baseline Profile

Frangois Caron and Stéphane Coulombe

Abstract—Error concealment has long been identified as the
last line of defense against transmission errors. Since error
handling is outside the scope of video coding standards, decoders
may choose to simply ignore corrupted packets or attempt to
decode their content. In this paper, we present a novel joint
source-channel decoding approach that can be applied to re-
ceived video packets containing transmission errors. Soft-output
information is combined with our novel syntax-element-level
maximum likelihood decoding framework to effectively extract
valid macroblocks from corrupted H.264 slices. Simulation results
show that our video error correction strategy provides an average
PSNR improvement neer 2 dB compared to the error concealment
approach used by the H.264 reference software, as well as an
average PSNR improvement of 0.8 dB compared to state-of-the-
art error concealment. The proposed method is also applicable
when only hard-information is available, in which case it per-
forms better than state-of-the-art error concealment especially in
high error conditions. Finally, in our simulations, the proposed
method increased the decoder computational complexity by only
5% to 20%, making it applicable for real-time applications.

Index Terms—video error correction, joint source-channel
decoding, maximum likelihood decoding, H.264, real time video
applications

I. INTRODUCTION

EAL-time video communication systems frequently use

unreliable means to exchange information as their timing
requirements exclude the deployment of some well-known
error-recovery techniques [1]. For instance, video conferencing
applications use UDP [2], as retransmission delays threaten
their interactive nature. Broadcasting applications prevent the
use of retransmission algorithms completely due to network
flooding considerations [3].

Regardless of the reason, the use of unreliable delivery
means transfers the error handling responsibilities to the
application layer [4], [S]. The introduction of new error ro-
bustness tools in Rec. H.264 [6] clearly shows that integrating
these responsibilities in the system’s design is being taken
seriously [4], [S], [7]. However, error handling still remains
outside the scope of video coding standards [8].

Fig. 1 depicts a video communication system’s architecture
where it is assumed that corrupted packets are not decoded
but discarded [8]. Here error resiliency/robustness is used to
minimize the impact of packet loss [9], [10], and video error
concealment [11], [12], [13], [14], [15], [16] to deal with
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Fig. 1. Widespread architecture for video communication systems

missing macroblocks (MB). The fact that random bit errors
can desynchronize the coded information when variable length
codewords are used [1] explains its widespread adherence.

The fact that a video decoder’s reaction to corrupted packets
is not standardized [3], coupled with the fact that real-time
video communication would benefit from exploiting damaged
packets rather than discarding them [17], has given rise to a
different family of decoders that attempt to decode corrupted
video packets. Taking advantage of the fact that the human
eyes can tolerate a certain degree of distortion in image and
video signals [1], Chu [18] and Shyu [19] successfully applied
error detection techniques exploiting constraints imposed on
compressed images to the H.261 and MPEG-2 standards
respectively. The idea was to retrieve intact information from
the corrupted packets prior to applying error concealment in
order to reconstruct higher quality images. More recently,
Superiori [20], Farrugia [21], and Trudeau [22] have demon-
strated that similar error detection approaches also work for
the H.264 standard.

Joint source-channel decoding (JSCD) approaches [23],
[24], [25], [26], [27], [28], [29], [301, [31], [32], [33], [34],
[35] have also shown that involving the video decoder in
the correction process yields better correction capabilities.

© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.


mstewart
Texte tapé à la machine
© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

mstewart
Texte tapé à la machine

mstewart
Texte tapé à la machine

mstewart
Texte tapé à la machine

mstewart
Texte tapé à la machine

mstewart
Texte tapé à la machine

mstewart
Texte tapé à la machine

mstewart
Texte tapé à la machine

mstewart
Texte tapé à la machine

mstewart
Texte tapé à la machine

mstewart
Texte tapé à la machine

mstewart
Texte tapé à la machine

mstewart
Texte tapé à la machine

mstewart
Texte tapé à la machine

mstewart
Texte tapé à la machine

mstewart
Texte tapé à la machine

mstewart
Texte tapé à la machine

mstewart
Texte tapé à la machine

mstewart
Texte tapé à la machine

mstewart
Texte tapé à la machine

mstewart
Texte tapé à la machine

mstewart
Texte tapé à la machine


FINAL DRAFT, ACCEPTED IN IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, NOVEMBER 2013 2

Ultimately, this leads to better visual fidelity, as JSCD reduces
the number of MBs needing to be concealed when the entire
corrupted slice cannot be salvaged [21].

The published JSCD approaches can be split into two
families. Both show significant PSNR improvement over the
traditional approach, where only intact packets reach the video
decoder. How they use the channel information and the source
semantics to correct transmission errors separates them.

The first family [23], [24], [25], [26], [27], [33] relies on
the soft-output information provided by the channel decoder
to generate and sort candidate bitstreams. Such approaches are
also referred to as list decoding. Candidates are generated by
flipping one or more bits in the received corrupted packet,
without the knowledge of source semantics. Using the soft-
output information (real values between —oo and co, where
the lower bound refers to a certainty a 1 was received,
the higher bound, a certainty that a 0 was received, and 0
indicates the impossibility of differentiating a 0 from a 1),
a flipping cost is assigned to each bit. The total cost for
flipping these bits is used to sort the candidates. Without the
soft-output information, generating the solution space becomes
impractical since each bit would have the same flipping cost,
and therefore all the candidates having the same number of
flipped bits would have the same cost. An iterative approach
is then typically used to pass each candidate slice, from lowest
to highest cost, in the syntax checker until a valid bitstream is
generated. The first syntactically valid candidate slice becomes
the winning slice, and is fed to the video decoder. If no
candidate slice is syntactically valid, a possible situation if
the solution space is restricted for performance considerations,
the common approach is to use the candidate slice where the
syntax error is detected farthest from the start.

There are three problems with such approaches. First, the
fact that source semantics are ignored during the candidate
generation step increases the computational complexity of
the approach as syntactically invalid candidates will only be
discovered by the syntax checker. Second, the definition of a
valid bitstream requires additional constraints. The simple fact
that a candidate only contains syntactically valid codewords
is insufficient, as the number of extracted MBs may differ
from the one sent (the number of MBs contained in a packet
may be variable). Again, this increases the computational
complexity of the solution, as the syntax checker will have
to deal with syntactically valid candidates that do not meet
the additional constraints. Finally, the first syntactically valid
slice is not necessarily the one providing the best visual quality
as the process only takes into account the cost of flipping bits,
ignoring the resulting slice’s content besides validity.

The second family [28], [29], [30], [31], [32] combines the
soft-output information and the video semantics in a single
step process, joint source-channel decoding (JSCD), rather
than having two independent processes interacting with each
other. However, most solutions focus on a single aspect of the
bitstream. Nguyen [29], Weidmann [31], and Bergeron [32]
propose solutions to correct transmission errors in the syn-
tax element used to transmit the residual information (DCT
coefficients). Wang [28] tackles the specific case of repairing
corrupted motion vectors transmitted using Data Partitioning.

In this paper, we present a novel soft-output maximum
likelihood decoding (SO-MLD) approach. Unlike list decoding
approaches, SO-MLD does not have to decode streams from
a large solution space. SO-MLD considers both the cost
of flipping bits, and the likelihood of the resulting slice.
Furthermore, it does not impose non-standard constraints, nor
does it require specific coding tools to find a solution. Like
the JSCD family of approaches, soft-output information and
source semantics are combined to correct transmission errors.
Finally, it targets the entire bitstream instead of focusing only
on a specific aspect of the stream.

