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Abstract 

This article addresses the problem of joint optimization of production, setup and maintenance 

activities of unreliable manufacturing system producing two products. Given the complexity 

of the problem in a dynamic and stochastic environment, the literature has treated the problem 

separately by considering each axis individually (setup, production and maintenance) or by 

combining two axes simultaneously (production-setup; production-maintenance). Following 

the trend of scientific research advances that supports the fact that an integrated control leads 

to best performances, the main objective of this paper is to provide a control policy that will 

simultaneously combine the production, the setup and the preventive maintenance activities. 

To tackle the problem, an experimental resolution approach using combined 

continuous/discrete event simulation models is considered. The aim is to accurately imitate 

the production system behavior and to optimize the control policy parameters which minimize 

the total cost incurred. An in-depth study of the effects of the system parameters variation on 

the performance of the studied policies is performed in order to draw meaningful conclusions 

and to illustrate the robustness of the proposed resolution approach. 

Keywords: Production / setup control, preventive maintenance, inflexible and unreliable 

manufacturing system, simulation modeling, optimization, response surface methodology. 

1. Introduction

In the context of unreliable manufacturing system, one of the most effective strategies is the 

hedging point policy (HPP) concept (Akella and Kumar, 1986). It involves the building of an
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appropriate safety stock while the machine is operational to respond to customer demands 

when the machine is down. For failure and repair times described by homogeneous Markov 

processes, the optimality of the HPP is proved in the case of one-machine one-product type 

manufacturing system (M1P1) with constant demand rate. Many subsequent works have 

extended the concept of HPP to other manufacturing systems. For example, Kenné and Gharbi 

(2000) considered random demands and general failure and repair time distributions and 

Gharbi et al. (2011) developed the Multiple HPP (MHPP) for multiple state systems 

producing one product. 

Integrating preventive maintenance (PM) in the production planning has also attracted many 

researchers since machine breakdowns may disturb production process and cause delay in 

schedules. The PM function, in the overall manufacturing sector, is a priority and is central to 

the concerns of manufacturers. Its role is crucial and is manifested in the failures prevention 

and the maintaining of production tools in service. Several integrated models that coordinate 

PM planning decisions with the production scheduling were proposed (Cassady and 

Kutanoglu, 2005; Wang and Liu, 2013). The main objective was to minimize the total 

expected weighted completion time of jobs. Other studies argued the interests to integrate PM 

and planning for production as PM helps maintain the production tool in service and improve 

the system performances (Wang, 2002). Wee and Widyadana (2013) explain that PM can 

result in savings due to an increase of the effective service life of the system. Reineke et al. 

(1999) addressed the problem of determining the appropriate age PM policy in order to 

improve the availability and cost performance for a system that has high availability 

requirements. For a single machine manufacturing system, Kuo and Chang (2007) developed 

an integrated maintenance scheduling and production planning optimization model with the 

objective of minimizing the total tardiness. Aramon Bajestani et al. (2014) formulated a 

Markov decision process model for the problem of integrated maintenance and production 

scheduling in a deteriorating multi-machine production system. The computational results 

achieved by integer programming show that exploiting online condition monitoring 

information in maintenance and production decisions leads to significant cost savings 

compared to a greedy heuristic. Another significant branch of the literature, which includes 

our work, is rather interested in the dynamics of the manufacturing system (inventories levels 

and machine states), with the aim of optimizing production rates and maintenance intervals. 

Indeed, despite their benefits, PM actions as well as setup operations entail the downtime of 

production units which can lead to shortages. The combined production/maintenance cost is 
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used as the performance criterion because of its major importance in improving the 

competitiveness of companies. 

 

For single-product manufacturing systems, mathematical models have been developed in 

order to combine PM strategies with production control policies (Rezg et al., 2008; Ayed et 

al., 2012), but many do not arise from an optimal structure. Gharbi and Kenné (2000) 

proposed a near-optimal age-dependent control policy in the case of an increasing failure rate. 

PM interventions are then planned at failure or according to the Age Replacement Policy 

(ARP) concept. Assuming that PM reduces the failure frequencies, Gharbi et al. (2007) 

developed joint PM and production policies depending on produced part inventory levels. 

Berthaut et al. (2011) compared the effect of cost and time parameters of the system on PM 

strategies when combined with the HPP. They considered three PM strategies: the ARP, the 

Block Replacement Policy (BRP) and the Modified Block Replacement Policy (MBRP). 

Contrary to what researchers have been shown in the literature, the MBRP outperforms the 

ARP in terms of incurred total cost which is composed of both inventory and maintenance 

costs. Indeed, the proposed control policy can skip PM actions if the time elapsed since the 

last maintenance action is lower than a given threshold. This will reduce the risk of shortages 

and the waste of new components since it avoids consecutive failures and PM. In the case of a 

reliable M1P1 subject to quality deterioration, Dhouib et al. (2012) developed a joint inventory 

control and an age-based PM policy in order to reduce the switch rate to the out of control 

state for a M1P1 incorporating imperfect production process. In the case of an unreliable M1P1 

subject to quality and reliability deterioration, Rivera-Gomez et al. (2013) proposed a control 

policy that simultaneously determines the optimal production plan and PM strategies. They 

utilize PM interventions with the objective of reducing the level of deterioration and 

improving the quality of the units produced. 

 

For systems with multiple product types, few authors addressed the influence of non-

negligible setup time and cost on the system performance. Bai and Elhafsi (1997) propose a 

suitable production and setup control policy called the Hedging Corridor Policy (HCP). It 

guides the surplus trajectory to target buffer stock thresholds to hedge against future capacity 

shortages caused by machine failures and large setup times. In the same context, Gharbi et al. 

(2006) develop the Modified Hedging Corridor Policy (MHCP) in order to effectively 

determine a better sequence of setups and further reduce the risk of shortage. An in-depth 

study was conducted in (Assid et al., 2014b) addressing implementation issues between the 
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HCP and the MHCP via quantitative and qualitative criteria. Hajji et al. (2009) studied 

production and changeover control production for a buffered flow-shop producing several 

types of parts. They developed a state-dependent HPP including feedbacks on the raw 

material and finished products inventories. 

