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Abstract: 

This paper deals with the coordination of production, replenishment and inspection 

decisions for a manufacturing-oriented supply chain with a failure-prone 

transformation stage, random lead-time and imperfect delivered lots. Upon reception 

of the lot, the manufacturer executes an acceptance sampling plan with a zero non-

conforming criterion. If the sample does not contain non-conforming items, the lot is 

accepted; otherwise, it is rejected. In this work, two strategies regarding the refused 

sampled lot are studied. The first one involves a return of the lot to the supplier, who 

commits to improving the quality of the lot, while the second assumes that the 

manufacturer performs a 100% inspection and rectification operation. This work 

presents two main objectives. The first one is to jointly optimize, in a stochastic and 

dynamic context, the ordering point of raw material, the lot size of raw material, the 

final product inventory threshold and the severity of the sampling plan using a 

simulation-based optimization approach. The second one is to determine the best of 

the two quality control strategy. The in-depth study has shown that no strategy could 

be preferred in all the cases. For this reasons, we present an easy decision-making 

tool (Indifference curves) to help the manager to select the best quality control 

strategy when considering the entire supply chain. 
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1. Introduction 

In the literature, several authors have adopted feedback control policies to ensure 

better control of unreliable manufacturing systems. In this context, several approaches [1] 

have been developed based on the hedging point policy (HPP). This policy consists on 

building and maintaining an optimal safety stock level in order to continue to meet 

demand during the non-operational status of the manufacturing system. In the last decade, 

the HPP concept has evolved to specific areas to the case of more complex manufacturing 

problem context such as production, repair and replacement [2], remanufacturing [3], 

quality [4] , environmental [5] and subcontracting [6]. 

Facing an uncertain environment, manufacturers are increasingly motivated by 

efficient coordination of their decisions. In fact, models incorporating raw material 

procurement in manufacturing activities perform better in terms of average total cost than 

those tackling the decisions involved separately [7]. In this context, Hajji et al. [8] 

addressed an integrated production and replenishment control problem in a three-stage 

supply chain with an unreliable transformation stage and supplier. Song [9] determined 

the optimal integrated ordering and production policy in a supply chain with stochastic 

lead-time, processing time and demand. Sana [10] presented an integrated production-

inventory model for a three-layer supply chain considering perfect and imperfect quality 

items. He employed an analytical method to optimize the production rate and raw 

material order size for maximum expected average profit. Berthaut et al [11] considered a 

joint supply and remanufacturing activities and proposed a suboptimal control policy. 

Hajji et al [12] proposed a practical approach to the joint production and delayed supply 

control problem. Hajji et al. [13] developed a stochastic dynamic programming model to 

investigate a supplier selection problem, together with optimal controls on inventory 

replenishment and manufacturing activities. Pal et al. [14] optimized the production rate 

and raw material order size for a three-layer supply chain containing a supplier, a 

manufacturer and a retailer, where defective raw materials are sent back to the supplier 

and imperfect final products are reworked. Sana [15] developed an integrated economic 

production quantity and economic order quantity model for a three-layer supply chain 

subject to defective items in production and transportation, and determined the optimal 
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production rate, order quantity, and number of shipments. Song [16] studied several 

stochastic supply chain systems and determined the optimal production and ordering 

control policies in the case of supply chains with backordering, a multistage serial supply 

chain, a supply chain with multiple products, and supply chains with assembly 

operations. Jana et al. [17] proposed to coordinate production and inventory decisions 

across a three-layer supply chain model under conditionally permissible delay in 

payments. More recently, Song et al. [18] determined the optimal integrated production-

inventory control for a manufacturing supply chain with multiple suppliers in the 

presence of uncertain material suppliers, stochastic production times and random 

customer demands, using the stochastic dynamic programming approach. They also 

studied supplier issues, such as supplier base reduction and supplier differentiation, under 

the integrated inventory management policy. 

