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Abstract

This paper proposes a criterion to determine if an absorbing porous ma-

terial can be modeled with the ”equivalent fluid” limp model instead of

Biot model. The limp model is derived from Biot theory assuming that

the porous frame has no bulk stiffness. The proposed criterion offers

a practical simplification of the frequency dependent criterion defined

previously by the authors: it depends only on the bulk modulus of the

frame and on its porosity. Frequency independent critical values, below

which the effect of the frame stiffness can be neglected, are determined

for the whole considered frequency range [1− 10 000 Hz]. The critical

values are gathered in charts for different porous thicknesses and two

configurations: sound absorption of a porous layer backed by a rigid

backing and sound radiation of a plate covered by a porous layer. Its

is shown that the derived criterion matches Beranek criterion but it is

less restrictive.

PACS numbers:
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I. INTRODUCTION

This paper proposes a criterion to determine if an absorbing porous material can be

modeled with the ”equivalent fluid” limp model1–6 instead of Biot model7,8. This criterion

offers a practical simplification of the frequency dependent criterion defined previously by

Doutres et al.6. The use of the limp model is advantageous in finite element models allowing

a great decrease of the calculation cost. The criterion involves the limp model rather than

the rigid frame model8 because it is less restrictive and can be applied for a porous layer

bonded onto a vibrating structure.

The criterion defined by Doutres et al.6 is based on a frequency dependent parameter

FSI (Frame Stiffness Influence) derived from Biot theory. This parameter characterizes

the influence of the frameborne wave on the fluid phase displacement. Critical values of

FSI, defining the limit below which a porous material can be considered as ”limp”, were

determined for two sets of boundary conditions and three frequency bands characteristic of

the frame behavior.

In the present paper, the identification process is more straightforward taking benefit

of the simple variation of the FSI parameter with frequency. A frequency independent

parameter called FSIr is then derived from FSI. Critical values are determined considering

the maximum error between Biot and limp modeling in the whole frequency range. They

are given for several thicknesses and two configurations: sound absorption of a porous layer

backed by a rigid wall and sound radiation of a porous layer bonded onto a vibrating wall.

A comparison with other criteria1,11 is finally presented.

∗Electronic address: nicolas.dauchez@univ-lemans.fr
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II. DERIVATION OF THE FREQUENCY INDEPENDENT PARAMETER

FSIr

A. Porous material modeling

Biot theory7,8 is commonly used to model the deformation of a poroelastic solid satu-

rated by a compressible fluid. This theory states that three waves can propagate in a porous

medium: two compressional waves and a shear wave. This work deals with one dimensional

applications and only the two compressional waves are considered. These waves are char-

acterized by a complex wave number δi (i = 1, 2) and a displacement ratio μi. Here, the

wave with the subscript i = 1 propagates mainly in the fluid phase and is referred to as the

”airborne” wave. The wave with the subscript i = 2 propagates mainly in the solid phase

and is referred to as the ”frameborne” wave.

The limp model is derived from Biot theory, assuming that the frame has no bulk

stiffness1–6. This model describes the propagation of one compressional wave in an ”equiva-

lent fluid” medium that has the bulk modulus of the air in the pores and the density of the

air modified by the inertia effect of the solid phase and its interaction with the fluid phase.

The compressional wave is characterized by the wave number δlimp = ω
√

ρ̃limp/K̃f with

ρ̃limp = φ
ρtρ̃f/φ− ρ2

0

ρt + ρ̃f/φ− 2ρ0

. (1)

Note that the formulation of ρ̃limp has been derived from the simplification of Eq. (33) of

reference6 and has the form of the one recently proposed by Panneton5. In this equation,

φ is the porosity, ρt = ρ1 + φρ0 is the total apparent mass of the equivalent fluid with ρ1

the density of the porous material and ρ0 the density of the interstitial fluid. ρ̃f and K̃f

are the effective density and the bulk modulus of the fluid phase of the well known ”rigid

frame equivalent fluid” and account for the visco-inertial and thermal interactions between

air and frame6,8.
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FIG. 1. (a) Parameter FSI for materials (- -) B and (–) C: (•) are the approximated values

at fZK (see Eq. (6)); (b) ratio of the characteristic Bulk modulus and moduli of complex

densities for material C; (c) moduli of complex densities of the two characteristic waves

for material C: (�) and (•) are the approximated moduli of complex densities at fZK (see

Eq. (4))

B. Frequency behavior of FSI

The frequency dependent parameter FSI, which characterize the frame influence, is de-

fined in reference6. It is derived from Biot theory by assuming that the use of the limp

model is possible when the frameborne wave contribution is negligible in the considered

application. This condition is observed when the ratio μ2/μ1 is small compared to 16, and

can be written as a ratio of two characteristic wave numbers

FSI =
δ2
limp

δ2
c

=
ρ̃limp

ρ̃c

P̂

K̃f

. (2)

δc = ω

√
ρ̃c/P̂ is the wave number of a non-physical wave, called ”c” wave, that would

propagate in a medium that has the bulk modulus of the frame in vacuum

P̂ =
E(1 + jη)(1− ν)

(1− 2ν)(1 + ν)
, (3)

and the density of the frame in fluid, ρ̃c = ρ1−ρ̃12/φ, with j =
√−1, E the Young’s modulus,

η the loss factor, ν the Poisson ratio of the frame and ρ̃12 the inertial coefficient which

accounts for the interaction between inertial forces of the solid and fluid phases together

with viscous dissipation8.