 

The problem of optimisation of production, setup and maintenance activities of unreliable 

manufacturing systems producing different products has been treated separately as detailed in 

preceding paragraphs. To the best of our knowledge, no work has addressed the optimal 

control problem while simultaneously considering production and PM planning in the case of 

two-product non-flexible manufacturing systems where both setup and maintenance 

interventions have non-negligible durations. The main objective of this work is to propose a 

proper joint control policy structure which combines production, setup and PM activities in an 

unreliable manufacturing environment producing two products. Our work addressed how 

production and setup control policies can be adjusted to take into account PM strategies in an 

accurate and timely manner, so as to minimize the total cost of inventory/backlog, setup, 

repair and PM costs. PM is used to reduce the possible harmful effects of setup operations and 

the machine breakdown which is characterized by an increasing failure rate, and therefore to 

achieve further cost savings and more availability of the production machine. The rest of this 

paper is organized as follows. In Section 2, the manufacturing system and the studied control 

policies are described. The joint production/setup/maintenance control problem of the system 

is also discussed. Section 3 summarizes the system data, the numerical example and the 

experimental resolution approach used in order to determine the optimal control parameters. 

A sensitivity analysis is conducted in Section 4. Section 5 presents deep analysis aiming to 

show the influence of many system variables on the optimal control parameters and a 

comparative study of the total cost incurred by all policies considered. The potential economic 

advantage of the production and setup planning versus the PM actions is also discussed on 

several scenarios. This article closes in Section 6 with a conclusion. 

 

2. System description and problem definition 

 

In order to illustrate the integration of PM strategies with production and setup control 

policies as presented above, the manufacturing system considered consists of a non-flexible 

machine capable of producing two products. Each product should be stored in a given area 

before being delivered to customers. The machine is subject to random repairs and 
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breakdowns which are defined by non-exponential distributions and may cause stock-outs. 

Preventive interventions are also planned in order to increase the production system 

availability. In addition, the cost and the time required to switch the production from one 

product type to another are considered non-negligible. The overall structure of the 

manufacturing system is illustrated in Figure 1. 

 

 
 

Figure 1. Structure of the manufacturing system under study. 
 

2.1. Notation 

 

The following notations are used throughout the paper. ∀	i, j ∈ Iଶ ൌ ሼ1,2ሽଶ 

 

P୧ : Type of product i 

x୧ሺtሻ : Inventory level (or backlog) of product P୧ at time t 

d୧ : Constant demand rate of the product P୧ (product/time unit) 

u୧(t) : Production rate of the product P୧ at time t (product /time unit) 

U୧
୫ୟ୶ : Maximum production rate of the product P୧ (product/time unit) 

Z୧
୧୬୴ : Storage space capacity of the product P୧ 

Z୔୑  : Preventive maintenance threshold 

a୧  : Setup threshold of the product P୧ 

T୔୑  : Time interval between two preventive maintenance interventions 

T୧୨
ୱ  : Setup time required to switch from the production of P୧ to P୨, i ് j (time unit) 

c୧
ା : P୧ inventory cost ($/product/time unit) 

c୧
ି : P୧ backlog cost ($/product/time unit) 

c୧୨
ୱ   : Setup cost to switch from the production of P୧ to P୨, i ് j ($/Setup action) 

c୮୫  : Preventive maintenance (PM) cost ($/PM action) 
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cୡ୫  : Corrective maintenance (CM) cost ($/CM action) 

C୮∗   : Optimal total cost incurred of the control policy p 

 

2.2. Problem definition 

 

The state of the system is modeled by two components. On one hand, the cumulative 

inventory of both products Xሺtሻ ൌ ሺxଵሺtሻ, xଶሺtሻሻ ∈ Rଶ  which corresponds to a continuous 

variable in time and on the other hand, the discrete state of the machine ζሺtሻ. The dynamics of 

the production system which consists of a single machine, takes the value 1 if the machine M 

is operational, 2 if it fails and 3 if it is subject to preventive maintenance actions. Thus, the 

stochastic and dynamic system behavior is described by the state variables (Xሺtሻ, ζሺtሻ) with 

Xሺtሻ ൌ ሺxଵሺtሻ, xଶሺtሻሻ ∈ Rଶ and	ζሺtሻ ∈ M ൌ ሼ1,2,3ሽ. 

 

ζሺtሻ ൌ ቐ		
1 ∶ if	M	is	operational																																
2 ∶ if	M	is	down	ሺCMሻ																																
3 ∶ if	M	is	subject	to	PM	actions													

 

 

The following differential equation represents the stocks dynamic Xሶ ሺtሻ = ൫x1ሶ ሺtሻ,x2ሶ ሺtሻ൯ ∈ R2. 

It is expressed in terms of the production rate u୧ሺtሻ, i ∈ ሼ1,2ሽ and the customer demand	d୧. 

 

 
൜	
xଵሶ ሺtሻ ൌ uଵሺtሻ െ dଵ , xଵሺ0ሻ ൌ xଵ
	xଶሶ ሺtሻ ൌ uଶሺtሻ െ dଶ , xଶሺ0ሻ ൌ xଶ

 (1) 

 

Where xଵ and xଶ refer respectively to the initial inventory level of both products Pଵ and Pଶ. 

The following production capacity constraint must be satisfied at all times: 

 

 0 ൑ u୧ሺtሻ ൑ U୧
୫ୟ୶ ∗ Iሺζሺtሻ ൌ 1ሻ, ∀i ∈ ሼ1,2ሽ (2) 

 

With, 
 

Iሺζሺtሻ ൌ δሻ ൌ ቄ	1		if	ζሺtሻ ൌ δ
0		otherwise

 

 

Regarding the transition probabilities of our stochastic process, except the transition from 

state 1 to 3 which is in our case function of the PM decision variable (see next paragraph), the 
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other transition probabilities are constant and represent a function of the parameters of a given 

probability distribution (see section 3.3 for more details). 

 

Two parameters are used in order to model setup operations: the time τ୩ at which the kth 

(k ∈ N) setup action begins and the pair i୩j୩ାଵ  which represents the production transition 

from the product Pi to the product Pj, i ് j. The sequence of setup actions φ is then defined by 

φ = ሼሺτ0,i0i1ሻ,ሺτ1,i1i2ሻ,…ሽ . Therefore, the decision variables of the control policy, which 

combines the production, the setup and the maintenance planning, are the production rate 

uiሺtሻ, i ∈ ሼ1,2ሽ, the sequence of setups φ and the time interval between two PM interventions 

TPM. The objective of the stochastic optimal control problem is to optimize the system control 

parameters which minimize the total cost function Jሺ. ሻ over an infinite horizon. 