The rest of the paper is organized as follows. In Section II,
video error correction is posed as an optimization problem
where our slice-level solution is presented and compared to
the published approaches used in [23], [28], [24], [25], [26],
[27]. Our proposed solution is then derived at the syntax-
element-level in Section III. Simple probability models for
different H.264 Baseline profile syntax elements are then
presented in Section IV. Our experimental setup is described
in Section V to properly test our proposed SO-MLD approach,
as well as a hard-output approach (HO-MLD) when soft-
output information is not available. Our observations are then
presented and discussed. Concluding remarks, as well as future
work, are presented in Section VI.

II. SLICE-LEVEL ERROR CORRECTION

As depicted in Fig. 1, when transmission errors are detected
in received packets (here we assume that the communication
protocol used to deliver the packet uses an error detection
mechanism similar to UDP’s checksum [17]), they are dis-
carded. However, we believe that sending those packets to
the video decoder, along with additional information such
as soft-output information, is a better strategy. Although the
number of errors is unknown, corrupted packets often contain
information that can be exploited as shown in [18], [19], [20],
[21], [22]. Fig. 2 shows the proposed system’s architecture.
It is similar to Fig. 1 except that corrupted packets are
processed instead of being discarded. This process includes
a channel decoder with the capability of providing soft-output
information and a maximum likelihood video error correction
system, which we describe in this paper. The proposed system
also works, with a relatively small penalty in video correction
performance, when only hard-output information is available
(i.e. only the decoded bits are provided) as in the case of
currently deployed communication systems.

As such, video error correction can be expressed as an opti-
mization problem. Given that we know the received packet is
corrupted, the objective is to modify the received information
in such a way that we obtain the best balance between the
cost of flipping bits (the more bits we flip, the less likely it
becomes) and the credibility of the resulting content (based on
the context, some syntax elements are more likely than others
or impossible to receive).

Applied to the H.264 video standard [6], the optimiza-
tion problem can be described as selecting the most likely
candidate network abstraction layer unit (NALU) given the
received corrupted one. Note that what follows applies to
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Fig. 2. Proposed architecture for video communication systems

any application that uses a sequence of codewords taken
from a defined syntax. JPEG, MPEG-2, H.263, MPEG-4, and
HEVC [36] all fall into this category. The problem can be
posed as:

S* :argmax{P(T:§|R:§)} €))
SeH

where R is a discrete random vector of bits representing the
received NALU, S is a realization of R (the actually received
NALU), T is a discrete random vector of bits representing
the transmitted NALUSs, S is one possible realization of 7,
H is the discrete random vector’s support containing the set
of all possible realizations of T (i.e., all possible transmitted
NALUSs), S* is the likeliest realization of 7 given the received
NALU S, and P(T = §|R = S) is the likelihood function
(probability) that S was sent, given that S was received.
Although we know that the received slice S comes from a
corrupted video packet, we do not wish to explicitly exclude it
from H since the transmission error(s) may be in the packet’s
header (e.g. checksum), making S a valid solution.

In this context, it seems natural that both discrete random
vectors R and 7T, and their realizations S and S , contain
the same number of bits since the number of bits is known,
although some are corrupted. The use of discrete random
vectors conveniently integrates this consideration, as any re-
alization has the same finite set of dimensions, defined by
the number of bits present in the received NALU S. As it
happens, this consideration is consistent with the list decoding
and JSCD approaches previously published. In fact, H, the
discrete random vector’s support, contains 2N realizations, the
exact size of the solution space (here N is the number of
bits in the received NALU/the number of dimensions of the
discrete random vectors and their realizations) explored by list
decoding approaches.

The computational complexity required to solve (1) can
be reduced if we consider that H only holds valid NALU:s.
However, generating such a solution space is a very difficult
task to tackle [31], one that requires knowledge held by
the source decoder, as a valid NALU holds meaning at the

application level.

Intuitively, we are aiming to find the NALU s, composed
of the likeliest codewords that holds the closest resemblance
to the received NALU S. In other words, we are looking
to make as few alterations as possible to the received bits,
while improving the likeliness of the codewords. As such,
the conditional distribution P(7 = S|R = S) in (1) can be
interpreted as a compromise between the likeliness of the
codewords present in S, and its Hamming distance with S.

It is more convenient to rewrite (1) using Bayes’ theorem.
Its expanded form better illustrates our objective:

S* = arg max
ScH
where P(R = S|T = S) expresses the likelihood that the
realization S was received given that the realization S was
sent, P(T =25) represents the probability that the realization
S was sent, and P(R= S) the probability that the realization
S was received. The latter probability is a constant in the
maximization process, and therefore, it can be ignored. We
can rewrite (2) as a maximum a posteriori (MAP) problem

P(R=S8|T=5) x P(T=05) @
P(R=S)

§* = argmax { P(R=5T=8) x P(T=5} (3
SeH

As mentioned previously, our objective is to minimize the
alterations to the received NALU 5‘ while maximizing the
effect they have in terms of likeliness of the codewords. In
its current form, (3) can be solved using a JSCD approach.
The likelihood P(R = S|T = S) can be evaluated using the
soft-output information provided by the channel decoder. The
probability P(7 = S ) can be evaluated at the application layer
by exploiting source semantics. In what follows, we first tackle
the computation of the likelihood P(R=S|7 =S). Then, we
show how to compute the probability P(7 =S).

For the channel decoder, a NALU is nothing more than a
sequence of bits. For convenience, let R,, and 7,, be n-th bits
of discrete random vectors R and T respectlvely, and let S,
and S,, be n-th bits of the realizations S and S respectively.

Thus, the Hamming distance can be used to evaluate
P(R=S8|T =38), as we are only dealing with substitutions
(erroneous bits). The distance represents the number of dif-
fering components between the realizations S and S. More
importantly, it can be interpreted as the number of successes
in N independent Bernoulli trials with independent success
rates.

n=1

The conditional distribution P(R,, = 5,|7,, = S,) in (4)
represents the cost associated with elther keeping (bits S, and
S,, match) or flipping (bits S,, and S,, differ) the n-th received
bit. This cost combines both the possibility of a transmission
error and the individual flipping cost of the n-th bit. The
latter is more apparent if we rewrite (4) using Kolmogorov’s
definition of conditional events.
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®)

where the numerator represents the probability of transmitting
S’n, and receiving S’n and the denominator represents the
probability that S,, was transmitted.

There are four outcomes for the numerator in (5). Two of
them indicate a corrupted bit, and the two others, an intact
bit. Assuming Os and 1s are equally likely to be affected by
transmission errors, let us assume that:

" (6)

n

U U

~ . P N
P(R”:S’ﬂmﬁL:S’n):{% ’L?n?_é

where p is the estimated bit error rate (BER).

To evaluate the denominator in (5), the channel decoder
can use the log-likelihood ratios (LLR). LLRs represent the
natural logarithm of the ratio of the probability that a 1 was
sent over the probability a O was sent, given a random source
of noise [37, Annex B].

)

LLR, =In (Pm = 1|y>)

where y is a random noise signal which represents channel
noise (i.e., the source of bit errors), and LLR, is the log-
likelihood ratio associated with S,. For simplicity, y is as-
sumed to be additive Gaussian noise in our simulations. From
the computed LLR,,, the probability that S,, was transmitted
is:

. — 1§ =0
rn-sa - {ZEET YD) o
exp(LLRy,)+1 =71

When soft-output information is not available, i.e. in the
case of HO-MLD, LLR,, simply becomes a constant value.
There is no need to define the value, as it can be ignored from
the maximization problem at hand, and we would be left with
P(R=S|T=8) =TI"_, P(R,=S5,NT,,=5,), a simplified
version of (5).