From the above literature review, the production-inventory model for a three-stage 

supply chain adopted two main assumptions concerning the reaction of the manufacturer 

against the delivered lot: either there is no quality control due to the implicit assumption 

of perfect delivered raw materials [8,16] or there is 100% screening [15,14]. In reality, a 

fraction of the received lot may consist of non-conforming parts, known as “items of poor 

quality” [19]. In that case, the inspection policy has to be integrated into the production-

inventory model to reduce the impact of raw material non-conformity on ordering and lot 

sizing decisions [20] and on the quality of the finished product [21]. Given that a 100% 

inspection process may be costly and time consuming, an acceptance sampling plan could 

be more adequate.  

The inspection of the delivered raw material with an acceptance sampling plan has 

been widely adopted in the industries. However, the research integrating sampling policy 

even with simple lot sizing has received very limited attention [22]. This paper considers 

a manufacturer-oriented supply chain system with a failure-prone transformation stage, a 

random lead-time and an imperfect delivered lot. Upon reception of the lot, the 

manufacturer performs a lot-by-lot single-sampling plan with a zero acceptance criterion 

applied. In fact, this kind of sampling plan is widely adopted in the aerospace 

manufacturing [23] and food industries, among pharmaceutical companies, fisheries [24] 
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and electronic manufacturing processes [25]. If the sample does not contain non-

conforming items, the lot is accepted; otherwise, the lot is rejected.  

When the lot is rejected, some authors have examined the involvement of the supplier 

in their studies. Starbird [26] examined the effect of the buyer’s rewards, penalties, and 

inspection policies on the behaviour of an expected cost minimizing supplier. Wan et al. 

[27] determined the acceptance sampling plan of the firm and the quality effort level of 

the supplier either in the simultaneous game or in the Stackelberg leadership game where 

both buyer and supplier share the inspection cost and the recall loss. However, to the best 

of our knowledge, in the case of the supplier-buyer relationship, authors have not 

considered that the returned lot may be inspected by the supplier, leading to an 

improvement of its quality. Other authors have assumed a 100% inspection on the refused 

lot. Ben-Daya, Noman [20],[28] studied an integrated inventory inspection models with 

and without replacement of non-confirming items. Moussawi-Haidar et al. [29] presented 

an analytical method to optimize the lot size, sample size and acceptance number in an 

EOQ-type model that achieves a certain average outgoing quality limit.  

In this work, as a stochastic lead-time and a backlog cost of the final product are 

considered, the manufacturer may prefer to go with the 100% option, but with some 

corrective action, such as reworking the non-conforming items of the rejected lot, rather 

than returning it to the supplier. 100% option may ensure the presence of raw material 

and the continuity of the transformation process. However, if the supplier offers a certain 

degree of improvement of the lot whenever it is returned, the manufacturer could be 

attracted by this option. In fact, the return option may allow the manufacturer to deliver 

better quality and avoid additional inspection and rectification costs, but at the same time, 

it may lead to an increase in the delivery delay, which may in turn lead to the production 

system being starved of the raw material. In this case, the production process is stopped, 

causing an increase in the backlog costs of the final product due to the presence of 

customer demand. For these reasons, it is important to study the different strategies 

regarding the refused lots.  

We formulate, in a stochastic and dynamic context, the integrated production, 

replenishment and quality control decision making problem. In the second part of this 
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work, we propose integrated decision strategies capable of dealing with coordination 

within the considered supply chain. A simulation model and a response surface 

methodology are then applied to find the optimal parameters governing the proposed 

decision strategies. An in-depth study is also conducted regarding the two proposed 

policies (return and 100% inspection) following the lot rejection.  

The rest of this paper is organized as follows. Section 2 presents the notation and the 

problem statement. Section 3 reports the control policy. Section 4 illustrates the 

resolution approach. The simulation model is presented in section 5. A numerical 

example is delivered in section 6 to outline the usefulness of the proposed control policy. 

Sensitivity analyses are discussed is section 7. The decision making choice regarding the 

rejected lot and the effects of the supplier’s involvements are studied in section 8. Finally, 

the paper is concluded in section 9.   

2. Notation and problem statement 

2.1. Notation 

The notations used in the paper are defined as follows. 