 

 
JሺX, ζ, uଵ, uଶ,φ, T୔୑ሻ ൌ E ቎න eିρ୲gሺ. ሻdt

∞

଴

൅෍eିρτౠC୧ౠ୧ౠశభ
ୱ

∞

୨ୀ଴

቏ (3) 

 

With, ρ is the discount rate, gሺ. ሻ is the function of the instantaneous inventory, backlog and 

maintenance cost, it is defined as: 

 

 gሺX, ζሻ ൌ c୧
ାx୧

ାሺtሻ ൅ c୧
ିx୧

ିሺtሻ ൅ cୡ୫Eୡ୫ା ሺtሻ ൅ c୮୫E୮୫ା ሺtሻ (4) 

 

Where, 

൜		
x୧
ା ൌ maxሺ0, x୧ሻ			
x୧
ି ൌ maxሺെx୧, 0ሻ

 

 

 

And, 

Eୡ୫ା ሺtሻ ൌ ቄ	1			if	ζሺtሻ ൌ 2
0			otherwise

 E୮୫ା ሺtሻ ൌ ቄ 1 if ζሺtሻ ൌ 3
0 otherwise

  

 

The expected total cost (3) is composed of two terms. The first one consists on the discounted 

cost g(.) over an infinite horizon. Given that the calculation of g(.) occurs on a continuous 

basis, the actual values of the incurred instantaneous costs are summed as follows: 

׬ eିρ୲gሺ. ሻdt
∞

଴ . The second one consists on the actual values of the setup costs incurred in a 

discrete basis at times τ୨. These costs are simply actualised and summed over the infinite 
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horizon. The value function of the optimization problem is described by the following 

function: 

 

 vሺ. ሻ ൌ inf
ሺ୙,φ,୘ౌ౉ሻ∈Γሺαሻ

JሺX, ζ, uଵ, uଶ,φ, T୔୑ሻ ; ∀ X ∈ Rଶ, ζ ∈ ሼ1,2,3ሽ (5) 

 

The only way to find an integrated steady state policy to control production, setup and 

maintenance actions as a function of the state of the system is to solve the Hamilton-Jacobi 

Bellman (HJB) equations associated to the value function (5). An analytical solution in this 

context is simply impossible given the difficulty to calculate the value function of the 

problem. In the case of production and setup planning, both works of Gharbi et al. (2006) and 

Bai and Elhafsi (1997) solved numerically the HJB equation of the joint production and setup 

problem. However, when the PM interval decisions are integrated as in our case, the state of 

the system become larger and the numerical solution of the problem more difficult. Given the 

complexity of our control problem, we are based on the literature which has treated the 

problem separately by considering each axis (production-setup; production-maintenance) 

individually. 

 

Two of the most complete production and setup control policies are adopted in this work: the 

HCP the MHCP which has been improved in this work in order to reduce the risk of 

shortages. These control policies are respectively proposed by Bai and Elhafsi (1997) and 

Gharbi et al. (2006) whom discussed the interaction between production activities and setup 

actions for M1P2 manufacturing system with significant setup times and costs. Two PM 

strategies are integrated to the aforementioned production and setup policies. In addition to 

the BRP which is easier to manage than the ARP in an industrial context, the second PM 

strategy considered is based on the BRP but takes into account the inventory level of each 

product before coming to a decision on the execution of PM actions. This condition is 

inspired by the MBRP used in (Berthaut et al., 2011) and which can skip PM interventions if 

CM actions are recently performed. This not only protects the system against higher 

shortages, but it also reduces the PM cost. 

 

2.3. Description of the considered control policies 

 

Both complete production and setup control policies and the two PM strategies adopted in this 

work (see section 1) are defined as follows: 
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 Classical Hedging Corridor Policy (HCP): 

 

The Hedging Corridor Policy (HCP) is characterised by a single control parameter Z୧
୧୬୴ , 

i	∈ ሼ1,2ሽ for each product Pi. The machine operates at maximum capacity throughout the 

availability period so that as soon as the inventory level xi of the product being manufactured 

reaches its threshold Z୧
୧୬୴, a setup action is performed in order to switch the production to the 

other product. 

 

 Improved Modified hedging corridor policy (IMHCP) 

 

Our Improved Modified Hedging Corridor Policy (IMHCP) improves the MHCP proposed in 

(Gharbi et al., 2006) by conducting setups before the stocks of a product type reaches the zero 

value and then reducing the risk of shortages. Unlike the MHCP, a new parameter b୧ ൐ 0 

(i ∈ ሼ1,2ሽ) for each product is introduced. It represents the inventory level needed to perform 

setup operations before shortages. The main advantage of IMHCP compared to HCP is still to 

reduce the number of setups since no setup operation is performed unless a risk that a product 

type will be out of stock is observed. Six control parameters Z୧, a୧  and b୧, (i ∈ ሼ1,2ሽ with 

a୧ ൑ Z୧) characterize the IMHCP. When a product inventory level x୧ exceeds the a୧ value, a 

setup operation is performed only if the inventory level of the other product x୨ (j ∈ ሼ1,2ሽ and 

j ് i) is less than the parameter b୨ (b୨ ൐ 0, i ∈ ሼ1,2ሽ). Note that when x୧ reaches its threshold 

Z୧, the production rate is adapted to the demand rate. 

 

 Classical Block Replacement Policy (B) 

 

The first PM strategy integrated to the aforementioned production and setup policies is the 

Block Replacement Policy “B”. It is characterized by preventive replacements which are held 

and executed periodically at predetermined time intervals kT୔୑ (k=1,2,...) regardless of the 

machine age. 