Now, we are interested in the probability P(7,, = S’n), rather
than in (8). Fortunately, the random noise present in (7) and (8)
is a constraint in our solution. Our goal is to find the likeliest
NALU, not to find the likeliest random noise that explains the
received corrupted NALU. Therefore, let us assume that:

P(Tn=5y) = P(T,=5uly) )

Integrating (6) and (9) into (5), we now have the means to
evaluate the conversion cost associated with a candidate slice.

At the application layer, a NALU is more meaningful if it is
seen as a realization of a discrete random vector of codewords
Ge., S = [¢1 é ¢énr])- We can partition 7 and R into
codewords. Let 7;; and R.; be the i-th codewords of 7 and
R, respectively, and ¢; be the i-th codeword of S.

Inherently, with these definitions, P(7 = S) represents
the joint probability mass function of each codeword in the
vector. This natural representation allows each realization S

to hold a differing number of dimensions, as variable-length
codewords (VLC) are widely used at the application layer.
However, this is not actually a problem since we are not
considering other realizations. Thus, the realizations do not
have to share a common number of dimensions at this stage.

P(T=8) = P(NES™ (1., = &)

where L¢(+) is a function returning the number of codewords
in a NALU.

Using the Chain rule, (10) can be computed with greater
ease. Additionally, the sequential dependencies between the
codewords are better expressed in this way.

(10)

Lc(S)
P(T=8)= [] P(Tei=al%: nZ} (Tex = &)

i=1

(11)

where U, is the set of decoded codewords in past slices, as
well as the decoding variables, from past slices, and up to the
i-th codeword in the current slice, such as the current MB’s
address. For the sake of compactness, let 2., = ¥; ﬁ};ll
(Te,s = €k). Q¢ can be interpreted as the set of variables
which hold the context necessary to decode the i-th syntax
element. Then, (11) becomes:

Lao(8)

=1

Integrating (5) and (12) into (3), we now have:

(12)
n= P(T=S) } (13)
129 P(Tey = &90.)

We can further refine the notations by acknowledging
that each codeword is a vector of bits and write ¢; =
[éi,l i éi7LB(6'i):|’ where Lg(-) is a function re-
turning dimension of the realization ¢;, and ¢; 5, is its n-th
vector component (i.e., n-th bit). Let 7, ; ,, be the n-th bit of
the i-th codeword of 7.

Having split our original discrete random vector into smaller
discrete random vectors, it would seem consistent to rewrite
P(R = S|T = §) in (3) as a product of distances at the
codeword level to take advantage of this natural representation.

S* = arg max

N P(Rny=5nNTw=5n)
SeH

Lo (8)

I1

=1

P(R=S|T.i = &)x

P(To =&l (19

S* = argmax
ScH

where we have:

P(R=5|T.i = &) =

Li(e ~ )
Ji—([ ) P(RA@)+n=5a¢)4+n N Teyin="=Cin)

P(ﬁ,zn = éi,n)

n=1

. 15)
where A(i) = 2;11 Lp(éx). The sum expresses the position
of the last bit belonging to the realization ¢;_;. When dealing
with the first realization ¢;, A(1) = 0.
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With the current form of (14), we still have to evaluate every
candidate slice in the solution space H, a colossal task which
is far too complex in practice.

The limitations of the published list decoding approaches
are still present here, as flipping a bit at the channel layer,
creating a different (yet valid) realization in H, does not
guarantee that the realization S will be valid at the application
level.

ITI. SYNTAX-ELEMENT-LEVEL ERROR CORRECTION

We propose to solve the problem at the syntax-element-
level. This is a more intuitive approach, which would also aid
the decoding process. Codewords are sequentially decoded,
and the valid realizations ¢; at each step of the decoding
process are known (making error detection possible). Refining
the problem at the syntax-element-level solves two important
problems. Firstly, we no longer need to generate H, only
the proper set of valid syntax elements at each stage of the
decoding process. Secondly, we no longer need to deal with
realizations S that are valid at the channel level, but invalid
at the application layer.

Fortunately, (14) can be modified to meet our goal. At each
step of the decoding process, we want to select the optimal
codeword as a function of previously decoded codewords:

¢; = argmax {P(Rzg\Tw =¢é)x P(Tes = éi|QCi)}

& eC; ’

(16)
where c¢; is the likeliest realization in the solution space
C; (the set of valid codewords for i-th decoded syntax-
element). We start decoding with ¢ = 1 and increment ¢ as
we decode the next codeword. Note that the likeliest sequence
of codewords (14) (optimal solution), and the sequence of
likeliest codewords (16) (greedy approach) are not necessarily
the same. Therefore, it is expected that this syntax-element-
level approach will find a different solution. Moreover, this
approach accepts the fact that not all of the corrupted NALU’s
content may be recovered, as the decisions taken may lead to
a step where the solution space C; is empty. If such a case
were to occur, the missing MBs would have to be concealed.

A slight modification to (16) is required to address VLCs.
The initial optimization problem deals with discrete random
vectors of equal lengths. Thus, P(R = S|T = S) always
considers the same number of independent Bernoulli trials.
This is no longer the case, as C; does not represent a discrete
random vector’s support. The realizations it contains do not
have to share a common dimension.

As a result, a weighting factor needs to be added to even
out the number of independent trials considered for each
candidate. Without this factor, the maximization process would
favor shorter realizations because they have smaller Hamming
distances. This in fact penalizes longer codewords, codewords
that are already expected to be less frequently used than
shorter ones. Weidmann [31] uses the so-called random tail
assumption to align sequences of different lengths. We will
do the same here (looking at (15)).

‘ NAL header ‘ VCL data ‘alignment bits

- ~
- ~
- ~
P ~

‘ slice header ‘ slice data ‘
7/ AN
7/ N
‘MBO‘MB1‘MBZ‘ ‘MBN‘

— ~
— ~
— ~
— ~
~

‘prediction info‘ residual info ‘

Fig. 3. Hierarchical structure of VCL units

* p—
¢; = arg max
¢ eCy

P(R=8|To; = &)x 17
N

where 3, is the length of longest codeword in C;.

With this optimization problem, we can now select the
likeliest codeword in C; at each step in the decoding process,
starting with ¢}, and moving towards c;;,. The likeliest code-
words selected will affect the video decoder the same way
a decoded codeword from an intact NALU would have, as
our proposed solution does not affect the rest of the decoding
process.

Exploiting the source semantics, a solution can now be
tailored for each syntax element. It is also worth mentioning
that the approach is independent of the video standard. We
work with NALUSs, introduced in the H.264 standard, but any
term representing a sequence of codewords could have been
used.

IV. MODELING SYNTAX ELEMENTS

The mathematical framework derived in the previous section
explains how the likeliest codeword will be selected. The
task at hand is to identify which information to use to
evaluate P(7.; = ¢;|€Q.;) in (17) for each syntax element
in the bitstream. In this section, we focus on H.264 Baseline
Profile syntax elements, but the approach would also work
for other profiles, previous standards (H.263, MPEG-2, etc.),
as well as the new HEVC standard. The models presented
here adequately fit our observations, but more precise models
could improve the correction performances of the proposed
approach. However, such models are beyond the scope of
this paper. Moreover, all the variables used in the models are
dynamically acquired during the decoding process using the
previously processed slices, both intact and repaired.