𝑑𝑒𝑚 : Finished product demand rate (units/time) 

𝑢𝑚𝑎𝑥 : Maximum manufacturing production rate (units/time) 

𝑄 : Raw material lot size 

𝑠 : Raw material ordering point 

𝑛 : Sample size 

𝑐 : Acceptance number 

𝑝 : Proportion of non-conforming items in the received lot 

𝑝𝑠 : Proportion of non-conforming items produced by the manufacturer 

𝑃𝑎 : Acceptance probability of a lot 

𝛿 : Replenishment delay 

𝜏𝑖𝑛𝑠𝑝 : Inspection delay per unit (time/unit) 

𝜏𝑟𝑒𝑐𝑡 : Raw material rectification time (time/unit) 

𝜔 : the degree of involvement of the supplier in improving the quality of 
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a rejected lot 

𝛾  the number of times that the lot is rejected by the manufacturer 

𝑐𝑅
𝐻 : Raw material holding cost ($/time/unit) 

𝑐𝐹
𝐻 : Finished product holding cost ($/time/unit) 

𝑐𝐹
𝐵 : Finished product backlog cost ($/time/unit) 

𝑐𝑖𝑛𝑠𝑝 : Raw material inspection cost ($/unit) 

𝑐𝑟𝑒𝑐𝑡
𝑅  : Raw material rectification cost ($/unit)  

𝑐𝑟𝑒𝑚𝑝
𝐹  : Non-conforming finished product replacement cost ($/unit) 

2.2. Problem statement 

We consider a three-stage supply chain with one supplier, one manufacturer and one 

customer. The manufacturer could be unavailable due to failures and repair operations. 

The supplier takes an order of raw materials with quantity Q and supplies it to the 

manufacturer after a random shipment delay 𝛿. It is assumed that each delivered lot 

contains a percentage, denoted p, of non-conforming items.  

Upon reception, the manufacturer applies a lot-by-lot single acceptance sampling plan 

with attributes to control the quality of the received lot. This plan is characterised by a 

sample of size 𝑛 and a zero acceptance number (𝑐 = 0). After inspecting a random 

sample 𝑛, the manufacturer decides to accept this lot, if the number of non-

conforming 𝑑 = 0, or to refuse it, if 𝑑 > 0. In this situation, the manufacturer’s decision 

could be expressed by the probability of acceptance 𝑃𝑎 [24], which is given as follows: 

 𝑃𝑎 = (1 − 𝑝)𝑛 (1)  

In this paper, we consider that the accepted lot is immediately placed in the raw 

materials stock. Concerning the rejected lot, the manufacturer will face two options: 

 Option1 (RET (𝜔) policy): the supplier proposes to improve the quality of each 

rejected lot by applying an additional control operation (Fig.1- Option 1). Let us 

denote by 𝜔 (0≤ ω ≤ 1) the degree of involvement of the supplier in improving 

the quality of this lot, and γ the number of times that the lot is rejected by the 

manufacturer. In other words, if ω = 1, the supplier undertakes to perform a 
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100% inspection of each refused lot. And, if 𝜔 = 0, no inspection operation is 

undertaken by the supplier. After an additional shipment delay δ, this lot will be 

delivered with a new percentage of non-conforming items 𝑝(γ=1) = 𝑝. (1 − ω). At 

the reception, the lot will be inspected and the manufacturer decides to accept or 

to refuse it. If the lot is rejected again, the supplier will improve its quality and the 

new percentage of non-conforming items will be 𝑝(𝛾=2) = 𝑝. (1 − 𝜔)2.  Then, the 

percentage of 𝑝γ varies according to the following relationship: 

 

𝑝. (1 − 𝜔)γ , if the supplier performs an inspection of the refused 

lot. 

𝑝 Otherwise (𝛾 = 0). 

(2)  

 

 Option 2 (100% policy): the rejected lot is submitted to 100% inspection. We 

consider that all non-conforming items in lot 𝑄 are rectified with a 𝜏𝑟𝑒𝑐𝑡 delay per 

unit and  𝑐𝑟𝑒𝑐𝑡
𝑅  cost per unit (Fig.1- Option 2). 

The raw material (RM) held in the manufacturer’s warehouse incurs a holding cost 𝑐𝑅
𝐻 

per item per unit time. The manufacturer produces a single type of finished product to 

respond to the continuous and constant demand rate “𝑑𝑒𝑚”. It is assumed that the 

production process may produce a proportion 𝑝𝑠 of non-conforming final product items. The 

holding cost of the final product (FP) for the manufacturer is 𝑐𝐹
𝐻 per item per unit time. 