 

 Block Replacement Policy with jumps according to the inventory level (BJ) 
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In order to reduce the risk of shortages and the PM cost, the execution of PM actions on the 

production machine may depend on its age or on the utilization time from the last 

maintenance action (Berthaut et al., 2011). As the improvements made in the IMHCP, PM 

decisions could take into account the level of buffer stocks that would reduce the risk of 

shortages. However, our manufacturing system consists of a non-flexible machine capable of 

producing two products. This means that when it is restoring the buffer stock of a product, the 

inventory level of the other decrease while satisfying the customer demand. Similarly, the 

interruption of production activities during corrective and preventive maintenance or setup 

operations decreases the inventory level of both products. Therefore, our joint control policy 

will consider the amount of both inventories at a time before performing any PM action. This 

amount is expressed by the sum of both instantaneous inventories (xଵሺtሻ ൅ xଶሺtሻ) and governs 

the control of preventive interventions. In summary, the proposed “BJ” is characterized by 

PM interventions which are scheduled periodically at predetermined time intervals kT୔୑ 

(k=1,2,...), but they are performed only if the sum of both instantaneous inventories exceeds 

the threshold Z୔୑ as follows: 

 

 
൜		
	xଵሺtሻ ൅ xଶሺtሻ ൒ Z୔୑
ζሺtሻ ൌ 1 ሺi. e. the machine is operationalሻ

 (6) 

 

The four combined control policies considered in this paper are: HCP_B; IMHCP_B; 

HCP_BJ and IMHCP_BJ. A graphical representation of the variation of the instantaneous 

inventory levels (x1(t) and x2(t)) and the sum of both (xଵሺtሻ ൅ xଶሺtሻ) for the combined control 

policy IMHCP_BJ is presented (Figure 2) in order to further explain the operation of the 

system. Figure 2 shows that when the inventory level of the product being produced x୧ሺtሻ 

(i ∈ ሼ1,2ሽ) is higher than the setup threshold ai (x୧ሺtሻ ൐ a୧), the setup actions are performed 

only when the inventory level of the other product x୨ሺtሻ	ሺj ് iሻ is less than the parameter bj 

ሺx୨ሺtሻ ൏ b୨) . Otherwise, the production rate is adapted to the demand rate as soon as xi(t) 

reaches the threshold Z୧ . Figure 2 shows also that when the machine is producing a product 

at the demand rate, the inventory level of the other product decreases while satisfying its 

customer demand. This involves the reduction of the inventories sum (xଵሺtሻ ൅ xଶሺtሻ) . Note 

that during the setup actions, the machine is stopped, hence the decrease in the amount of the 

sum of both inventories at a rate of d1 + d2 . Similarly, when the machine is down, the 

inventory level of both products decreases until the end of repairs . Furthermore, preventive 
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replacements are performed at fixed time intervals kT୔୑, T୔୑ ൌ 100  with 	k ൌ 1,2, …  . 

However, they are canceled if x1ሺtሻ+x2ሺtሻ ≤ ZPM . 

 

 
 
Figure 2. Variation of the inventories for the IMHCP_BJ (Z1=Z2=200, b1=b2=40, a1=a2=100, 

Z୔୑ ൌ 80 and	T୔୑=100). 
 

3. Solution approach 

 

In this section, an experimental approach inspired by Gharbi et al. (2011) is used to determine 

experimentally the optimal control parameters which minimize the total incurred cost for each 

of the four control policies. This approach integrates simulation, design of experiments and 

response surface methodology. A block diagram of the resulting solution approach is depicted 

in Figure 3. The problem of the flow control for the considered manufacturing system is 

mathematically represented in the Control Problem definition block . The objective is to 

describe the dynamics of the system in terms of its states and the expression of the average 
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total cost. This will help to define the decision variables, the constraints and the objective 

function to minimize. Such variables and parameters will help to develop the control policies. 

Based on block  and the literature, four joint production, setup and PM control policies are 

proposed (block ). Each one is parameterised by different control factors: Z୧, a୧, b୧, T୔୑ and 

Z୔୑ (i ∈ ሼ1,2ሽ) which affect the value the related output (the incurred total cost). Using the 

control policies as an input, the Continuous/Discrete event Simulation Model block  aims to 

conduct the experiments and to evaluate the production system performance. The cost related 

to each entry is defined as the output (response variable) of the simulation model. The 

Experimental design block  defines how the control factors can be varied in order to 

determine their effects and the effects of their interactions (i.e. ANOVA) on the response 

variable through a minimal set of simulation experiments. Subsequently, the response surface 

methodology represented by the block  is used to obtain the relationship between the 

significant main factors and interactions given in the previous step and the response variable. 

From this estimated relation, the optimal values of the control factors (Z௜
∗, a௜

∗, b௜
∗, T௉ெ

∗  and 

Z௉ெ
∗ ) which minimize the total cost incurred are determined for each joint control policy 

(block ). The best joint control policy (block ) in terms of costs is then derived (see 

Sections 3.3, 4 and 5). 

 

 
 

Figure 3. Proposed solution approach. 
 

3.1. Simulation models 
 

The Figure 4 shows the block-diagram schema of four combined discrete-continuous 

simulation models which represent the considered joint control policies (see Section 2.3). The 

choice of this modeling approach using the Arena “Flow Process” module is well known for 

its ability to greatly shorten the execution time when compared to the purely discrete models 

(Assid et al., 2014a). The continuous part essentially covers the calculation of the 

instantaneous inventories level, while the discrete part models the setup and the maintenance 

activities. 
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Figure 4. Simulation model diagram. 
 

The simulation models structure consists of several networks: each must fulfil specific tasks 

such as the management of production activities, failures and repair interventions, etc (see 

Figure 4). They start by initializing the model variables such as the demand rate, the 

production capacity of the machine, the warm-up period, etc. Each simulation model depends 

on the considered control policy (Section 2.3) which represented in block , and then 

determines the product type to be manufactured and its production rate (block ) according 

to the value of inventory levels of both product types (block ) and the system state (block 

). Note that the failure detection is instantaneous and all maintenance interventions restore 

the machine to an as good as new condition. Our simulation models use a set of sensors 

(block ) in order to continuously monitor both inventories and to check the availability of 

stocks. Thus a signal is sent whenever a threshold (Z୧
୧୬୴ , ai and bi, i ∈ ሼ1,2ሽ) is crossed. 

Depending on these instant data provided by the sensors (block ) as well as the production 

system state and the considered PM strategy, the PM strategy block  decides whether or not 

PM interventions will be performed: when the “BJ” is used, the PM interventions are 

performed only when the buffer stocks level is sufficient (x1ሺtሻ	൅	x2ሺtሻ	≥	ZPM). At the end of 

the simulation, performance are collected in order to calculate the value of the total cost 

incurred (block ). 
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3.2. Design of experiments and response surface methodology 
 

Two steps are necessary to optimize the control parameters of the four control policies: (a) 

determine the relationship between the performance criteria (i.e. incurred cost) and the 

independent variables of the model (Z୧, a୧ and b୧, i ∈ ሼ1,2ሽ) and interactions which have a 

significant effect on the cost incurred, and (b) calculate the optimal parameter of the control 

policies which minimize the total cost incurred. 