Figure 3 illustrates the hierarchy of a NALU -carry-
ing video coding layer (VCL) information. Models for the
slice header’s syntax elements have already been proposed
in [34]. We quickly present them here. Then, we concen-
trate on modeling the syntax elements mb_type, mb_skip_run,
prev_intra4x4_pred_mode_flag, rem_intra4x4_pred_mode, in-
tra_chroma_pred_mode, sub_mb_type, mvd_l0, and cod-
ed_block_pattern. These syntax elements are used to describe
the prediction scheme used to reduce spatio-temporal redun-
dancies, and indicate the presence or absence of residual
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information. The syntax elements used to communicate the
residual information are left as future work.

In this discussion, we assume that non-VCL NAL units (i.e.,
Sequence Parameter Sets, Picture Parameter Sets, etc.) are sent
using reliable means, and that fragmentation units [38] are
not present. We also assume that the corrupted slices were
coded using the Baseline Profile, that the four constraint flags
in the active Sequence Parameter Set are set to 0, and that
the QP is constant for the entire frame. These constraints are
imposed as a way to limit the scope of the paper, not our
method. Moreover, the proposed models are purposely kept
rudimentary to show the potential of our new framework. More
sophisticated models could be proposed to achieve even better
results.

A. Slice Header

We propose models for the first five fields of the slice
header. We assume that the remaining fields use constant
values throughout the sequence, simplifying the correction
process. The fields are presented following their order in a
coded slice.

1) first_mb_in_slice: The first_mb_in_slice syntax element
represents the raster scan index of the first coded MB carried
in the NALU. Under our current assumptions, the number of
MBs carried in a NALU can be expressed as the difference
between the values used in consecutive NALUs associated
with the same picture. Since we know that transmission errors
can affect the number of MBs extracted from a corrupted
NALU, let us assume that the number of MBs carried in a
NALU follows a Normal distribution.

P(FMIS = &:[Q0) = ——eap (_ (éi—(fmiSPreeru))Q)

1

J\/ﬁ 202

(18)
where F'MIS represents a discrete random variable represent-
ing the starting address of a NALU, fmisp,., is the previous
observed value of first_mb_in_slice, j. is the observed average
number of MBs carried in a NALU, and o, the observed
standard deviation. Both p and o should consider the coding
type of the previously received NALU, as intra- and inter-
coding are not expected to fit the same number of MBs in one
NALU. Both p and ¢ are obtained by studying the differences
between the first_mb_in_slice values in consecutive slices.

It is worth mentioning that the last NALU associated with
a picture should not be used to evaluate p and o. Limiting
the maximum transmission unit (MTU) size of a packet
introduces the possibility that the last NALU of a picture
contains significantly fewer MBs than the other ones since
MBs associated with different pictures cannot be transported
together.

The codebook C; should only contain the remaining unde-
coded addresses in the picture, starting with the last received
value of first_mb_in_slice plus 1. This follows the logic
that each MB is coded once. However, by limiting C;, the
probabilities will not sum to 1. Imposing the address 0 in
C;, the only valid address for the next picture, solves this
problem elegantly. Its presence acknowledges the possibility

that the next NALU starts a new picture. P(FMIS = 0|9, ;)
represents the complement of the summed probabilities. As
NALUSs are decoded, the probability that the next NALU starts
a new picture increases, which is exactly what happens with
the above definition.

A special case exists if the previously received NALU was
intact. Assuming that all NALUs are received in the correct
order, the address following the last one used is expected.
That value can be used as if a constant was expected instead
of using (18).

2) slice_type: The slice_type syntax element indicates the
coding type employed in the current NALU. The Baseline
Profile restricts the outcomes to inter-coding (0 or 5), and intra-
coding (2 and 7). The value used here has an influence on the
allowed coding types the MBs can use. Additionally, values
above 4, corresponding to the higher range, are used to indicate
that all the slices associated with the current picture share the
same coding type. Thus, the value of the first_mb_in_slice
must be considered, since the effect of using a slice_type value
above 4 is limited by the picture boundaries. We assume that
the encoder does not mix values from the lower and higher
ranges within a picture, because if it does, the only NALU
using information in the higher range could be lost during
transmission.

We can model the slice_type syntax as two pairwise in-
dependent Bernoulli trials. The first experiment checks for
the range used, where a value in the range above 4 indicates
success. The second experiment checks for the coding type,
where the use of intra-coding indicates success. This can be
expressed as:

P(ST = &|Q.:) =
al0(¢;—5)(1—B)+0(&—T7)8H
(1=a)[0(¢)(1—B)+d(¢:—2)B]
6(&)(1—B)+d(¢ —2)8

6(éz - StPrev)

,fmis =0

JJmis # 0, stprey < 4

s fmis £ 0, stprey > 4
(19)

where ST is a discrete random variable representing the cod-
ing scheme used in a NALU, fmis is the latest decoded value
of first_mb_in_slice, stp,e, is the slice_type value decoded
in the previous NALU, §(-) is the discrete Dirac function,
« represents the probability that a slice_type value above 4
is used, and 3 represents the probability that the slice_type
uses intra-coding. Both probabilities are estimated from the
previously reconstructed slice_type values.

3) pic_parameter_set_id: The pic_parameter_set_id syntax
element indicates which PPS is to be used during the decoding
process of the current NALU. We assume that the coded
streams always refer to the same PPS, and thus the value is a
constant.

4) frame_num and pic_order_cnt_lsb: The frame_num and
pic_order_cnt_Isb syntax elements are used to identify pic-
tures. They both represent the least significant bits of mono-
tonically increasing sequences, where the use of a new value
is triggered when the value of first_mb_in_slice equals 0
(the start of a new picture). Subclause 7.4.3 [6] specifically
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indicates that all NALUs belonging to the same picture shall
use the same values of frame_num and pic_order_cnt_Isb.
The only difference is that pic_order_cnt_Isb typically uses
an increment of 2 instead of 1. Assuming that slices may be
damaged, but never lost, this behavior indicates that we only
need to consider two outcomes: either the same values present
in the previous NALU are used, or the least significant bits of
the next value in the monotonically increasing sequence are
used. The syntax elements cannot be modeled as a single field
because they are not necessarily contiguous.

P(FN = ¢|Q.;) = 0(é — fnprev) fmis £ 0
8@ — Usb(frpre 1)) fmis =0
(20)

where F'N is a discrete random variable representing the
frame_num value used by a NALU, fnpe, is the frame_num
value decoded in the previous NALU, and [sb(-) is the modulo
operator using the SPS value log2_max_frame_num_minus4.

P(POCL=6,]0.1) §(¢; — poclprey) , fmis#£0
=Ci|dbci) =

' §(&;—1sb(poclprey+2)) , fmis=0

@2n

where POCL is a discrete random variable representing the
pic_order_cnt_Isb value used by a NALU, poclpye, is the
pic_order_cnt_Isb value decoded in the previous NALU. In
this case, the modulo operator uses the SPS value log2_max_-
pic_order_cnt_lsb_minus4.

B. Slice Data

The syntax elements used to communicate the prediction
mechanisms used have all been modeled, with the exception
of the mb_qgp_delta syntax element. Our assumption that the
QP is fixed for the entire sequence makes this value constant.
However, we do not take advantage of this assumption to use
the syntax element as a synchronization marker (to show that
the proposed method works despite not using this information).

1) mb_type: There are 26 intra-, and six inter-coding
schemes available. 31 of those 32 schemes are signaled with
the mb_type syntax element. The P_Skip coding scheme is
inferred by the use of the mb_skip_run syntax element, when
it is present.

Inter-coding schemes can only be used in NALUs whose
slice_type syntax element uses inter-coding. Intra-coding
schemes can be used in both intra and inter NALUSs. Moreover,
the MBs’s location in the current NALU has an influence
on the available intra 16x16 coding schemes. These coding
schemes use predetermined luminance prediction modes (see
Table 7 - 11 in Rec. H.264 [6]) that may be unavailable given
the MB’s location and the current slice’s boundaries.