However, if the manufacturer could not respond to the customer demand, a backlog cost 

𝑐𝐹
𝐵 per item per unit time is considered. Because some non-conforming product could be 

sold to the final customer, it is assumed that the customer can detect and return it to be 

replaced with a 𝑐𝑟𝑒𝑚𝑝
𝐹  per unit cost. 

The whole state of the considered supply chain at time t is described by a hybrid state 

combining a discrete component, 𝛼 (𝑡), and two continuous components 𝑦(𝑡) and 𝑥(𝑡). 

The discrete component represents the state of the transformation stage, and can be 

classified as “manufacturing system is available”, denoted by 

𝛼(𝑡) = 1, or “manufacturing system is unavailable”, denoted by 𝛼(𝑡) = 2. The first 

𝑝γ = 
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continuous element 𝑦(𝑡) represents the stock level of the finished product. It can be 

positive, for an inventory, or negative, for a backlog. Further, the second one, 𝑥(𝑡), 

represents the stock level of the raw material (𝑥(𝑡) ≥ 0).     

 

Fig. 1: Supply chain under study 

In this case, the dynamics of the stock level is given by the following differential 

equations: 

 
 𝑦̇(𝑡) = 𝑢(𝑡, 𝛼) −

𝑑𝑒𝑚

(1 − 𝐴𝑂𝑄). (1 − 𝑝𝑠)
, 𝑦(0) = 𝑦0  ∀𝑡 ≥ 0 

(3)  

𝑥̇(𝑡) = −𝑢(𝑡, 𝛼), 𝑥(0) = 𝑥0  ∀𝑡 ∈ ]𝜉𝑖, 𝜉𝑖+1[ 

 𝑥(𝜉𝑖
+) = 𝑥(𝜉𝑖

−) + 𝑄𝑖 ∀ 𝑖 = 1 … 𝑁 (4)  

where 𝑦0, 𝑥0 represents the initial stock levels, 𝑢(𝑡, 𝛼) denotes the manufacturing system 

production rate in mode 𝛼, 𝑑𝑒𝑚 denotes the demand rate, 𝐴𝑂𝑄 represents the average 

outgoing quality of the raw material, and 𝜉𝑖
−, 𝜉𝑖

+ represent the negative and positive 

boundaries of the 𝑁 receipt instants after an inspection operation, respectively. 

According to the inspection policy, the average outgoing quality of the raw material 

𝐴𝑂𝑄 can be measured as follows [24]: 
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𝐴𝑂𝑄100% =𝑃𝑎 . 𝑝. (

𝑄−𝑛

𝑄
 )  

 

𝐴𝑂𝑄𝑅𝐸𝑇(ω) = 𝑝γ 

(5)  

In a dynamic stochastic context, Hajji et al. [12] analysed this class of model, but 

without including an imperfect delivered raw material. Given the complex structure of 

the optimization equations, they first adopted a numerical approach to illustrate the 

structure of the integrated production and delayed replenishment control policy, and 

secondly, a simulation-based experimental approach to cover more complex situations. 

They showed that the optimal production strategy is defined by a Hedging Point Policy 

(HPP) and that the optimal replenishment strategy belongs to the class of (𝑠, 𝑄) policies. 

The HPP policy consists in maintaining a surplus of products to be able to meet demand 

(𝑑𝑒𝑚) when the manufacturing system is unavailable due to machine failures. The (𝑠, 𝑄) 

policy consists in ordering an economic lot 𝑄 of raw materials when the upstream 

inventory level reaches 𝑠. 

3. Control policy 

The main objective of this work is to determine the production policy 𝑢(. ), the supply 

policy Ω and the best quality control policy (RET (𝜔) and 100%). According to the 

findings of Hajji et al. [12], production and supply policies are defined by the Hedging 

Point Policy (HPP) and the (𝑠, 𝑄) policy, respectively. However, by considering the 

effect of average total quality of the raw material 𝐴𝑂𝑄(𝑡) on the real demand rate, a 

modified HPP may be more appropriate to illustrate our production policy. 

