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Abstract— In this paper we present a novel combination of 
object features to both match buildings from pre-disaster images 
to shapes in a post-disaster image and assess damage on those 
buildings. These features include scale profile ratios extracted 
from a tree of shapes representation of the original image as well 
as texture features. A supervised classifier is used to classify 
building damage into three representative classes tied to the 
European Macroseismic Scale (EMS-98). The method is 
compared to visual inspection results as well as other automated 
methods. Results clearly show the benefits of our method for fast 
crisis mapping applications with few human inputs required.  

Index Terms—Disaster response, Image classification, Image 
processing, Remote sensing, Texture analysis 

I. INTRODUCTION

HE launch of multiple spaceborne imaging sensors in the 
past ten years has led to an increase in the use of remotely 

sensed images and research activities for remote sensing 
applications. Using Earth observation sensors for emergency 
response when disasters occur is one of the usages that are 
gaining more trust. Many disasters occur each year and 
response time is always a crucial factor. In order to adequately 
provide emergency relief, rescuers need to have a global 
picture of the situation on-site. Remote sensing can provide 
this kind of information. 

One reason the use of remote sensing for emergency 
response has grown considerably in recent years is the creation 
and continuous support of the International Charter “Space 
and Major Disasters” in 2000 [1]. The purpose of the Charter 
is to provide a unique system for acquiring raw data, preparing 
useful Earth observation products and delivering them to 
decision makers and rescue organizations when a major 
disaster strikes. There are protocols defined for each kind of 
disaster so that adequate sensors are used with proper 
parameters to facilitate analysis. However, being driven by 
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“best try” policies, it is sometimes impossible to get all the 
necessary data rapidly after the event. 

Our main objective is to propose a semi-automated method 
for damage assessment using few resources and in a short 
time. To achieve this goal, we use a level set based 
transformation to model the image as a hierarchical 
representation of shapes from which meaningful shapes are 
extracted. This process necessitates the generation of various 
scale and geometric features that are then combined in a novel 
way to form feature vectors for supervised learning to evaluate 
damages. Originality of this work is in the use of specific scale 
features and textural features for damage assessment from pre- 
and post-event images. All of this is performed in an object-
oriented manner to reduce processing time and memory usage. 

The paper is divided into four main sections. The first 
section presents a literature review on the state of the art in 
building damage evaluation from VHR satellite images. The 
second section encompasses our proposed method for fast 
semi-automated damage estimation. The third section is 
composed of experimentations and results using the proposed 
method. Finally, a conclusion is made on the usefulness of the 
proposed method for disaster response through the Charter.  

II. LITERATURE REVIEW

For our review, we analyzed papers directly related to 
buildings damage estimation. 

We note three main themes for damage evaluation work: 
visual analysis only, hybrid method using both visual analysis 
and automated processes and completely automated methods. 
The advantages and inconveniences associated with each type 
of process will be presented. 

A. Damage evaluation
Earth observation data is also solicited to evaluate damages

caused by disaster events [2-6]. As for building detection, 
optical and SAR data are either used separately or combined 
to achieve the goal of estimating damage. In [2], the authors 
present a method based on the newly developed pictometry 
method. Although high classification accuracy can be obtained 
and information on building facades can be extracted, the 
method requires five VHR images acquired at precise angles 
over the scene. In [7], the authors test a correlation metric with 
a supervised classifier on various optical VHR datasets with 
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promising results. However, the buildings are manually 
extracted which is what we aim to avoid. The method is 
simple to implement but speed performances need to be 
improved for disaster response. In [8], the authors propose a 
building damage evaluation method based on One-Class 
Support Vector Machine (OCSVM). A comparison is made 
between pixel-based and object-based approaches with clearly 
superior accuracy from the latter. Results are in the same 
range of accuracy as those from [7] but use only two classes 
(damaged and undamaged) instead of three or four classes to 
get more details on the damage levels. Building footprints are 
obtained through a watershed segmentation algorithm using 
empirical thresholds and without presenting the evaluation of 
the accuracy of the segmentation. In [9], automated change 
detection is proposed based on isotropic frequency filtering, 
spectral and texture analysis, and segmentation. The proposed 
method yields an overall accuracy of 80%, better than 
standard change detection algorithms. Texture is computed 
through the homogeneity and energy features of the GLCM 
(Gray Level Co-occurrence Matrix), a very time consuming 
process. 