 

3.3. Numerical example 
 

In order to significantly reduce the number of experiments without the loss of generality, the 

following assumptions are adopted: 

 

 The setup times and the customer demand rates are considered constants; 

 Both production and cost system parameters (Uj
max, di, Tij

s, ci
൅, ci

‐ and cij
s , ∀i, j ∈ ሼ1,2ሽଶ) 

are the same for the two products. 

 

The first assumption implies that the value of the parameter b୧, i ∈ ሼ1,2ሽ can be calculated by: 

b୧ ൌ b ൌ d ∗ Tୱ. This reduces the number of parameters to optimize. The second assumption 

implies that the thresholds values are equivalent for both product types (Z1
inv	ൌ	Z2

inv	ൌ	Zinv	, 

a1=a2=a). Given that Z୔୑ ൏ Zଵ
୧୬୴ ൅ Zଶ

୧୬୴ ൌ 2Z୧୬୴ and a	൑	Zinv, two new variables α and β are 

added to the simulation models in order to replace respectively the control parameters a and 

Z୔୑ in the design of experiments. They are defined by: 

 

    
൜		
a ൌ α ∗ Z୧୬୴, α ∈ ሾ0,1ሿ
Z୔୑ ൌ 2 ∗ β ∗ Z୧୬୴, β ൑ 1

 (7) 

 

Note that when ZPM	≪	0, all PM interventions are no longer ignored; we conclude that the PM 

strategy “B” is a specific case of the PM strategy “BJ” which is more general. Table 1 

summarizes the system data which are inspired from the literature of the optimal control and 

maintenance strategies and could have been collected from real system. For example, the cost 

of negative inventory is much higher than the cost of positive inventory. As well, the machine 

parameter U୫ୟ୶ must meet the feasibility requirement for the production system taking into 

account the customer demand. The time to failure (T୤) and the durations of PM (Tୟ୮୫) and 

CM actions (Tୟୡ୫) could follow any probability distributions. From a practical point of view, 
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historical data of failures and maintenance activities should be collected in order to define the 

probability distributions of (T୤) (Tୟ୮୫) and (Tୟୡ୫) (Rivera-Gomez et al., 2013). 

 

Table 1.  Simulation parameters. 
 

Parameters cା cି cୱ cୡ୫ c୮୫ Ts U୫ୟ୶ d T୤
ሺଵሻ Tୟୡ୫

ሺଵሻ Tୟ୮୫
ሺଵሻ

Values 0.05 2 30 5000 2500 0.8 58 20
Log-N 

(120;24) 
Log-N 

(10;1,6) 
Log-N 
(7;1) 

(1)  
௙ܶ, ௔ܶ௣௠ and ௔ܶ௖௠ define respectively the probability distributions of the time before failure and the 

durations of PM and CM actions. 
 

For each combined control policy, a dependent variable (i.e. total cost) and several factors 

(TPM and Z୧୬୴ for HCP_B; TPM, Z୧୬୴ and a for IMHCP_B; TPM, Z୧୬୴ and Z୔୑ for HCP_BJ and 

TPM, Z୧୬୴, a and Z୔୑  for IMHCP_BJ) are considered. Based on the works of Gharbi et al. 

(2006), we assume that the value function (5) is convex. In this sense, given the small number 

of factors (n ൑ 4) for each joint control policy, we select full factorial designs at 3 levels (3୬). 

These designs give more accurate results since each interaction is estimated separately. Five 

replicates were performed for each combination of factors which means a total of “3୬ ∗ 5” 

simulations according to the number of factors of the considered control policy. The 

simulation length is equal to Tஶ ൌ 500.000	 time units. This allows to reach the steady state, 

with a reasonable average run time equal to 0.2 minutes. 

 

In order to study and understand the effects of independent variables (T୔୑, Z୧୬୴, α and β) on 

the performance criteria (i.e.: total cost). A multi-factorial analysis of variance (ANOVA) and 

other statistical analyzes such as the calculation of the regression coefficients and the response 

surface generation were performed. The conformity of the model is also validated by 

conducting an analysis of the residual normality and of the homogeneity of variance. Using 

Statgraphics, Figure 5.a shows that the model representing IMHCP_BJ (see equation (11)) 

explains more than 96% of the observed variability in the total expected cost (Montgomery, 

2008). In addition, all its main factors (TPM, Z୧୬୴, α	and	β), interactions and quadratic effects 

(T୔୑
ଶ , Z୧୬୴

ଶ , αଶ and βଶ ) except the interaction (TPM*α ), are significant at a 95% level of 

significance. 
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(a)  (b)

 
Figure 5. Pareto chart of dependent variables and response surface contour plot for 

IMHCP_BJ. 
 

The following equations represent the response surface function of the total cost for the 

different control policies. 

 

Cୌେ୔_୆ 	ൌ 229.712 െ 3.00937. ௉ܶெ െ 0.310629. Z୧୬୴ െ 2.91424. 10ିଷ. ௉ܶெ. Z୧୬୴  

൅	2.09215. 10ିଶ. ௉ܶெ
ଶ ൅ 1.1723. 10ିଷ. Z୧୬୴

ଶ  

(8) 

 

CIMHCP_B  =  237.836 - 3.49926.TPM	- 0.0802741.Zinv - 45.9161.α  -  1.59369.10-3.TPM.Zinv  

+ 0.144274.TPM.α + 2.20096*10-2.TPM
2+ 3.12284.10-4.Zinv

2  + 37.2982.α2 

(9) 

 

CHCP_BJ  =  227.327 - 2.56585.TPM	- 0.481311.Zinv + 24.1197.β - 6.95791.10-4.TPM.Zinv  

- 0.275758.TPM.β - 0.0311542.Zinv.β + 1.55096*10-2.TPM
2 + 1.17103.10-3.Zinv

2  

 + 8.35226.β2 

(10) 

 

CIMHCP_BJ = 181.785 - 1.98293.TPM	- 0.188577.Zinv - 50.1811.α + 32.2719.β  

 - 3.46395.10-4.TPM.Zinv + 0.422786.TPM.β + 0.020549.Zinv.α - 0.0509712.Zinv.β  

 + 3.86749.α.β + 1.22117.10-2.TPM
2 + 3.0809.10-4.Zinv

2  + 46.0428.α2 + 55.9828.β2 

(11) 

 

 

A response surface methodology was subsequently carried out in order to optimize the total 

cost incurred (dependent variable) based on the significant variables. The response surface 

plot which corresponds to (11) is shown in Figure 5. 