Figure 1(a) presents the FSI for two materials which can be found in automotive or

building applications: material B is a soft fibrous material and material C is a polymer foam
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with a stiff skeleton (Table I). Note that the Young’s modulus of the skeleton, that is kept

constant over the considered frequency range, is higher for material C. As a consequence,

figure 1(a) shows that the amplitude of the FSI is always higher for material C for a given

frequency. It also appears that both FSI curves exhibit a bell shape.

Considering now only foam C, figure 1(b) shows that this evolution is not explained by

the the bulk modulus ratio |P̂ /K̃f | that varies slowly, but with the density ratio |ρ̃limp/ρ̃c|
that exhibits a bell shape. At low frequencies, the two phases are strongly coupled by viscous

forces: the limp wave density ρ̃limp is equal to ρ1 while the ”c” wave density is greatly superior

(see Fig. 1(c)). At higher frequencies, both densities decrease due to the reduction of viscous

forces against inertial forces: the ”c” wave density tends to ρ1 and the limp wave density

tends to the fluid density ρ0. In between these two asymptotic behaviors, ρ̃limp and ρ̃c are

close and their ratio reaches a maximum. This occurs at the frequency defined by Zwikker

and Kosten10, fZK = φ2σ/2πρ1, that indicates the frequency above which the inertial forces

are higher to the viscous ones.

TABLE I. Measured properties of materials B and C6.

Porous B C

Airflow resistivity: σ (kN s/m4) 23 57

Porosity: φ 0.95 0.97

Tortuosity: α∞ 1 1.54

Viscous length: Λ (μm) 54.1 24.6

Thermal length: Λ′ (μm) 162.3 73.8

Frame density: ρ1 (kg/m3) 58 46

Young’s Modulus at 5 Hz: E (kPa) 17 214

Structural loss factor at 5 Hz: η 0.1 0.115

Poisson’s ratio: ν 0 0.3

6



C. Derivation of the frequency independent parameter FSIr

The frequency independent parameter FSIr is derived from the maximum value of FSI

over the whole frequency range. According to Fig. 1, this maximum can be approximated

from the densities of both limp and ”c” waves expressed at fZK . Assuming that the density

of air ρ0 is negligible compared with the one of the porous material ρ1, these densities are

given by

ρ̃c(fZK) ≈ ρ1(1− j/φ) , ρ̃limp(fZK) ≈ ρ1

(1− jφ)

(1 + φ2)
. (4)

These values are presented on Fig. 1(c) for material C: (�) for ρ̃limp(fZK) and (•) for ρ̃c(fZK).

At fZK , the bulk modulus of the air in the pores is close to its isothermal value: K̃f(fZK) ≈
P0 = 101.3 kPa. Hence, the modulus of the maximum FSI at fZK is given by

|FSI(fZK)| ≈ |P̂ |
P0

φ

1 + φ2
. (5)

It is noticeable that this parameter is no more function of the frequency parameter ω. In

this sense, it is considered as a frequency independent parameter even if |P̂ | may vary slowly

with frequency for polymer foam. For most of sound absorbing materials, φ is close to 1 and

Eq. (5) simplifies as

FSIr =
|P̂ |
2P0

, (6)

defining the frequency independent parameter FSIr used in the following. FSIr is easy to

calculate and requires only the knowledge of the bulk modulus of the frame P̂ . The two

parameters FSIr and fZK , given in Table II for materials B and C are presented with black

points in Fig. 1(a).

III. FREQUENCY INDEPENDENT CRITICAL VALUES AND

APPLICATION

In the previous section, the frequency independent parameter FSIr which characterizes

the intrinsic frame influence has been introduced. The next step is to identify the critical
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TABLE II. Criterion parameters of materials B and C.

Material B C

fZK (Hz) 57 186

FSIr 0.08 1.43

Thickness (cm)Thickness (cm)
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FIG. 2. Design of the two configurations and evolution of the FSI critical values (bold line)

as function of the thickness: (a,c) absorption coefficient, (b,d) radiation efficiency.

values under which the limp model can be used instead of Biot model. A similar approach

to reference11 has been used. The procedure is fully described in reference6.

The influence of the frame vibration on the porous material behavior depends on the

stiffness of the material but also on frequency and on the boundary conditions applied to

the porous layer1–6. The critical values of FSI are derived for two specific configurations:

sound absorption of a porous layer backed by a rigid wall (Fig. 2(a)) and sound radiation of

a plate covered by a porous layer (Fig. 2(b)).