Many researchers have proposed the use of SAR post-event 
images to detect damage because SAR image acquired quickly 
after the event can be used even if clouds are covering the area 
or if the image is acquired during nighttime. In [10], 
TerraSAR-X post-event images are used to detect building 
damage after the 2008 Wenchuan Earthquake. Very precise 
SAR models of damaged buildings are generated through 
simulation of the scene in order to visually estimate damage 
from the acquired images. Only qualitative results are 
presented so it is difficult to assess the full potential of SAR 
imagery from this paper. By using pre- and post-event SAR 
images in [11], the authors use a change detection approach 
using the backscattering coefficient and a correlation 
coefficient to separate damage in seven classes. The method 
did not include a quantitative study and the authors only make 
a brief comment on the necessity of acquiring pre- and post- 
event images with identical parameters and if possible in 
similar seasonal conditions to avoid backscattering and 
correlation differences not attributable to damage. In [12], the 
authors propose an extension of their previous work on SAR-
based seismic damage assessment. Comparison between a 
damaged area ratio and homogeneity and entropy features 
extracted from the computation of the GLCM provides good 
results for VHR SAR produced by COSMO-SkyMed, but this 
resource is scarce and is not acquired as a priority when a 
disaster strikes. The authors extend the experimentation with 
lower resolution SAR data and find good correlation between 
homogeneity feature and damage. GLCM computation is still 
time consuming and damage estimation is only two levels: 
undamaged or hardly damaged. 

As for using optical and SAR images, a usual method is to 
use an optical VHR image to detect buildings and a SAR 
image to evaluate damage [13]. The proposed method 
facilitates the damage evaluation no matter the weather 
conditions after the disaster but requires precise registration 
between the different images to insure correct evaluation. 

It is important to note that most operational agencies still 
use visual inspection to achieve acceptable damage estimation 
[4, 6]. Visual inspection takes time, expert knowledge and 
many analysts to cover the area affected by a disaster. 
Automated evaluation methods are still not completely 
integrated into operational image processing chains. 

B. Pros and cons of current methods
As can be seen from the literature, there are many different

methods proposed to automate the task of evaluating building 
damages from disaster images. A still quite popular method 
consists of inspecting visually the images and estimating 
building extents and damage ratios in a manual fashion. 
Although this activity is usually done by experts, it is still 
prone to the subjectivity of the analyst and human error. 
Supervised classification scheme also depend on the training 
labels assigned by the operator and thus only an experienced 
user should be tasked with this. Some supervised methods, 
like SVM, can allow training errors. We also demonstrate in 
the result section that some features help to reduce the impact 
of training samples selection.  Automated methods avoid some 
of these problems while getting high accuracy, but they 
usually depend on experimental thresholds that are difficult to 
set or need specific image acquisition modes and contextual 
information. Another problem with the usual segmentation 
and classification methods is that they have difficulties when 
buildings are too close to each other, which is usually the case 
of dense cities and shanty towns. 

From our observations we have determined key components 
of a successful building damage evaluation scheme and 
propose a complete method in the following section. 

III. PROPOSED METHOD

In this section, we present our semi-automatic method for 
detecting buildings and estimating their level of destruction 
from pre- and post-event VHR satellite imagery. The work 
presented in this article is the continuity of our previous work 
on fast building extraction [14]. The whole process is 
summarized in Fig. 1. For this paper, we only present the 
results for the damage evaluation part. To independently 
assess the damage evaluation capacity of our method, all the 
shapes defined as buildings according to the vector data layer 
from the Atlas of building damage assessment are used. 

The three main steps in our damage evaluation algorithm 
are described in detail in this section: Shape matching (See 
Fig. 3), Texture extraction and shape difference computation 
(See Fig. 4) and classification (See Fig. 5). First, we present 
the image representation, segmentation and feature extraction 
scheme applied in our previous work on building classification 
as it is also used in this work. We used subscripts bef and aft 
to represent objects in images acquired either before or after 
the disaster respectively. The τ subscript is used to represent 
an algorithm or process applied to images or objects 
irrespective of its position in time. 

Because our aim is to provide a fast method to help photo-
interpreters when an earthquake occurs and the Charter is  
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activated, some limits need to be defined. The Emergency on-
Call Officer has operational guidelines [15] for selecting 
useful sensors and for setting proper acquisition parameters. 
Using these guidelines ensures a minimum amount of 
standardization that should lower generalization issues. 
Second, we limit ourselves to use one pre-event image and one 
post-event image. Third, the method should have the fewest 
operator-controlled parameters and these should be related to 
physical measures. This will avoid the creation of a black-box 
method where the operator shifts the parameters randomly 
until an adequate result is achieved. 