The following structures of the production and supply policies, as well as the two 

quality control policies, are proposed as follows, where 𝑢𝑚𝑎𝑥 represents the maximum 

production rate, 𝑠 the ordering point, 𝑄 the lot size, and 𝑍 the final product hedging level. 

𝐴𝑂𝑄 = 

 



10 

 

U(.)= ? x(t)>0 α=1 y(t)< Z

y(t)= Z

U(.)=0

U(.)=dem/[(1-

AOQ)*(1-ps)] 

U(.)=UmaxYes

No

No

No

Yes

No

Yes

Yes

With constraint: Z ≥ 0
 

Fig. 2: Production policy (Modified Hedging Point Policy (MHPP)) 

Ω=? x(t)< s

Launch a lot order of size Q

No actionNo

Yes

With constraint: Q > s ≥ 0
 

Fig. 3: Supply policy (s, Q) 

With 

Pa= (1-pγ)
n

Lot is rejected and returned to the 

supplier for additional control
(1-Pa)

Pa

 a) Ret (ω) policy:

 b) 100% policy: With 

Pa= (1-p)n 

 Lot is rejected

 Full inspection and rectification 

operation

 Lot is accepted

 Inspection limited to the sample n

Pa

(1-Pa)

 x(t)= x(t)+Q

Update of  pγ

 

Fig. 4: Quality strategy 

To illustrate the interaction of production, supply and inspection activities, Fig.5 

presents graphically the evolution of the stock level of the raw material 𝑥(𝑡) and final 

product 𝑦(𝑡) when the manufacturer’s inspection decision is to return the refused lot. 
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1. When the 𝑥(𝑡) level crosses the ordering point (Arrow 1 ), the manufacturer orders 

a new lot. Once the lot is delivered after δ delay, a sample size n is inspected with A  

delay. In this situation, if the lot is accepted, it is added to the final stock of RM 

(Arrow 2 ). Otherwise, the supplier picks it up and the manufacturer has to wait for 

an additional lead-time δ (Arrow 
3

). 

2. At the same time, when the production system and RM are available, the RM is 

transformed to FP at the maximal rate (Arrow 
4

) whenever 𝑦(𝑡) is below 𝑍, and at 

an adjusted demand (Arrow 
5

) rate whenever 𝑦(𝑡) is equal to 𝑍.  

3. The production process is stopped for two reasons. The first one (Arrow 
6

 ) is the 

unavailability of the manufacturer stage. The second one (Arrow 
7

) is the out-of- 

stock RM state (𝑥(𝑡) = 0). Since the manufacturer faces a continuous demand, a 

backlog of FP may arise (Arrow 
7

) depending on the state of the entire chain and 

quality decisions. 

Z

s

A

A

δ:  Replenishment delay

Sampling inspection delay  

δ Time

Inventory level
2

7

0

1
6

Finished product inventory y(t)

Raw material inventory x(t)

Aδ Aδ 

3

5

4

 

Fig. 5: Evolution of raw material and finished product inventory under the joint 

production, supply and Ret inspection policies 

In this study, our decision variables are the sample size n, the final product hedging 

level 𝑍 and the supply policy (𝑠, 𝑄). Given the complex structure of the considered 

system, we propose to determine experimentally the optimum control parameters 
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(𝑠, 𝑄, 𝑍, 𝑛) that give the best approximation of the long-term expected total cost 

consisting of the raw material holding cost, the finished product holding/backlog costs, 

the sampling costs, the costs of 100% inspection and rectification (Case 100% policy), 

and the cost of replacing non-confirming finished products.  

4. Resolution approach 

A simulation-based optimization method is adopted. This approach combines 

simulation modelling, experimental design and Response Surface Methodology. This 

approach was applied in different field such as production control problem[30]  and an 

integrated production, overhaul and preventive maintenance problem [31]. The structure 

of the proposed control approach is as follows: 

I. Based on the developed control policy presented previously, a simulation model is 

developed to describe the dynamics of each integrated production, replenishment 

and quality problem. Therefore, the total incurred cost is obtained for the given 

value of the control policy (Fig. 2 – Fig. 4).  