For each configuration and porous layer thickness, the critical values of FSI are deter-

mined from the difference between the limp and Biot simulations for a wide range of porous

materials. The two materials of TAB. II are used and 256 simulated materials are built with

random values of the main porous properties (see TAB. III) to have a set representative of

usual absorbing materials. For these simulated materials, the porosity is set to 0.97 and

corresponds to classical sound absorbing materials. The viscous characteristic length Λ is
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derived from the shape factor M9 set to unity (cylindrical pores) and the thermal length Λ′

is three times the viscous characteristic length.

For all materials, the difference between the two models is defined as the maximum

difference found over every third octave bands in the frequency range [1− 10 000 Hz]. This

difference is then sorted in terms of FSI: critical values are set when the difference between

the two models exceeds the acceptable limit of 0.1 for the absorption coefficient and 3 dB

for the radiation efficiency.

The two charts given in Figs. 2(c) and 2(d) present the FSI critical values determined

for the two configurations and thicknesses from 1 to 10 cm. For a given material, the limp

model can be used if the FSIr is under the critical value (white area of the charts) and

Biot model should be preferred if FSIr exceeds the critical value (gray area of the charts).

According to Fig. 2, the critical FSI values are similar for the two considered configurations

and slightly depend on the porous thickness: critical FSI≈ 0.1.

TABLE III. Range of values for the properties of the simulated materials (μ′=1.84 10−5 kg

m−1s−1 is the viscosity of air).

Air flow resistivity: σ (kN s/m4) 1-100

Porosity: φ 0.97

Tortuosity: α∞ 1-2

Shape factor: M 1

Viscous length: Λ (μm)
√

8α∞μ′/σφ

Thermal length: Λ′ (μm) 3Λ

Frame density: ρ1 (kg/m3) 10-90

Young’s Modulus: E (kPa) 3-200

Structural loss factor: η 0.01-0.2

Poisson’s ratio: ν 0.3
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The procedure for determining the porous materials for which the limp model can be

used in the frequency range [1− 10 000 Hz] is as follows: (i) the bulk modulus of the frame

P̂ has to be determined; (ii) the parameter FSIr is evaluated by Eq. (6) using the maximum

value of |P̂ | in the considered frequency range; (iii) the critical values of FSI are chosen in

Fig. 2 according to the studied configuration and the thickness of the porous layer; (iv) FSIr

is finally compared to the critical values: the limp model can be used in the whole frequency

range if FSIr is below the critical value.

In the case of material B, FSIr is equal to 0.08 (see TAB. II) which is below critical values

for all configurations and thicknesses: the limp model can be used. The FSIr of material

C is equal to 1.43 (see TAB. II) which is above critical values for all configurations and

thicknesses: Biot model should be preferred. These predictions agree with the simulations

presented in Fig. 4 of reference6.

IV. COMPARISON WITH OTHER CRITERIA

Beranek1 first proposed the limp approximation from the poroelastic formulation of

Zwikker and Kosten10 using the assumption that, for soft materials, the two waves which

propagate in the porous medium are decoupled. He also gave a criterion to identify the

porous materials for which this assumption can be applied, that is |P̂ /Kf | < 0.05. Its

criterion limit has been obtained from the study of materials having a frame bulk modulus

from 28 to 100 kPa. Note that the FSIr given in Eq. (6) is half the Beranek parameter. In

the case of the absorption and radiation configurations, the critical value of FSI is found

around 0.1 [see Figs. 2(c) and 2(d)] from the study of materials having a frame bulk modulus

from 3 to 200 kPa. The proposed criterion can thus be written as |P̂ /Kf | < 0.2. Hence,

the main difference with the Beranek criterion is the critical value: the FSIr criterion being

much less restrictive. Indeed, according to TAB. II, the Beranek criterion rejects the use of

the limp model for both materials B and C.

Pilon et al.12 proposed a criterion to identify if the effect of the 1/4 wavelength frame
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resonance (occurring at frequency fr) will be apparent in the absorption coefficient. The

criterion in based on an empirical parameter called FAE= σE/ρ2
1 that is the product of ratios

involved in the definition of fr and fZK. FAE is not rigorously applicable with material B

having a Young’s modulus under the considered lower limit of 30 kPa11. In the case of foam

C, the criterion based on FAE is consistent with FSIr criterion.

V. CONCLUSION

In this paper, a frequency independent criterion to identify the porous materials which

can be modeled with the limp model has been defined. It is based on a parameter derived

from Biot model and is shown to be only function of the bulk modulus of the frame P̂ and of

the porosity. In the case of porous materials having a porosity φ close to 1, it can be reduced

to FSIr = |P̂ |/2P0 which is half the parameter proposed by Beranek1. For the majority of

thicknesses comprised between 1 and 10 cm, the absorption coefficient and the radiation

efficiency could be simulated with the limp model instead of Biot model if FSIr < 0.1, i.e. if

the bulk modulus of the frame is lower than 20 kPa, which is less restrictive than Beranek1

criterion.
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