 

A. Fast Level Set Transform 
The Fast Level Set Transform (FLST) was first proposed in 

[16]. This transform enables the representation of an image 
and its objects as an inclusion tree. The root of that tree is a 
shape that covers the whole image while the end nodes are the 
smallest possible shapes associated with each pixel from the 
image. Levels in between are inclusion shapes forming a 
hierarchical shape structure. The FLST is based on a simple 
region growing algorithm. The image is scanned pixel by pixel 
in sequence. When a local intensity extremum is found, 
adjacent pixels are explored to grow a region of interest. If this 
region is found to be a regional extremum (having an intensity 
value either globally lower or higher than all neighboring 
regions), it is tagged as a probable shape and it is removed 
from the image. The region growing process then continues 
creating a possible parent for the extracted shape. Considering 
both high and low intensity regions at the same time enables 
the creation of a single tree structure as opposed to a pair of 
trees generated by applying morphological operators on bright 

and dark objects [17]. Once the whole image has been scanned 
a single time, the inclusion tree of the image is complete. The 
process is fast, making use of queues with heap sorting to 
store and retrieve neighboring pixels to compare them with the 
current pixel. This algorithm only changes the representation 
of the information contained in the image. Further processing 
is thus needed to extract features. An example of the FLST 
applied to an image is shown in Fig. 2. In this case the image 
generates a tree with 127 levels. Starting at the root (level 0) 
each level contains nested shapes obtained from the region 
growing process. 

 

B. Scale mapping 
Various authors have proposed the extraction of either a 

local or a global measure of object scale for images [18-20]. 
This measure can be used to index images and retrieve similar 
ones [21] or to help select the proper multiscale pyramidal 
level to detect particular objects. Most local scale mapping 
methods are either too sensitive to noise or are dependent on a 
large sliding window that results in low resolution scale  

 
 

Fig. 1.  Process diagram for the proposed building extraction and damage 
evaluation method.  
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information. The method proposed in [22], called cartographic 
scale mapping, is based on the topography of the image for 
precise scale identification as well as adaptive filtering to 
attenuate sensitivity to noise. The interesting point about this 
method is not only the extraction of a “best scale” for each 
pixel, but also the selection of a unique relevant shape for each 

of those pixels. We thus use the scale mapping algorithm to 
extract relevant shapes that will become candidate buildings. 

The method works by accumulating contrast from similar 
shapes in the hierarchy for a given pixel p. Contrast C(si) of 
shape si is computed by the absolute difference of grey 
intensity values I between the current shape and the child 
shape si-1 on the same branch. This is noted as 

 
𝐶(𝑠!   ) = |𝐼(𝑠!) −   𝐼(𝑠!!!)|. (1) 

 
The similarity criteria defined in equation (2) is based on 

the variation of area from one shape to the next by a certain 
fraction of the perimeter controlled by a λ parameter which is 
usually set to 1 for usual images (it represents the blur width 
of contours for objects) , as in  

 
C 𝑠! = C 𝑠!!

!!! ! . (2) 
 
Where for all i: 
 

a i = min
j|∀k = j + 1,… , i,

A 𝑠! − A 𝑠!!! ≤ 𝜆P 𝑠!!!
. (3) 

 
Where 𝐶 𝑠!  is the cumulative contrast for shapes si of pixel 

p while A and P are the area and perimeter of a particular 
shape. Shape regularity can also be taken into account so that 
less regular shape can be discarded (this can remove 
undesirable transitional shapes caused by the segmentation 
process). The γs parameter is used for this. Setting it to zero 
will avoid taking into account the regularity of shapes while 
any other positive value will allow increasing degrees of 
regularity as shown in equation (4) where the new contrast 
value T is defined. 

 

T 𝑠! = C 𝑠! ×
! !!
! !! !

!!
 (4) 

 

𝑠! 𝑝 = 𝑠!"#$!%
!∈! !(!!)

 (5) 
 
The most contrasted shape 𝑠! 𝑝  is thus selected and when 

each pixel has been assigned to a shape, the segmentation is 
over. In the event that multiple candidates have the same 
cumulated contrast value, the one with the lowest scale is 
selected thus favoring buildings over city blocks. Each shape 
can then be represented by its scale which is the ratio 
area/perimeter. 