 

Table 2 presents the optimization results. It shows that for selected system parameters (see 

Table 1), the IMHCP_BJ gives the best result in terms of cost. In comparison with the 

HCP_B, the improvements resulting from HCP_BJ, IMHCP_B and IMHCP_BJ are 

respectively 2.61%, 8.34% and 14.60%. These results demonstrate the advantage of 

combining the IMHCP with the “BJ”. This avoids unnecessary setup operations and reduces 
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the risk of shortages and the PM cost when preventive interventions follow immediately CM 

or setup actions. Table 2 confirms what was said in the introduction and shows that the 

integration of PM in the production planning yields significant cost benefits and increases the 

system availability. Note that a binary availability variable “A” is created using the simulation 

model. It is set to 1 if the machine is functional and 0 if the machine is down (under setup 

operations or repairs or PM actions). At the end of the simulation, the machine availability 

which represents the time-integral of “A” is then calculated. 

 

Table 2.  Optimization results. 
 

 Policies T୔୑
∗  Z୧୬୴

∗  a∗ Z୔୑
∗  Total cost Availability (%) 

Without 
PM 

HCP - 291.53 - - 75.06 91.02 
IMHCP - 408.46 182.28 - 69.44 91.03 

With 
PM 

HCP_B 88.84 242.91 - - 58.31 92.89 
IMHCP_B 91.13 361.08 158.63 - 53.82 92.88 
HCP_BJ 92.89 240.27 - 258.39 56.83 92.84 
IMHCP_BJ 89.68 357.53 163.33 141.14 50.88 92.83 

 

 

4. Sensitivity analysis 

 

A sensitivity analysis is carried out with the goal of confirming the effectiveness and 

robustness of the resolution approach and studying the behavior of each joint control policies 

for different combinations of cost parameters (see Tables 3 and 4 – Scenarios 1-10). Tables 3 

and 4 show that the optimal control parameters evolve in the same and right directions 

according to the variation of cost parameters. However, the effect of the setup cost depends on 

the Hedging Corridor Policy used (HCP or IMHCP) (see below, scenarios 5-6). 

 

 Variation of the inventory cost (scenarios 1-4) 

When cା  increases, the Z୧୬୴
∗  and the a∗  of all control policies decrease in order to avoid 

additional inventory costs. Therefore, the system when it faces a bigger risk of shortage reacts 

by decreasing the interval between two consecutive PM interventions (T୔୑
∗ ) and the value of 

Z୔୑
∗  for the HCP_BJ and the IMHCP_BJ. Due to the increase of the cost of possession of 

finished products, the total cost of the four control policies increases. The opposite occurs 

when cା decreases. The cି has an inverse effect on the levels of buffer stocks (Z୧୬୴
∗  and a∗) 
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compared to that of cା. In the same direction, the purpose of the increase of the PM frequency 

(T୔୑
∗  and Z୔୑

∗  decrease) of all control policies is to reduce the number of failures. 

 

 Variation of the setup cost (scenarios 5-6) 

Tables 3 and 4 show that the influence of ܛ܋  variation on the control parameters varies 

according to the adopted setup strategy (HCP or IMHCP). As regards the HCP_B and the 

HCP_BJ, the increase of ܛ܋  gives preference to PM interventions in order to reduce the 

number of setup operations. Therefore, if T୔୑
∗  and Z୔୑

∗  related to the HCP_BJ decreases, the 

number of setups also decreases. Furthermore, the increase of the number of PM interventions 

reduces the risk of failures, resulting in reduced buffer stocks (Z୧୬୴
∗  and a∗   decrease). In 

comparison with the HCP_B and the HCP_BJ, the effect of cୱ on the control parameters of 

the IMHCP_B and the IMHCP_BJ is the opposite. In fact, the number of setups is 

proportional to the value of Z୧୬୴
∗  and	a∗. Thus, when cୱ increases the values of Z୧୬୴

∗  and a∗ 

increase in order to reduce the number of setups. Furthermore, due to the growth of buffer 

stocks, the risk of shortage decreases and the system reduces the PM interventions frequency 

(T୔୑
∗ and Z୔୑

∗  increase). The opposite occurs when cୱ decreases. 

 

 

 Variation of the maintenance cost (scenarios 7-10) 

When c୮୫  increases, T୔୑
∗  and Z୔୑

∗  increase in order to avoid more expensive PM 

interventions. As a consequence, the risk of failures increases, hence the need to increase the 

value of Z୧୬୴
∗  and a∗. The opposite occurs when c୮୫decreases. The variation of cୡ୫ has the 

opposite effect on the considered control policies when compared to that of c୮୫. 

 

This section shows that the IMHCP_BJ is the most advantageous in terms of cost. Its 

improvement compared to the IMHCP_B, the HCP_BJ and the HCP_B varies respectively 

from 4.74 % to 7.67 %, from 9.48 % to 14.6 % and from 12.35% to 17.9%. To conclude on 

this point, Tables 3 and 4 show that CIMHCP_BJ
* 	൏	CIMHCP_B

* 	൏	CHCP_BJ
* 	൏	CHCP_B

* . However, we 

believe that other comparative studies are necessary in order to draw meaningful conclusions 

and to determine if the above-mentioned inequality is always valid. 
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Table 3. Sensitivity analysis table for control policies using the classical setup strategy (HCP). 
 