In addition to the addresses of the NALU slice_type and of
the MB, we can also consider the coding schemes used by the
neighboring spatio-temporal MBs. To keep the model simple,
we consider the coding scheme used by the colocated MB in
the previous frame.

P(CS = él|Qc,l> = P(CS = éi|st)><
P(CS = é;laddr) x P(CS = é&;|csco)
(22)

where CS is a discrete random variable representing the cod-
ing scheme used, st is the latest decoded value of slice_type,
stprev has the same meaning as in (19), addr indicates the
address of the current MB, and cs¢, indicates the coding
scheme used by the colocated MB in the previous frame.

Note that the coding scheme is used rather than the mb_type
syntax element. This is because the value of mb_type for the
colocated MB may not be available if mb_skip_run was used.
This general definition will still lead to the selection of a valid
mb_type value, as the codebook C; will be populated as such.

2) mb_skip_run: The mb_skip_run syntax element is only
present when the current slice uses inter prediction. It indicates
the number of skipped MBs before the next coded one, or the
end of the slice/frame. Since a MB is either coded or skipped,
let us use these as the two outcomes of a Bernoulli trial. Then,
the syntax element can be modeled as a Geometric distribution,
where a success is defined as a coded MB, or the end of the
slice/frame. As was the case with the mb_type syntax element,
the probability of success is expected to vary with the MB’s
location in the frame. This is expressed through independent
success rates.

P(mb_skip_run = ¢;|Q.;) =

&i—1
[ P(cs = P_skip|Q.; N ADDR = addr + n)x
n=0

(1 — P(CS = P_Skip|Q.; N ADDR = addr + ¢;))

(23)

where each term in the product, as well as the final term (the
one outside the product) is evaluated using (22). However, the
address at which the conditional probability will be evaluated
is specified by the discrete random variable ADDR. Here, ¢;
is the number of skipped MBs before the next coded MB,
or the end of the slice. The codebook C; should be populated
only with the values leading to the last valid address. This also
requires that the probability of using any coding scheme at an
address outside the frame equals 0. This last consideration
ensures numerical stability. When the last entry in C; is
evaluated, the final term in (23) refers to the MB following
the last valid one. That probability would thus be 1, keeping
only the product of the probability that all the remaining MBs
are skipped.

3) Intra4x4PredMode: Intra-coded MBs, with the excep-
tion of I_PCM MBs, use spatial prediction on both luminance
and chrominance values to remove redundancies. While the
luma prediction modes are built into the intra 16x16 coding
schemes, intra 4x4 MBs use one of nine prediction modes for
each of the 4x4 blocks it contains.

The mode selection is signaled using two syntax elements:
prev_intra4x4_pred_mode_flag and rem_intra4x4_pred_mode.
The former indicates whether the mode the decoder derived
matches or differs from the one used. The latter, present when
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prev_intra4x4_pred_mode_flag equals 0, indicates which of
the eight remaining modes to use.

The MB’s current location plays the same role here as it did
with the mb_type syntax element, limiting the available modes
when the required neighboring information is unavailable.

Modeling both fixed-length syntax elements as a VLC
makes the correction process more accurate. First, it inte-
grates rem_intra4x4_pred_mode’s conditional presence into
the correction process. Second, it takes advantage of the
derivation process built into the decoder [6, Section 8.3.1.1].
This results in a richer syntax element. Furthermore, the
probability distribution is better tailored to our needs. We will
use Intradx4PredMode (IPM), the standard variable used to
explain the derivation process, to represent the joint distribu-
tion of the syntax elements.

P(IPM = ¢|Q0%.;) = P(IPM = ¢;|addr)x

24
P(IPM = ¢;lipmw) x P(IPM = é&;lipmy) @)

where ipmpy and ipmy are the left and above In-
tra4x4PredMode values used in the derivation process for
the current 4x4 block. The conditional distributions used in
(24) are in fact pmfs built from the observed prediction
modes in the previously decoded intact slices; one tracking the
correlation with the MB’s left neighbor, and the other tracking
the correlation with the MB’s top neighbor.

4) intra_chroma_pred_mode: The intra_chroma_pred-
_mode syntax element indicates which of the four prediction
modes is to be used. The MB’s location also affects the
available types.

The syntax element can be corrected using the product of
two conditional distributions; one tracking the correlation with
the MB’s left neighbor, and the other tracking the correlation
with the MB’s top neighbor.

P(ICPM = ¢|Q.,;) = P(ICPM = &;|addr)x

Ny L (25)
P(ICPM = ¢&;licpmw ) x P(ICPM = ¢&|icpmy)

where ICPM is a discrete random variable representing the
intra_chroma_pred_mode used, and icpmwy and icpmy are
the chrominance prediction modes used by the west and
north MBs, respectively. The conditional distributions used in
(25) are also custom built mass functions from the observed
decoded values in previous intact NALUs.

5) sub_mb_type: Motion compensation, used to reduce
temporal redundancies, is described using motion vectors. To
improve coding efficiency, the H.264 standard introduced a
more sophisticated motion compensation scheme compared
to earlier standards. The latest value of mb_type indicates
how many motion vectors are associated with the current
MB. Additionally, when the coding scheme is either P_8x8 or
P_8x8ref0, the syntax element sub_mb_type will be present to
further segment the MB’s displacement.

sub_mb_type elements always come in groups of four
consecutive values. This can be exploited to build a more
meaningful syntax element. Each value of sub_mb_type tells
the decoder how many motion vectors to extract. The total
number of motion vectors provides a convenient means to

evaluate the probability of the joint distribution; convenient
because we can observe the number of motion vectors used at
any MB for any coding scheme.

In spite of the fact counting motion vectors is compu-
tationally light, the joint distribution is less accurate with
respect to the vector count of each 8x8 block. To address this
consideration, we assume that all possible outcomes leading
to the same number of motion vectors follow a Uniform
distribution. The conversion cost evaluated by the channel
decoder will help decide which codeword is the likeliest.

P(MVC = &) = — x P(MVC = é&|mvce,)  (26)

1
N;
where MVC is a discrete random variable used to represent
the number of motion vectors associated with an MB, N; is
the number of combinations associated with a given number of
motion vectors per MB (for instance, there are 8 combinations
where MV C' = 5, and only 1 combination where MV C =
16), and mwvcc, represents the number of motion vectors used
by the colocated MB in the previous frame. The conditional
distribution is built using the observed values decoded in intact
NALUES.

6) mvd_l0: The mvd_l0 syntax element represents the
difference, both horizontal and vertical, between the selected
motion vector during motion estimation, and that predicted
from the available neighboring ones. The correction process
can take advantage of the fact they come in pairs, and model
them as a single codeword.

The correction process can also exploit the derivation pro-
cess [6, Section 8.4.1] to build a more precise model. The
mvd_l0 values are added to the predicted values to obtain a
final motion vector. To ensure that each slice is independently
decodable, the prediction process is limited by the slice
boundaries. At the start of each slice, the prediction motion
vector will be (0,0), as no information will be available. In
high motion sequences, we expect that this will lead to high
prediction errors. As the decoding of the slice progresses,
the derivation process should yield better predictors. Thus,
the slice boundaries make it difficult to model the residual
displacement.

Unlike the derivation process, the proposed correction pro-
cess can use the available spatio-temporal motion vectors to
build a motion vector field (MVF). The correction process
can then use the MVF to build conditional distributions with
the available spatio-temporal vectors. The optimal number of
distributions used depends on the sequence and the coding
parameters. We propose to use the product of five distributions,
as it works well in most cases.