 

C. Feature extraction 
Buildings’ damage evaluation is achieved through a 

supervised classification using features extracted from the 
scale shapes. The features are: shape scale, area and perimeter, 
invariant centered moments-based features, shape scale profile 
points and texture features. The centered moments are 
obtained by: 

 
Fig. 2.  FLST example. Original image (a), root of the tree of shapes (b), 
level 10 (c), level 20 (d), level 50 (e) and level 80 (f). 
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𝜇!" = 𝑥 − !!"
!!!

!
𝑦 − !!"

!!!

!
 (6) 

 
Where µkl is the centered moment for order kl and m00, m10, 

m01 are the area of the shape, the first order moment in the x 
axis and the first order moment in the y axis respectively. We 
use µ11, µ20 and µ02 to create the inertia matrix Is of the shape 
to get two rotation and translation invariant features. We also 
use µ21, µ12, µ30 and µ03 to get two more features: 

 
𝐼! =

𝜇!" 𝜇!!
𝜇!! 𝜇!"  (7) 

 

𝑟! = 𝑚!! (8) 
 

𝑟! = 𝜇!" + 𝜇!" = 𝑡𝑟𝑎(𝐼!) (9) 
 

𝑟! = 𝜇!" ∗ 𝜇!" − 𝜇!! ∗ 𝜇!! = det  (𝐼!) (10) 
 

𝑟! = 𝜇30 − 3𝜇12
2
+ 𝜇03 − 3𝜇21

2
 (11) 

 

𝑟! = 𝜇30 + 𝜇12
2
+ 𝜇03 + 𝜇21

2
 (12) 

 
r1 is the area of the shape and this feature will also be used 

for shape matching later on. For the scale features, we recall 
(2) in which contrast is cumulated for shapes. The various 
pixels will have different levels in the tree of shapes 
depending on regional variations but from our experience 
pixels associated with buildings generally have at least five 
cumulated contrast shapes present in the tree. Taking the 
contrast value weighted by the scale (area/perimeter) for these 
five potential shapes (using (2)) for a pixel will yield five 
features for the selected shape. The details of extraction and 
usefulness of these features are presented in [23]. 

 

D. Shape matching 
In order to estimate damage on existing buildings only, we 

must first match shapes in the post-event image with extracted 
buildings from the pre-event image. With the precise orbital 
information from the newest satellites and latest registration 
methods, registration of images should be considered as 
adequate. In the case where the images cannot be precisely 
registered, we present a method for matching shapes when 
only coarse registration of the two images is available. An 
image registration algorithm based on shapes is proposed in 
[24] but our tests lead to poor offsets selection making the 
registration unusable. We believe this is caused by the lack of 
enough undamaged buildings in the post-event image. Since 

there is no guarantee there will be a sufficient number of 
highly corresponding pairs from the pre- and post-event 
images, we suggest using a simple similarity matching 
algorithm to get a coarse (less than 10 pixels error) 
registration. The process diagram for this algorithm is 
presented in Fig. 3. 

 

 
 

From this point, shapes detected as buildings in the pre-event 
image can be matched to shapes in the post-event image. To 
achieve this, the already extracted rotation and translation 
invariant features r1, r2 and r3 are used. For each building 
detected, the shape from the post-event image whose centroid 
is within a certain distance from the centroid of the building 
with the most similar features is considered to be the matching 
shape. We set the search window by calculating the length of 
the side of a square having the same area as the building while 
the similarity is computed by minimizing feature differences 
according to (13). 

 

min 𝐶 𝑏!"#$ , 𝑓!"#" = 𝑟!"#$% − 𝑟!"#"$
!!

!!!   (13) 
 

E. Texture extraction 
Multiple features can be used to differentiate buildings that 

are moderately damaged or intact, those that are more 
damaged and those that are badly damaged or completely 
destroyed. The shape matching procedure can provide some 
cues about the level of destruction. The distance between pre-
event and post-event centroids for shape pairs and the 
difference between invariant features should be linked to the 
amount of destruction (i.e.: displaced centroids can indicate 
shifted rooftop). The changes in texture features from pre- and 
post-event images can also provide information on the state of 
buildings. In Fig. 4, we describe the process of extracting 
texture features from pre-event buildings and post-event 
matched shapes as well as the creation of shapes based on 
feature differences between the buildings extracted before and 

 
Fig. 3.  Process diagram for the proposed shape matching method. 
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the shapes extracted after the earthquake. 
Textural information can provide hints about changes taking 

place between the two acquisition dates. Laws [25] proposed a 
set of energy measurements to determine the texture properties 
of a region of the image. These measurements are based on the 
average grey level (L), edges (E), spots (S), ripples (R) and 
waves (W). To obtain 5x5 2D kernels, the outer product of all  
combinations of the five 1D kernels in (14) is computed (see 
(15) for an example of a E5L5 kernel from 𝐸5!×𝐿5). 
 