Scenario 
Cost parameters  ௉ܶெ

∗ ܼ௜௡௩
∗   ܼ௉ெ

∗   Total cost (ܥ∗) 
Remark 

ܿା  ܿି  ܿ௦  ܿ௣௠ ܿ௖௠  HCP_B HCP_BJ HCP_B  HCP_BJ HCP_BJ  HCP_B HCP_BJ

Basic  0,05  2  30  2500 5000 88,84  92,89  242,91 240,27  258,39  58,31  56,83  Basic case 

1  0,03  2  30  2500 5000 90,20  93,87  261,40 258,11  305,05  50,59  49,18  ௉ܶெ
∗ ↑, ܼ௜௡௩

∗ ↑, ܼ௉ெ
∗ ↑, ∗ܥ ↓

2  0,07  2  30  2500 5000 87,42 91,86 224,67 222,77 216,27  65,31 63,78 ௉ܶெ
∗ ↓, ܼ௜௡௩

∗ ↓, ܼ௉ெ
∗ ↓, ∗ܥ ↑

3  0,05  1,8  30  2500 5000 88,84  92,96  238,29 235,62  249,76  58,09  56,67  ௉ܶெ
∗ ↑, ܼ௜௡௩

∗ ↓, ܼ௉ெ
∗ ↓, ∗ܥ ↓

4  0,05  2,2  30  2500 5000 88,82  92,82  246,75 244,09  265,26  58,49  56,94  ௉ܶெ
∗ ↓, ܼ௜௡௩

∗ ↑, ܼ௉ெ
∗ ↑, ∗ܥ ↑

5  0,05  2  26  2500 5000 88,92 93,00 243,00 240,33 259,65  57,15 55,65 ௉ܶெ
∗ ↑, ܼ௜௡௩

∗ ↑, ܼ௉ெ
∗ ↑, ∗ܥ ↓

6  0,05  2  34  2500 5000 88,76  92,77  242,83 240,21  256,95  59,47  58,00  ௉ܶெ
∗ ↓, ܼ௜௡௩

∗ ↓, ܼ௉ெ
∗ ↓, ∗ܥ ↑

7  0,05  2  30  2000 5000 86,69  89,24  240,22 238,49  214,63  52,78  51,58  ௉ܶெ
∗ ↓, ܼ௜௡௩

∗ ↓, ܼ௉ெ
∗ ↓, ∗ܥ ↓

8  0,05  2  30  3000 5000 90,88  96,85  245,48 242,16  314,10  63,67  61,68  ௉ܶெ
∗ ↑, ܼ௜௡௩

∗ ↑, ܼ௉ெ
∗ ↑, ∗ܥ ↑

9  0,05  2  30  2500 4000 90,25 96,54 244,74 241,85 309,41  57,86 56,05 ௉ܶெ
∗ ↑, ܼ௜௡௩

∗ ↑, ܼ௉ெ
∗ ↑, ∗ܥ ↓

10  0,05  2  30  2500 6000 87,64  90,37  241,36 239,16  225,28  58,70  57,35  ௉ܶெ
∗ ↓, ܼ௜௡௩

∗ ↓, ܼ௉ெ
∗ ↓, ∗ܥ ↑

 
Table 4. Sensitivity analysis table for control policies using the modified setup strategy (IMHCP).  

 

Scenario  ௉ܶெ
∗   ܼ௜௡௩

∗   ܽ∗ ܼ௉ெ
∗   Total cost (ܥ∗) 

Remark 
IMHCP_B  IMHCP_BJ  IMHCP_B IMHCP_BJ IMHCP_B IMHCP_BJ IMHCP_BJ  IMHCP_B IMHCP_BJ

Basic  91,13  89,68  361,08 357,53 158,63 163,33 141,14  53,82 50,88 Basic case

1  92,43  89,94  395,30  366,00  173,82  166,81  148,00  45,48  42,91  ௉ܶெ
∗ ↑, ܼ௜௡௩

∗ ↑, ܽ∗ ↑, ܼ௉ெ
∗ ↑, ∗ܥ ↓

2  89,43  88,54  317,33  314,19  139,64  146,07  108,56  61,12  58,13  ௉ܶெ
∗ ↓, ܼ௜௡௩

∗ ↓, ܽ∗ ↓, ܼ௉ெ
∗ ↓, ∗ܥ ↑

3  91,23  89,82  350,92  346,74  154,21  159,32  132,61  53,47  50,80  ௉ܶெ
∗ ↑, ܼ௜௡௩

∗ ↓, ܽ∗ ↓, ܼ௉ெ
∗ ↓, ∗ܥ ↓

4  91,01  89,55  369,48 366,00 162,26 166,45 148,28  54,13 50,91 ௉ܶெ
∗ ↓, ܼ௜௡௩

∗ ↑, ܽ∗ ↑, ܼ௉ெ
∗ ↑, ∗ܥ ↑

5  91,08  89,65  359,69  356,23  157,74  162,69  140,13  53,57  50,63  ௉ܶெ
∗ ↓, ܼ௜௡௩

∗ ↓, ܽ∗ ↓, ܼ௉ெ
∗ ↓, ∗ܥ ↓

6  91,17  89,71  362,36  358,80  159,43  163,98  142,10  54,08  51,14  ௉ܶெ
∗ ↑, ܼ௜௡௩

∗ ↑, ܽ∗ ↑, ܼ௉ெ
∗ ↑, ∗ܥ ↑

7  89,11  85,99  355,96  352,19  157,71  162,04  110,53  48,49  45,03  ௉ܶெ
∗ ↓, ܼ௜௡௩

∗ ↓, ܽ∗ ↓, ܼ௉ெ
∗ ↓, ∗ܥ ↓

8  93,03  93,19  365,95 363,83 159,45 164,80 183,52  59,00 56,34 ௉ܶெ
∗ ↑, ܼ௜௡௩

∗ ↑, ܽ∗ ↑, ܼ௉ெ
∗ ↑, ∗ܥ ↑

9  92,68  92,91  365,02  364,61  159,33  164,97  191,02  53,23  50,55  ௉ܶெ
∗ ↑, ܼ௜௡௩

∗ ↑, ܽ∗ ↑, ܼ௉ெ
∗ ↑, ∗ܥ ↓

10  89,80  87,13  357,67  353,10  157,93  162,28  113,49  54,34  50,89  ௉ܶெ
∗ ↓, ܼ௜௡௩

∗ ↓, ܽ∗ ↓, ܼ௉ெ
∗ ↓, ∗ܥ ↑
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5. Comparison of the joint control policies for a wide range system configurations 

 

 

In this section, a further study of the influence of the different cost and time system 

parameters on the considered control policies is conducted. The way that the proposed control 

policies evolve in relation to one another is also highlighted. Every time a system parameter is 

considered, the others remain fixed as defined in the basic scenario (Table 1). 