P(MV =(¢;,¢41)|Qe,) =

H P(MVZ (éi,éi+1)|mvn)
ne{W,N,C,E,S}

27)

where mvy and mwuy refer to the west and north motion
vectors in the current frame, and mvec, mvg and mug, to the
colocated, east and south motion vectors in the previous frame,
all with respect to the current location.
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Fig. 4. Proposed procedure to decode a corrupted slice

The conditional distributions can all be evaluated using
a joint Normal distribution centered at muv, with n €
{W,N,C, E,S}. The standard deviation can be tracked using
the previously decoded motion vectors in intact slices.

7) coded_block_pattern: The coded_block_pattern syntax
element communicates the presence or absence of residual
coefficients, and is used by both inter and intra 4x4 MBs. The
value is also built into the intra 16x16 coding schemes, but
they use less precise masks. The syntax element is a reordered
exponential Golomb code. The ordering differs for inter and
intra 4x4 MBs, but the mapped values hold the same meaning.

There are 48 values, meant to be interpreted as a 6-bit binary
mask. This makes it difficult to track occurrences alone, as a
value of 8 and a value of 4 both mean that a single 8x8 block
contains residual information.

We can exploit the CAVLC decoding process here to help us
build a model. The VLC table is selected using the coeff_token
values of the left and top 4x4 blocks. This tells us that there
is a strong correlation between neighboring blocks. We can
mimic this behavior and use two conditional distributions,
one tracking the above occurrences, and the other tracking
the western occurrences.

P(CBP = ¢;|Qe;) = P(CBP = é;|cs)x

28
P(CBP = ¢&|cbpw) x P(CBP = ¢&;|cbpy) (28)

where CBP is a discrete random variable representing the
coded_block_pattern value of an MB, cs is the latest de-
coded value of mb_type, and cbpy and cbpy refer to the
coded_block_pattern values west and north of the current MB,
when they are available.

C. Early Termination

Errors in the residual information leading to a syntactically
valid sequence of codewords are problematic, since the pre-
diction information is interlaced with the residual information
as illustrated in Fig. 3. Upon desynchronization, the correction
process will force the use of a valid codeword in any modeled
syntax element, no matter how unlikely. To address this
problem, we use a threshold to stop the correction process
when the selected codeword seems too unlikely. A flowchart
presenting our proposed decoding approach is given in Fig. 4.

Exploiting the fact that most codewords are short, it be-
comes highly improbable that multiple bits inside the same
codeword are erroneous, even at very high bit error rates, as
shown in Fig. 5. Thus, we propose to stop the correction

process when the Hamming distance between the likeliest
codeword and the received bits is greater than 1, as there is less
than 1% chance of there being multiple errors in codewords
that are shorter than 15 bits at a BER of 1072,

Furthermore, our implementation uses a greedy approach
to find the series of likeliest codewords. A single codeword
is retained at each step, and the remaining outcomes are
discarded. Type I errors (i.e., changing intact bits) and type
II errors (i.e., keeping corrupted bits) may desynchronize the
bitstream, leading to an unlikely path requiring that multiple
bits be flipped. To avoid following such a path, we stop
the correction process when the ratio of flipped bits over
interpreted bits exceeds 10~2. This value has been arbitrarily
set. Increasing it would make the decoder more tolerant to
errors introduced by the correction process.

Once the decoding process stops, either because the slice
was entirely decoded, an error was detected, or a threshold was
reached, the extracted MBs are reconstructed and the missing
ones, if any, are concealed.

V. EXPERIMENTAL RESULTS

Several simulations were conducted under various coding
and channel conditions to demonstrate the performance of
our SO-MLD approach with H.264. As a comparison ba-
sis, the same corrupted sequences were also decoded using
our decoder equipped with the default error concealment
algorithm [8] used by the reference software JM 16.0 (the
error concealment mechanism is broken in more recent ver-
sions [41]), using our decoder equipped with state-of-the-art
error concealment STBMA+PDE [12] which, to our knowl-
edge, is the best error concealment mechanism. Moreover, to
show that our proposed approach performs well even when
soft-outputs are not available, the corrupted streams were also
decoded using HO-MLD.

The first 120 frames of the NTSC (720x480) sequences
driving, opening-ceremony, whale-show, 4CIF (704x576) se-
quences city, crew, harbour, ice, soccer, and PAL (720x576)
sequence walk were coded using the JM 18.2 [39].

The Baseline profile was used, and the Intra refresh rate
was set at 30 frames. The MBs were coded following the
raster scan order, and arbitrary slice ordering was not used.
Following the recommendations in [40], the maximum trans-
mission unit (MTU) size was set to 200 bytes. Each sequence
was coded with a QP value of 22, 27, 32, and 37.

Propability of a codeword containing multiple errors

0.02 ‘
+“BER le-)

~+BER 5e-3

0-015/—BER 1e-3 R

a 0.01f 1
= e

0.00s- e ]

% 20

5 10 15
Codeword length (bits)

Fig. 5. Probability of having multiple errors in a single codeword
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Fig. 6. Residual BER for packets protected with a rate-2/3 LDPC code and
submitted to an AWGN channel.

As an experiment, a single frame between the 61%¢ and the
110" was randomly selected using a Uniform distribution.
The remaining frames all contain intact slices. This is to
observe the performance of our method on a single frame
rather than successive corrupted frames. The first 60 frames
were purposely kept intact so that our decoder can gather
information such as the frequency of I and P slices, the
average number of MBs carried in each slice, the average
difference between the predicted motion vector and the actual
motion vector, etc. The transmission of the slices belonging
to the randomly selected frame was simulated using a rate-
2/3 low-density parity-check (LDPC) code, binary phase shift
keying (BPSK) modulation, and an additive white Gaussian
noise (AWGN) channel. The latter two were used, as was
the case for [25], [26], [27], [28], [30], for their simplicity.
The transmission simulation was repeated 30 times for each
sequence, to ensure that the location of the erroneous bits did
not bias our conclusions.

The actual choice of the coding rate is outside the scope of
the experiment. Our interest lay in the bit error rate (BER) after
the packet was decoded by the channel decoder (the LDPC
codes are used to correct as many transmission errors as possi-
ble). Fig. 6 shows a plot mapping the channel conditions to the
BERs under our experimental setup. The values in the graph
indicate the residual error rate (i.e., remaining errors after the
LDPC codes have been used to correct transmission errors).
The experiment used channel SNRs of 4 dB (102 BER),
and 5 dB (106 BER) to simulate both harsh and moderate
transmission conditions. With the selected MTU, this translates
to packet loss rates (PLR) of 80% for harsh conditions, and
5% under moderate conditions.

The experiment was conducted 10 times for each sequence
at each channel SNR. In our transmission simulations, we
assume that the communication protocol used is equiped
with error detection. Thus, our experiment assumes that the
corrupted slices are identified prior to their decoding. Alterna-
tively, error detection methods such as the ones proposed in
[20] or [21] could be used. Using this information, we created
complementary streams, in which the corrupted slices were
discarded, since this is what the reference software expects [8].
These slices were used to obtain the results with the JM 16.0
as well as with STBMA+PDE.

The streams containing corrupted slices were first decoded
using our H.264 decoder. SO-MLD and HO-MLD were ap-
plied to the corrupted slices. Then, the complementary streams
carrying only intact slices were decoded with the missing MBs
concealed with the JM 16.0 and STBMA+PDE. The missing
MBs, following the application of SO-MLD and HO-MLD
were also concealed using STBMA+PDE.