II. An appropriate experimental design approach defines how control factors can be 

varied in order to identify the effects of the main factors and their interactions on 

the response (the incurred cost).  

III. The Response Surface Methodology (RSM) is used to determine the relationship 

between the incurred cost and the significant main factors and/or interactions. 

From this estimated relation, the optimal values of the control policy parameters, 

called (𝑠∗, 𝑄∗, 𝑍∗, 𝑛∗) and the optimal cost value are determined. 

5. Simulation model  

To represent the dynamic behaviour of the considered supply chain, two simulation 

models were developed using the SIMAN simulation language (ARENA simulation 

software) with C++ subroutines, where a combined discrete/continuous model is adopted 

according to the considered quality policy. Indeed, using such a combined approach 

allows us to reduce the execution time and secure more flexibility than with a purely 

discrete model [32]. The first model reproduces the integrated production-replenishment- 
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raw material quality control policy when the RET (𝜔) is adopted. The second model 

reproduces the integrated policies when the 100% is selected. Fig. 6 presents the overall 

model structure used in each of the two model  

1. The INITIALIZATION block 0  initializes the values of the joint production 

replenishment and quality control policy (𝑠, 𝑄, 𝑍, 𝑛) and the problem variables, 

such as the initial states (𝑥0, 𝑦0), production rates, inspection parameters, the 

replenishment lead-time, and the number of rejections of the same lot 𝛾𝑖. We also 

assign the simulation time 𝑇∞ at this step such that the steady-state is reached. 

2. The PRODUCTION CONTROL POLICY block 1  sets the production rates 

according to Fig. 2. This block relates to the “Update finished product inventory 

level” block 2  in charge of raising a FLAG whenever the FP inventory level 

crosses the threshold (𝑍). 

Start

Flag

Initialization

SUPPLY CONTROL 

POLICY (s ,Q)

Update finished 

product inventory 

level  y 

Tsim=T∞ END

Failures/

Repairs

Replenishment 

delay δ 

MANUFACTURER

NoYes

Demand 

rate

PRODUCTION 

CONTROL POLICY (Z)

Flag

Update raw material 

inventory level x 

Update incurred cost

QUALITY 

CONTROL POLICY

0

1

2

3

4

7

5

6

8

 

Fig. 6: Simulation block diagram 
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3. The SUPPLY CONTROL POLICY block 
3

 sets the order quantities according 

to Fig. 3. This block relates to the “Update raw material inventory” block 
4

 in 

charge of raising a FLAG whenever the raw material inventory level crosses the 

threshold s.  

4. The QUALITY CONTROL POLICY block 
5

 sets the inspection policy 

according to Fig. 4. (a or b). When the lot is delivered after a lead-time  
6

, a 

sample size is inspected. The decision of the inspector is modelled by a 

probabilistic BRANCH block of SIMAN, which represents the probability of 

acceptance Pa (Eq. 1). Indeed, Pa lots are accepted and (1 − Pa) lots are rejected. If 

the lot is accepted, the average outgoing quantity AOQ(. ) is updated according to 

Eq. 5. If the lot is refused, and depending on the adopted quality policy, the 

proportion of non-conforming items p in a lot is updated according to Eq. 2 (case 

of RET policy) or the lot is 100% inspected and all non-conforming items are 

rectified (case of 100% policy). Once the quality control is completed, the lot is 

added to the raw materials stock and then the stock level is updated (Eq. 4).  

5. The FAILURES AND REPAIRS block
7

 models the manufacturing system 

failure and repair events as a closed loop following the time to failure (TTF) and 

the time to repair (TTR) distributions, respectively. The operational states of the 

manufacturing system are incorporated in the state equations (Eq. 3) (defined as a 

C language insert) through binary variables, which multiplies the production rates.  

6. Finally, when the current time of the simulation TSim reaches T∞
8

, the 

simulation is stopped. 