 

5.1. Variation of the cost parameters 

 

Figure 6 confirms that for the different cost parameters adopted, the total cost corresponding 

to the IMHCP_BJ is always less than that of other control policies. However, it also shows 

that unlike the sensitivity analysis (Section 4), the total cost of the HCP_BJ may fall below 

that of the IMHCP_B (see Figures 6.d and 6.e). Indeed, with the increase of c୮୫ (Figure 6.d), 

jumps when performing PM interventions become more significant and PM actions are less 

attractive since they cost more. This explains why at some level (c୮୫ ൐ 4500) the total cost 

of the IMHCP_B becomes higher than that of the HCP_BJ which take advantage of its 

capability to jump PM interventions (see equation (6)). The same phenomenon is observed 

when Cୱ drops below 17 (Figure 6.e). Indeed, in response to the decrease of the setup costs for 

HCP_BJ, the advantage of the IMHCP_B which avoids several unnecessary setup operations 

becomes less attractive. Furthermore, the HCP_BJ continue to benefit from the PM jumps 

when the buffer stocks level is considered insufficient in comparison with the IMHCP_B. 

Note that the growth of the cୱ value remarkably increases the “Cୌେ୔_୆
∗ െ C୍୑ୌେ୔_୆

∗ ” and the 

“Cୌେ୔_୆୎
∗ െ C୍୑ୌେ୔_୆୎

∗ ”. This is essentially due to the high number of setup operations 

executed by HCP_B and HCP_BJ, which switch the production from one product type to 

another, as soon as an inventory level (x୧, i ∈ ሼ1,2ሽ) reaches its threshold (Z୧୬୴). 

 

5.2. Variation of the time parameters 

 

The objective of this section is to study the effect of the mean corrective and preventive 

maintenance times (MTCM and MTPM) and their standard deviation (SDCM and SDPM) as 

well as the setup time (Tୗ). The results obtained are presented in Figure 7. They demonstrate 

once again the economic superiority of the IMHCP_BJ. 
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(a) (b) 

(c) (d) 

(e) 

 
 
 

Figure 6. Effect of cost system parameters on the incurred total cost of the control policies. 
 

As presented in Section 5.1, the value of the total cost of the IMHCP_B could exceed that of 

the HCP_BJ (see Figure 7.e). Unlike the base scenario (Tୗ = 0.8), the excess of the total cost 

generated by IMHCP_B over that generated by HCP_BJ when TS increases (Tୗ > 1.25), is 

explained by three main events: the growth of inventory costs for the control policy using the 

IMHCP_B in order to avoid longer setup times involving an important risk of shortages, the 

economic advantage of the jumps of PM interventions (for HCP_BJ) and the remarkable 
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decrease of the number of setups; and then setup costs for the control policy using a classical 

setup policy (HCP_BJ). Note that the IMHCP generates a greater risk of shortages during the 

downtime than the HCP which use the maximal production rate throughout the availability 

period of the machine. It is interesting to note that the decrease of the total cost incurred for 

HCP_B and HCP_BJ presented in Figure 7.e is mainly due to the considerable reduction of 

the number of performed setup operations. Indeed, these control policies generate less setups 

when TS increase. 

 

(a) (b) 

(c) (d) 

(e) 

 
 

 
Figure 7. Effect of time system parameters on the incurred total cost of the control policies. 

 



23 
 

This study also demonstrates that the increase of MTCM (Figure 7.a) allows the production 

system to perform more PM interventions (Z୔୑
∗ 	and 	T୔୑

∗  decrease) in order to reduce the 

number of failures and shortages. Thus, the value of “ CHCP_B
* 	‐	CHCP_BJ

* ” and 

“CIMHCP_B
* 	‐	CIMHCP_BJ

* ” decreases, since skipping a PM intervention further increases the risk of 

failures. Figure 7.b shows that the jumps when performing PM interventions (for HCP_BJ 

and IMHCP_BJ) become more interesting ( Z୔୑
∗  and T୔୑

∗  increase) when the MTPM 

increases. Hence the increase of “CHCP_B
* 	‐	CHCP_BJ

* ” and “CIMHCP_B
* 	‐	CIMHCP_BJ

* ”. The goal is to 

avoid additional PM costs but also shortage costs (PM time is longer). Note that the 

considered control policies evolve in the same directions as the MTCM and MTPM presented 

in the previous paragraph, in response to variations in the standard deviations SDCM (Figure 

7.c) and SDPM (Figure 7.d) respectively. 

 

In summary, the comparison of the considered control policies in terms of cost shows that for 

a wide range of system configurations, the IMHCP_BJ gives a better result than the other 

control policies. This advantage is due to its capacity to avoid a high number of unnecessary 

setup operations and PM interventions. 

 

6. Conclusion 

 

A joint production, setup and maintenance control problem of an unreliable and a non-flexible 

manufacturing system producing two products has been addressed here. The primary 

objective is to propose a proper structure of a control policy which can combine 

simultaneously the production, the setup and the maintenance activities. Four combined 

policies have been presented. In order to control the production rate and the sequence of setup 

operations, the Hedging Corridor Policy (HCP) and the Improved Modified Hedging Corridor 

Policy (IMHCP) were used. Two periodic PM strategies are also introduced in this work. The 

first one is the classical Block Replacement Policy and the second one is characterized by 

preventive interventions which can be skipped if the inventories level is considered 

insufficient. Four combined discrete-continuous simulation models are developed in order to 

represent the different control policies considered. An experimental resolution approach 

which integrates the simulation with the design of experiments, the analysis of variance and 

the response surface methodology was used in order to determine the optimal solutions for 

each combined control policy. A sensitivity analysis and a comparative study were also 
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conducted confirming the robustness of the approach used and the effectiveness of the 

considered control policies. 

 

This work studies the effect of a wide range of cost and time variables of the system on the 

optimal control parameters and the incurred total cost of the considered policies. The main 

conclusion is that the IMHCP_BJ which combines the IMHCP with the Block Replacement 

Policy with jumps gives the best results in terms of cost. Its advantage is to avoid unnecessary 

setup operations and to reduce the risk of shortages and the waste of new components when 

PM interventions follow immediately CM or setup actions. Further extensions of this work 

can be studied by considering others PM strategies and other structure of the production and 

the setup control policies. 
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