The average PSNR of the frames affected by transmission
errors are presented in Tables I, II, III, and IV. The results
indicate that SO-MLD outperforms JM 16.0 in all cases, with
the exception of the opening-ceremony sequence. Moreover,
the results also show that on average, SO-MLD and HO-MLD
perform better than STBMA+PDE for the majority of the
sequences studied. On average, STBMA+PDE’s PSNR gain is
1.15 dB over JM 16.0, while SO-MLD’s gain is 1.82 dB, and
HO-MLD’s, 1.43 dB at a channel SNR of 4 dB. The 0.67 dB
increase is an indication that exploiting corrupted slices yields
better results. The results also indicate that the gap between
STBMA+PDE and SO-MLD/HO-MLD closes with improved
channel conditions. On average, SO-MLD yields 0.33 dB
better PSNR than STMA+PDE at a channel SNR or 5 dB,
while HO-MLD performs similarly. This was to be expected,
as a reduction in the number of corrupted slices decreases the
amount of intact MBs that can be extracted to provide better
PSNR than concealing them. Inversely, as the channel condi-
tions worsen, error correction actually helps error concealment
perform better as it reduces the size of the concealment region
and provides error concealment with better/more information
which result in better quality concealed MBs.

A visual inspection of the results obtained further confirms
that SO-MLD should be integrated into real-time video com-
munication systems. Fig. 7 shows the original 99-th frame of
the ice sequence coded at 1.2 Mbps, and transmitted with a
channel SNR of 5 dB. The luminance differences between the
frames produced with the JM 16.0, STBMA+PDE, and SO-
MLD approaches are also presented to highlight the problem
areas. Fig. 8 shows another example in which SO-MLD per-
forms better than JM 16.0 and STBMA+PDE. The 65-th frame
of the walk sequence is presented, along with the luminance
differences between the intact frame and the reconstructed
frames. In both cases, fewer differences are introduced when
using SO-MLD. This is important not only for the current
frame, but for the subsequent ones, as fewer visible drifting
effects will be seen.

The simulations were conducted on an iMac equipped with a

TABLE V
AVERAGE DECODING TIME PER STANDARD DEFINITION FRAME
MEASURED IN MILLISECONDS USING THE FOUR DECODING APPROACHES
ON ALL TEST SEQUENCES

Channel SNR | QP | JM 160 STBMA+PDE SO-MLD HO-MLD
» 27 73 3 %)
27| 2 » 24 23
4 dB n| 17 18 » 20
37 13 14 16 15
P 73 79 73
27| 2 21 bY) 2
5 dB n| 17 18 18 18
37| 14 15 15 15
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TABLE I

COMPARISON OF THE AVERAGE PSNR (DB) OBSERVED WITH THE FOUR DECODING APPROACHES FOR STREAMS CODED WITH A FIXED QP OF 37

Channel SNR
Sequences 4 dB 5 dB
Intact JM16.0 STBMA + PDE SO-MLD HO-MLD JM16.0 STBMA + PDE  SO-MLD HO-MLD

driving 30.15 20.44 21.69 (+1.25) 22.80 (+2.36) 22.06 (+1.63) 23.60 26.44 (+2.84) 26.52 (+2.93) 25.59 (+1.99)
opening-ceremony | 27.76 26.34 26.18 (-0.16)  26.14 (-0.20) 26.14 (-0.20) 27.12 27.02 (-0.10)  26.96 (-0.17) 26.91 (-0.21)
whale-show 28.22 23.20 23.24 (+0.03) 23.97 (+0.76) 23.64 (+0.43) 25.39 25.50 (+0.11) 26.07 (+0.68) 25.77 (+0.38)
city 29.89 24.96 25.43 (+0.45) 26.44 (+1.46) 26.41 (+1.43) 27.38 28.68 (+1.29) 28.61 (+1.22) 28.60 (+1.22)
crew 33.16 25.42 25.52 (+0.10) 26.40 (+0.98) 26.01 (+0.59) 28.52 29.25 (+0.73)  29.76 (+1.23) 29.42 (+0.90)
harbour 30.09 24.60 25.27 (+0.67) 25.47 (+0.87) 25.47 (+0.86) 26.25 27.63 (+1.38) 27.33 (+1.08) 27.29 (+1.04)
ice 36.17 24.77 24.94 (+0.17) 25.81 (+1.04) 25.32 (+0.55) 28.47 29.39 (+0.92) 30.16 (+1.69) 29.80 (+1.33)
soccer 31.30 21.23 21.84 (+0.61) 22.84 (+1.61) 22.40 (+1.17) 24.73 25.64 (+0.91) 26.47 (+1.74) 25.94 (+1.20)
walk 31.79 18.51 20.64 (+2.13) 21.43 (+2.91) 20.06 (+1.55) 20.79 23.33 (+2.54) 24.77 (+3.98) 24.01 (+3.22)
average 30.94 23.28 23.82 (+0.53) 24.59 (+1.30) 24.17 (+0.88) 25.81 26.99 (+1.18) 27.41 (+1.6) 27.04 (+1.23)

TABLE II
COMPARISON OF THE AVERAGE PSNR (DB) OBSERVED WITH THE FOUR DECODING APPROACHES FOR STREAMS CODED WITH A FIXED QP OF 32
Channel SNR
Sequences 4 dB 5 dB
Intact JM16.0 STBMA + PDE  SO-MLD HO-MLD JM16.0 STBMA + PDE SO-MLD HO-MLD

driving 33.43 20.47 21.95 (+1.47) 22.77 (+2.30) 22.21 (+1.73) 23.89 26.32 (+2.43) 27.21 (+3.31) 26.39 (+2.50)
opening-ceremony | 31.46 28.50 28.28 (-0.23)  28.56 (+0.06) 28.18 (-0.32) 29.93 30.13 (+0.20)  30.27 (+0.33) 30.17 (+0.24)
whale-show 31.98 23.69 23.82 (+0.13) 24.65 (+0.95) 24.39 (+0.70) 26.75 27.01 (+0.26) 27.80 (+1.05) 27.52 (+0.77)
city 32.99 25.14 26.79 (+1.65) 27.37 (+2.23) 27.41 (+2.27) 27.73 30.56 (+2.83) 30.00 (+2.27) 30.18 (+2.45)
crew 35.80 26.17 26.59 (+0.42) 27.95 (+1.78) 27.28 (+1.11) 29.10 30.45 (+1.35) 30.96 (+1.85) 30.67 (+1.57)
harbour 33.58 24.02 25.96 (+1.95) 25.41 (+1.39) 25.05 (+1.13) 27.12 29.53 (+2.42) 29.17 (+2.05) 28.51 (+1.39)
ice 38.76 25.02 25.51 (+0.49) 26.77 (+1.75) 26.27 (+1.25) 28.57 30.49 (+1.92) 31.33 (+2.77) 31.01 (+2.44)
soccer 34.27 19.87 21.68 (+1.81) 21.71 (+1.84) 21.47 (+1.60) 25.50 27.63 (+2.13) 28.40 (+2.90) 27.92 (+2.42)
walk 35.21 18.27 20.12 (+1.85) 21.18 (+2.91) 19.76 (+1.49) 22.13 25.57 (+3.44) 26.09 (+3.96) 25.61 (+3.48)
average 34.16 23.46 24.52 (+1.06) 25.15 (+1.69) 24.67 (+1.21) 26.75 28.63 (+1.89) 29.02 (+2.28) 28.66 (+1.92)