 
 
𝐿5 = 1 4 6 4 1

𝐸5 = −1 −2 0 2 1
𝑆5 = −1 0 2 0 −1
𝑅5 = 1 −4 6 −4 1
𝑊5 = −1 2 0 −2 1

 (14) 

 

−1
−2
0
2
1

× 1 4 6 4 1 =

  

−1 −4 −6 −4 −1
−2 −8 −12 −8 −2
0 0 0 0 0
2 8 12 8 2
1 4 6 4 1

= 𝐸5𝐿5 (15) 

 
This yields 25 convolution kernels that are each applied to 

the original image resulting in 25 filtered images. It is then 
proposed by Laws to apply an averaging window (5x5) on the 
images to get the energy measure for each pixel. Since we are 
already working with detected buildings and segmented 
shapes, we can speed up the processing by only applying the 
25 kernels to pixels that are part of the detected buildings. We 
also propose to get a single averaged energy measure for each 
shape by summing and averaging the values for each pixel in 
the shape instead of using a rectangular window. Pixels on the 
edges of shapes are not used to avoid border effects. 

Contrast normalization is obtained by dividing the results 
with the values of the L5L5 energy image. Orthogonal pairs 
(ex: A5B5 is orthogonal to B5A5) can be combined to reduce 
the number of features while the energy images from pure 
kernels (ex: A5A5) should be adjusted to keep equilibrium in 
the value range: 

 
𝐸5𝐿5!"#$%&'( = 𝐸5𝐿5 + 𝐿5𝐸5 

… 

𝐸5𝐸5!"#$%&'" = 𝐸5𝐸5×2 

… 

 
The final result is 14 textural features that can be used with 

the geometrical and scale features to evaluate building 
damage. In total, 27 features are used: intensity, scale, area, 
perimeter, 14 texture features, 4 geometric features and 5 scale 
features. To provide meaningful information to the classifier, 
we need to determine the changes that have occurred between 
the two image acquisition dates. To do so, we compute the 
feature differences for a building mbbef with its matched post-
event shape msaft: 

 
Δ𝑓𝑒𝑎𝑡!!"##! 𝑀𝑎𝑡𝑐ℎ 𝑚𝑏!"#$ ,𝑚𝑠!"#" = 𝑓𝑒𝑎𝑡!"!"#! −

𝑓𝑒𝑎𝑡!"!"#!  (16) 
 

 
This gives us a new shape of differences Sdiff for each 

building from the pre-event image. Some of these shapes are 
used in the learning process while the others are used to assess 
the generalization performance of the classifier. 

 

F. Damage evaluation 
The last step in our proposed method is the damage 

estimation on the detected buildings. Three damage levels are 
considered for classification. The detailed process is presented 
in Fig. 5. 

A multilayer backpropagation Perceptron neural network 
(MLP) is used for its simplicity and previous success in 
remote sensing applications. For this work, the set of shapes of 
differences Sdiff is randomly split into a learning set Sdiff_learn 
and a test set Sdiff_test. The learning set is used to train the MLP 
with a subset for validation in order to optimize the parameters 
for the network (number of neurons, training epochs and 
learning rate). The test set is then classified into three damage 
classes using the trained network. In an operational setting, the 
selection of the learning set would be left to the operator who 
could also modify classes manually once the classification is 
done to remove false positives and to correct false negatives. 
This will lead to better final results while taking much less 
time than requiring that the operator manually assign each 
polygon and class. 
 