6. Experimental results  

In this section, we apply the procedure outlined in the previous section. The purpose 

is firstly, to find out whether the input parameters (𝑠, 𝑄, 𝑍,𝑛) affect the response (the 

cost), and then develop a regression equation. Secondly, the optimal parameter values of 

the two proposed policies (RET (𝜔) and 100%) and the optimal expected cost are 

determined. Finally, a sensitivity analysis is conducted to show the robustness of the 
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policies and highlight important features. The values of the operational and cost 

parameters, characterising the supply chain and inspection operations, are given in Tables 

1 and 2:  

Table 1: Cost and production parameters 

Parameter 𝑢𝑚𝑎𝑥 𝑑𝑒𝑚 𝑇𝑇𝐹 𝑇𝑇𝑅 𝑐𝑅
𝐻 𝑐𝑖𝑛𝑠𝑝 𝑐𝐹

𝐻 𝑐𝐹
𝐵 𝑐𝑟𝑒𝑚𝑝

𝐹  𝑐𝑟𝑒𝑐𝑡
𝑅  

Values 300 180 Expo(15) Expo(1.65) 5 18 5 150 1300 350 

 

Table 2: Inspection and delay (per day) parameters 

Parameter 𝑐 𝑝 𝑝𝑠 ω 𝛿 𝜏𝑖𝑛𝑠𝑝 𝜏𝑟𝑒𝑐𝑡 𝑇∞ 

Values 0 2.5% 
1% 1 Expo 

(1.5) 
0.00025 0.012 106 

6.1. Experimental design 

Since we have four dependent parameters (𝑠, 𝑄, 𝑍, 𝑛), a Face-Centered Central 

Composite design FCCCD is used for the design of experiments. This experimental 

design is built by 24 factorial design with 8 star points and 4 center points. In fact, a 2-

level factorial design augmented with center and axis points presents a desirable plan [33] 

thanks to its two main characteristics: orthogonality and rotatability. For more details, we 

refer the reader to [34]. Five replications were conducted for each combination of factors, 

and therefore, 140 (28*5) simulation runs were conducted. In addition, we used the 

“common random number” technique [35] to reduce the variability in the response. 

6.2. Statistical analysis and response surface methodology 

The statistical analysis of the simulated data consists of the multi-factor analysis of 

the variance (ANOVA). Indeed, it provides the effects of the independent variables 

(s, Q, Z, n) on the dependent variable (the cost). Using a statistical software application 

such as STAGRAPHICS, we note that all the Radj
2  values (Table 3 and Table 4) are 

greater than 95%; over 95% of the total variability is thus explained by the models [34]. 

Furthermore, we can see from Table 3 and Table 4 that all “P-values” are below the 0.05 

level. This observation leads us to conclude that the main factors (𝑠, 𝑄 , 𝑍 and 𝑛) of the 
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different policies, their quadratic effects (𝑠2, 𝑄2, 𝑍2 and 𝑛2), as well as their interactions 

(𝑠. 𝑄, 𝑠. 𝑍, 𝑠. 𝑛, 𝑄. 𝑍, 𝑄. 𝑛 and 𝑍. 𝑛), are  significant for the response variable at a 5% level 

of significance. 

Table 3: ANOVA Table case of 100% policy 

 
 

Table 4: ANOVA Table case of RET (1) policy  

 

 

A residual analysis was conducted to verify the adequacy of the models. In fact, a 

residual versus predicted value plot and normal probability plot were analysed to confirm 

the homogeneity of residuals and normality assumption, respectively. 

 From STATSGRAPHICS, the response surface of each policy is given by: 

 

𝐶𝑜𝑠𝑡100% (𝑠, 𝑄, 𝑍, 𝑛) = 40195 – 27.7545. 𝑠 − 7.65011.𝑄 – 18.6135. 𝑍 – 

1.3429.𝑛 + 0.010853. 𝑠2 + 0.00375206. 𝑠. 𝑄 + 0.00926912. 𝑠. 𝑍 – 

0.00721339. 𝑠. 𝑛 + 0.00130684. 𝑄2 + 0.00192093. 𝑄. 𝑍 – 0.00148199. 𝑄. 𝑛 

+ 0.00512779. 𝑍2 – 0.00289859.𝑍. 𝑛 + 0.0368954. 𝑛2. 