TABLE III

COMPARISON OF THE AVERAGE PSNR (DB) OBSERVED WITH THE FOUR DECODING APPROACHES FOR STREAMS CODED WITH A FIXED QP OF 27

Channel SNR
Sequences 4 dB 5 dB
Intact JM16.0 STBMA + PDE  SO-MLD HO-MLD JM16.0 STBMA + PDE  SO-MLD HO-MLD

driving 37.12 20.66 22.51 (+1.85) 22.95 (+2.30) 22.45 (+1.79) 23.92 28.84 (+4.92) 28.65 (+4.73) 27.78 (+3.86)
opening-ceremony 35.39 29.86 29.55 (-0.32)  30.03 (+0.17) 29.65 (-0.21) 32.26 32.93 (+0.67) 32.99 (+0.73) 33.04 (+0.78)
whale-show 36.30 23.94 24.16 (+0.22) 24.86 (+0.92) 24.67 (+0.73) 26.51 27.63 (+1.13) 28.57 (+2.06) 28.23 (+1.72)
city 36.64 24.71 28.34 (+3.64) 28.86 (+4.15) 28.39 (+3.68) 27.73 33.84 (+6.11) 33.87 (+6.14) 33.27 (+5.53)
crew 38.59 26.04 26.67 (+0.63) 28.00 (+1.95) 27.42 (+1.38) 28.75 30.57 (+1.83) 31.50 (+2.75) 30.86 (+2.12)
harbour 37.32 23.15 26.08 (+2.93) 24.53 (+1.38) 24.31 (+1.16) 28.55 30.68 (+2.13) 30.08 (+1.54) 29.87 (+1.32)
ice 41.30 25.14 26.05 (+0.92) 27.53 (+2.40) 26.94 (+1.80) 29.26 32.18 (+2.91) 32.98 (+3.71) 32.54 (+3.27)
soccer 37.88 22.05 23.06 (+1.01) 23.96 (+1.91) 23.49 (+1.43) 24.99 28.35 (+3.36) 28.34 (+3.45) 28.15 (+3.16)
walk 38.97 17.45 19.71 (+2.26) 20.68 (+3.23) 20.47 (+3.02) 21.67 26.36 (+4.70) 26.34 (+4.68) 26.21 (+4.54)
average 37.72 23.67 25.13 (+1.46) 25.71 (+2.04) 25.31 (+1.64) 27.07 30.15 (+3.08) 30.37 (+3.30) 29.99 (+2.92)

TABLE IV

COMPARISON OF THE AVERAGE PSNR (DB) OBSERVED WITH THE FOUR DECODING APPROACHES FOR STREAMS CODED WITH A FIXED QP OF 22

Channel SNR
Sequences 4 dB 5 dB
Intact JM16.0 STBMA + PDE SO-MLD HO-MLD JM16.0 STBMA + PDE SO-MLD HO-MLD

driving 41.03 20.51 22.29 (+1.79) 23.12 (+2.62) 22.59 (+2.09) 24.15 29.41 (+5.25) 29.27 (+5.12) 29.34 (+5.18)
opening-ceremony | 39.37 32.02 32.33 (+0.31) 32.69 (+0.67) 33.15 (+1.13) 30.62 30.42 (-0.20)  29.86 (-0.75) 29.39 (-1.23)
whale-show 40.92 24.29 24.45 (+0.17) 25.08 (+0.79) 24.92 (+0.64) 27.30 28.27 (+0.97) 30.19 (+2.89) 29.75 (+2.45)
city 40.91 24.74 28.92 (+4.17) 28.92 (+4.17) 28.48 (+3.73) 28.27 34.67 (+6.41) 34.27 (+6.00) 33.97 (+5.70)
crew 41.87 25.94 26.48 (+0.54) 27.90 (+1.96) 27.15 (+1.21) 28.96 30.96 (+2.00) 32.07 (+3.11) 31.64 (+2.68)
harbour 41.18 24.25 26.41 (+2.16) 25.70 (+1.45) 25.46 (+1.22) 27.45 31.06 (+3.61) 30.23 (+2.78) 29.89 (+2.44)
ice 43.61 24.56 25.46 (+0.89) 27.30 (+2.73) 26.78 (+2.21) 28.32 31.98 (+3.66) 32.73 (+4.41) 32.10 (+3.79)
soccer 41.93 21.21 23.03 (+1.83) 23.51 (+2.30) 23.38 (+2.17) 24.90 29.05 (+4.15) 29.53 (+4.63) 29.32 (+4.41)
walk 42.98 17.83 19.89 (+2.06) 21.39 (+3.56) 21.48 (+3.65) 22.23 27.16 (+4.93) 27.48 (+5.26) 27.35 (+5.13)
average 41.53 23.93 25.47 (+1.55) 26.18 (+2.25) 25.93 (+2.00) 26.91 30.33 (+3.42) 30.63 (+3.71) 30.31 (+3.39)
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Fig. 7. Luminance differences of the 99-th frame of the ice sequence coded with a QP of 27, and submitted to a channel SNR of 5 dB: (a) The original
sequence (41.02 dB); (b) JM 16.0 (26.42 dB); (c) STBMA+PDE (31.24 dB); and (d) SO-MLD (34.66 dB).

3.4 GHz Intel i7 processor, 8 Gb of 1333 DDR3 RAM running
OS X 10.7. Our decoder was implemented using the C++ pro-
gramming language, and compiled favoring execution speed
over program size. Our implementation of the STBMA+PDE
algorithm uses a maximum of 30 iterations in the PDE step.
We collected the decoding time of all four approaches for all
the simulations we ran as a way to measure the complexity
of the different approaches. Table V summarizes the average
decoding time per frame for all 9 sequences since the tests
sequences share similar resolutions. The decoding times are
in milliseconds per frame, and they are separated by channel
SNR and QP since the amount of errors and the stream quality
both affect the decoding and concealment time.

The results indicate that both SO-MLD and HO-MLD have
slightly longer decoding times than STBMA+PDE. This can
be explained by the fact that the concealment only approaches
decode (far) less packets. Accounting for the fact that our

approach deals with all packets (corrupted in addition to
intact), the increase in complexity is acceptable, even for real-
time communication systems. Note that neither the decoder
nor the error correction method have been optimized yet.

VI. CONCLUSION

In this paper, we have presented our novel video error cor-
rection framework. The framework presents a general solution,
where erroneous packets are exploited at the decoder side.
Using JSCD, soft-output information from the physical layer is
combined with the source semantics to sequentially select the
most likely candidate at each step. We have also demonstrated
that our solution also provides good results when soft-output
information is unavailable at the application layer.

The solution was applied to H.264 Baseline profile de-
coding. The syntax elements used to communicate the MB
prediction information were added to the models we had
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Fig. 8. Luminance differences of the 83-rd frame of the walk sequence with a QP of 37, and submitted to a channel SNR of 5 dB: (a) The original frame
(29.88 dB); (b) IM 16.0 (21.61 dB); (c¢) STBMA+PDE (25.75 dB); and (d) SO-MLD (28.97 dB)

previously proposed. The models were then compared against
both standard and state-of-the-art error concealments.

The experimental results demonstrate that under the vari-
ous test conditions, SO-MLD is expected to perform better.
Average PSNR gains greater than 1 dB over JM 16.0 are seen
in more than 70% of the scenarios we studied (42% of the
scenarios show an average gain over 2 dB). The results also
show that the proposed method performs better than state-
of-the-art error concealment techniques. This fact is worth
mentioning, as Baseline profile syntax elements still have to
be modeled. Referring to Fig. 3, the syntax elements of the
NAL header, the slice header, and the prediction info have
been modeled. We expect the method to perform even better
once the syntax elements associated to the residual info box
have been modeled.

Our future work will involve applying the method to the
remaining H.264 profiles as well as the HEVC standard.
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