 
Fig. 4.  Process diagram for extracting texture and computing differences. [2 
columns wide!!!] 
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IV. EXPERIMENTATION AND RESULTS 

A. Data, hardware and software 
In order to test the proposed method, images acquired for 

the Haiti earthquake of January 12nd 2010 are analyzed. We 
use the Quickbird pre-event image acquired on February 22nd 
2009 and the Quickbird post-event image acquired on January 
15th 2010. These images were provided by MAGIC group of 
CSR from the University of Texas and Digital Globe. Both 
images were acquired in panchromatic and multispectral 
modes with spatial resolutions of 0.6 m and 2.4 m respectively 
but we only use the panchromatic bands. As a complement, 
we have also done preliminary tests with subsets of quickbird 
images of the case of the Boumerdes earthquake of 2003. 
These images were graciously provided by CNES and 
SERTIT. 

The tests are executed on a personal computer running on 
an Intel Core™2 Duo cpu at 2.33GHz with 4Gb of memory. 
In order to assess our method, we use the “Atlas of building 
damage assessment Haiti earthquake 12 January 2010” [26] 
produced by the United Nations Institute for Training and 
Research (UNITAR) Operational Satellite Applications 
Programme (UNOSAT), the European Commission (EC) Joint 
Research Center (JRC) and the World Bank (WB) as ground 
truth since it is the most complete and extensive study 
available. Both the vector layer and the raster images were put 
in WGS 84 / UTM zone 18N coordinates for superimposition. 
For the Boumerdes set, we use the vector data layers provided 
by the relevant organizations as ground truth. 

The algorithms are implemented using the Orfeo Toolbox 
(OTB), an open-source remote-sensing library developed in 
part by the CNES [27]. Fig. 6 below shows the region of Port-
au-Prince near the presidential palace. Two subsets are 
extracted from this region. Each subset is 800x600 pixels and 
is shown bounded by a white box. 

In Fig. 7, we show subset BOU1 before and after the 
disaster. Note that multiple buildings had soft story collapses 
with scarce apparent rubble. 
 

 
 

 
 

B. Parameters and their optimization 
The various steps of the proposed method require setting 

different parameters. Although there are few parameters, it is 
important to set them using a priori information on the scene, 
e.g. the buildings’ shapes and sizes and the required precision. 
For our first subset which is composed of the streets 
surrounding the Cathedral of Our Lady of the Assumption 
(PAP1 zone), we set the minimal building surface as 75 pixels, 
the maximal building surface as 3575 pixels and a value of 1 
for the λ and γs parameters for blur amount and shape 
regularity respectively. The FLST transformation is also 
limited to outputting shapes with an area greater than 75 pixels 
to reduce the number of shapes to consider. We use a MLP 
neural network with 14 neurons in the hidden layer and 3 
neurons for output. The hidden neurons use a hyperbolic 
tangent transfer function and the output neurons a sigmoid 
transfer function. The learning rate is set to 0.15 and the 
maximum number of epochs is set to 800. In order to obtain 
these parameters, we have generated a set of classifiers with 
varying parameters and have tested them with 100 sets of 
training data from our pool of damage-labeled buildings. The 
results are presented in Fig. 8. For each parameter tested, the 
other parameters were set to the optimal value found. 

We labeled 533 building shapes into the three damage 
classes according to [4] by using the vector layer from the  

 
Fig. 5.  Process diagram for the damage evaluation step (classification. [2 
columns wide!!!] 

 
Fig. 6.  Port-au-Prince region where two subsets are used for testing the 
proposed method. 

 
Fig. 7.  Boumerdes test set 1(BOU1) before (a) and after (b) the event. 
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Atlas of building damage assessment. We used 200 samples 
for training the network, 100 for validation and 233 for testing 

for 100 iterations. For each iteration, the samples for the three 
sets are randomly selected (with no overlap).  

For our second subset (PAP2 zone) which is a region a few 
blocks to the West of the first one, we use the same extraction 
parameters. These parameters yields 415 building shapes that 
we also labeled again by using the vector layer from the Atlas 
of building damage assessment. Of those buildings, 115 are 
used for testing. 

For our third and fourth subsets (BOU1 and BOU2 
respectively), we use 35 shapes out of 74 for BOU1 and 35 
shapes out of 78 for BOU2. These regions have a much lower 
density than PAP1 and PAP2 and most buildings are large 
apartment complexes. 

 

C. Shape matching and damage evaluation 
The extracted shapes are matched to buildings from the pre-

event image leading to pairs of shapes. Features difference is 
calculated on these pairs to form a difference vector used for 
damage classification. 

Three damage classes are considered: no damage to low 
damage (ok), damage (dmg.) and heavy damage or destruction 
(dest.). These classes correspond to EMS-98 grades 0 to 3, 
grade 4 and grade 5 respectively [28]. As stated, Law’s 
textural features are combined with the previous features used 
for shape matching. The visual results are presented in Fig. 9. 
Table I shows the confusion matrix for the PAP1 test set. The 
columns show World Bank, UNOSAT, Joint Research Center 
field survey and visual analysis results [26] and rows are 
results from our method. Results are good with high producer 
and user accuracies and a global accuracy of 84.1%. 
Interestingly, the middle class is never confused with the 
destroyed class while the intact and destroyed classes both 
have a comparable number of buildings classified falsely as 
the other class. This can, in part, be explained by the change in 
viewing angle between image acquisitions and by the changes 
not related to the earthquake (such as new constructions, 
demolished or renovated buildings). We also test the trained 
network on the PAP2 test set and obtain similar results with a 
global accuracy of 84.3%. Detailed results are included in 
table II. We note some major differences between the user and 
producer accuracies from one set to the other. It is important 
to note that the PAP2 region contains generally bigger 
buildings than the PAP1 region leading to more precise texture 
and scale profile measures and thus better discrimination of 
damage which probably account for these differences. The 
visual results for PAP2 are presented in Fig. 10. As for BOU1 
and BOU2 test sets, the results are presented in Table III. 

We can see that mean accuracy is greatly affected by the 
smaller number of learning samples. Another difficulty here is 
that the ground truth identifies segments of buildings as being 
destroyed while other segments are deemed damaged or 
unaffected. The segmentation scheme is thus not adapted to 
the ground truth classification method for the large buildings 
in this set since buildings would need to be further segmented. 

 
 

 
Fig. 8.  Validation runs for MLP parameters selection. Number of neurons 
(a), learning rate (b) and number of training epochs (c). 
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D. Comparison with other methods 
Since our method (geometry, scale and texture or GST) 

only requires a single panchromatic pre-disaster image and a 
single post-disaster image, it should be compared to a method 
that has similar prerequisites. For this comparison, we chose 
the supervised correlation classification scheme proposed in 
[7, 29]. This method computes pixel to pixel correlation on the 
intensity values of the pre- and post-event images as well as 
on the edge maps derived from these images. Only the pixels 
inside predefined building footprints are considered to lighten 
the processing load. All the results are presented in Table IV 
for PAP1 and in Table V for BOU1. We used the same 
training sets for both methods as well as the validation and test 
sets. The processing time does not include the labelling of the 
training data as it is the same for both methods since the same 
shapes are used. For both disaster events, the proposed method 
gives better overall accuracy while requiring less processing 
time. 

 

 
Fig. 9.  Damage classification map on PAP1 region (green is ok, yellow is 
damaged and red is destroyed). 

 
Fig. 10.  Damage classification map on PAP2 region (green is ok, yellow is 
damaged and red is destroyed). 

TABLE I 
CONFUSION MATRIX FOR DAMAGE CLASSIFICATION OF REGION 

PAP1 
  Reference  

  Ok Dmg. Dest. User. 

Es
tim

at
ed

 Ok 156 7 15 87.6% 

Dmg. 2 14 1 82.4% 

Dest. 12 0 25 67.6% 

 Prod. 91.8% 66.7% 60.9% 84.1% 

 

TABLE II 
CONFUSION MATRIX FOR DAMAGE CLASSIFICATION OF REGION 

PAP2 
  Reference  

  Ok Dmg. Dest. User. 

Es
tim

at
ed

 Ok 26 1 2 89.7% 

Dmg. 3 34 4 82.9% 

Dest. 3 5 37 82.2% 

 Prod. 81.2% 85% 86% 84.3% 

 

TABLE III 
TEST RESULTS FOR ALL DATASETS 

  
Overall 

accuracy 
(%) 

Mean 
overall 

accuracy 
(%) 

Std. 
deviation 

PAP1 84 78.7 2.8 

PAP2 75 71.2 5.1 

BOU1 84 70.1 5.7 

BOU2 72 61.4 6.1 
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Calculating the class-weighted overall accuracy highlights 

even more the gap between our method and the correlation 
method with values of 73.1% and 40.6% respectively for 
PAP1. This major difference is explained by the proportion of 
buildings in each class. The no damage to low damage class 
effectively accounts for almost ¾ of all buildings so a high 
accuracy for this class will greatly contribute to the global 
accuracy.  

We also compare our method to the visual classification 
done by the SERTIT group for the Charter activation #287 
(Haiti 2010 Earthquake) [30]. The accuracy of both methods is 
calculated according to classification differences compared to 
the ground truth from the Atlas of building damage 
assessment. In this case, two important modifications are 
made. First, we only take into account the buildings contained 
in the PAP1 region we defined instead of the whole city. 
Second, since the damage maps created from visual inspection 
is binary (damage or no damage), we merge classes for grade 
4 and for grade 5 into a “damage” class to compare the two 
methods. The results are presented in Table VI. 
 

 

 
Even if we only consider that the visual damage assessment 

method assigns a damage level without extracting the 
complete footprint of the building, the expert will require 
more than a few seconds for each building. This leads to an 
interpretation time that cannot be under 20 minutes for a 
region of the size and building density similar to PAP1.  

As can be seen here, our method outperforms both visual 
inspection methods and current optical based automated 
methods making it a viable choice for fast damage evaluation 
when a limited amount of images are available. Shortcomings 
include the need for an expert operator for learning set 
selection and that an archive image is required, but this will be 
less of a problem with the growing archives and their 
availability through the Charter. 

V. CONCLUSION 
In conclusion, we have presented a method based on semi-

automated evaluation of building damages in disaster images. 
The method we propose is ideal for a number of reasons. First, 
it is faster than most existing damage evaluation methods 
while requiring only two panchromatic images instead of 
multispectral images or multiple images from different 
viewing angles, as required for the pictometry method. 
Second, we have demonstrated that its accuracy is sufficient to 
attain better results compared with traditional visual 
inspection. Third, it requires few parameters that are closely 
tied to physical properties of the scene like buildings sizes and 
shapes. These properties make our method ideal for use in the 
frame of the Charter. Finally, by using a desktop with a four 
cores CPU and considering that each step is linearly scalable, 
the whole downtown region of Port-au-Prince could be 
processed in two to three hours. 

For future work, we plan to evaluate the error propagation 
impact of using a sequential framework with two classifiers. A 
multistage optimization scheme like the one proposed in [31] 
will be considered. Future investigation is also required to 
pinpoint key features for the discrimination of soft-story 
collapses which are a great source of omitted damage in 
automated and manual inspection of remotely sensed data. 
Possible solutions include using sensor view angle, sun 
elevation information and building shadows from before and 
after disaster images to determine changes in a building’s 
height which can give better discrimination for soft story 
collapses. Optimization of the feature extraction and shape 
matching algorithms is also considered to accelerate the 
process. We plan to test our method on another dataset (cases 
of earthquakes in Bam, Iran) and do complete tests with the 
Haiti and Boumerdes datasets (such as using a single model to 
classify all regions and retraining an existing model with a few 
samples from a new event). 
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TABLE IV 
COMPARISON OF THE PROPOSED METHOD (GST – GEOMETRY, 

SCALE AND TEXTURE) AND THE CORRELATION CLASSIFICATION 
METHOD FOR PAP1 

  
Overall 

accuracy 
(%) 

Prod. 
for 
ok 
(%) 

Prod. 
for 

dmg. 
(%) 

Prod. 
for 

dest. 
(%) 

Kappa 

Mean 
overall 

accuracy 
(%) 

Std. 
deviation 

Processing 
time (s) 

GST 84 92 67 61 0.6 78.7 2.8 345 

Corr. 75 98 5 19 0.18 71.2 5.1 560 

 

TABLE V 
COMPARISON OF THE PROPOSED METHOD (GST – GEOMETRY, 

SCALE AND TEXTURE) AND THE CORRELATION CLASSIFICATION 
METHOD FOR BOU1 

  
Overall 

accuracy 
(%) 

Prod. 
for 
ok 
(%) 

Prod. 
for 

dmg. 
(%) 

Prod. 
for 

dest. 
(%) 

Kappa 

Mean 
overall 

accuracy 
(%) 

Std. 
deviation 

Processing 
time (s) 

GST 84 96 60 73 0.72 70.1 5.7 122 

Corr. 64 100 40 0 0.39 56.5 4.8 213 

 

TABLE VI 
COMPARISON OF THE PROPOSED METHOD AND THE VISUAL 

INTERPRETATION METHOD 
 Overall 

accuracy 
(%) 

Prod. 
for 
ok 
(%) 

Prod. 
for 

dmg. 
(%) 

Kappa 

GST 84 92 65 0.59 

Visu. 76 79 63 0.35 
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