(6)  

 

𝐶𝑜𝑠𝑡𝑅𝐸𝑇(1) (𝑠, 𝑄, 𝑍, 𝑛) = 45884.5 – 23.72.𝑠 – 7.95014.𝑄 – 24.6895.𝑍 – 

10.2199.𝑛 + 0.00644144.𝑠2 + 0.00298063. 𝑠. 𝑄 + 0.0072466.𝑠. 𝑍 – 

0.00896331.𝑠. 𝑛 + 0.000993255.𝑄2 + 0.00179049.𝑄. 𝑍 – 0.00320322.𝑄. 𝑛 

+ 0.00722965.𝑍2 – 0.004132.𝑍. 𝑛  + 0.103631.𝑛2. 

(7)  

  𝑅𝑎𝑗𝑠
2 = 95.96%   𝑅𝑎𝑗𝑠

2 =96.37% 
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The optimal solution for each quality strategy is presented in table 5. 

  

Furthermore, to crosscheck the validity of these solutions, for each quality strategy, 

(𝑠∗, 𝑄∗, 𝑍∗, 𝑛∗) were used as input to the simulation model representing this strategy. The 

cost value obtained falls in the 95% confidence (Eq. 8; with 𝑚 = 20 extra replications). 

From Table 5, it can be seen that the obtained cost of each quality strategy falls within the 

confidence interval:  

 𝐶̅∗(𝑚) ± 𝑡𝜶
𝟐

,𝒎−𝟏
. √

𝑆2(𝑚)
𝑚⁄  (8)  

where C̅∗ is the average obtained cost, 𝑆 the sample standard deviation, and (1 − 𝛼) the 

confidence level. 

Table 5  Optimal parameters, cost and confidence interval results 

Policy 
Optimal Parameters 

Optimal Cost  CI (95%) 
𝑠∗ 𝑄∗ 𝑍∗ n∗ 

100% 674.06 1307 1003.25 150 16404 [16399.19, 16462.62] 

RET (1) 896.19 1926 1059.49 139 13808.1 [13751.7, 13821.28] 

In this section, we determined the optimal parameter value and the optimal expected 

cost for the 100% policy and RET (1) policies. This case study shows that the decision 

maker has to choose the RET (1) policy rather than the 100% policy. By choosing the 

RET (1) policy, we note up to 14.4% cost savings %∆C∗ = 14.4%, where %∆C∗ =

[(C100%
∗ -CRET(ω)

∗ )/ C100%
∗ ]. These savings express the percentage of the relative gain that 

the manufacturer can enjoy if the RET (1) policy is selected. 

7. Sensitivity analysis 

To properly understand the effect of a given parameter variation on the integrated 

production, supply and quality control policy, and to make sense of all these effects, a set 

of numerical examples were considered to measure the sensitivity of the obtained control 

policy. The following variations (Table 6) are explored and compared to the basic case of 

the RET (1) policy. 
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7.1. Case 1: Variation of the raw material holding cost cR
H 

When the 𝑐𝑅
𝐻 cost increases (respectively decreases), the optimal ordering point 𝑠∗ 

and lot size 𝑄∗ decreases (respectively increases) to reduce (respectively increase) the 

stock level of RM. In this case, the manufacturer promotes (respectively demotes) first 

the transformation of RM to FP, where the optimal hedging level 𝑍∗ increases 

(respectively decreases) and second the acceptance decision of a delivered lot, where the 

sample size 𝑛∗ decreases (respectively increases). 

Table 6: Sensitivity analysis data and results of Ret (ω) policy 

Case Parameter Variation 
Optimal Parameters 

Cost∗ Impact on 
s∗ Q∗ Z∗ n∗ 

Base - - 896.19 1926 1059.49 139 13808.1 - 

1 
  cR

H
 

2.5 1104.44 2129 929.36 146 11248.6 
s*↑ Q*↑ Z*↓ 
n*↑ Cost*↓ 

7.5 845 1576 1129.45 135 15846.3 
s*↓ Q*↓ Z*↑ 
n*↓ Cost*↑ 

2 
  cF

H
 

2.5 780 1830 1501.23 136 11079.2 
s*↓ Q*↓ Z*↑ 
n*↓ Cost*↓ 

7.5 995.36 1945 843.48 140 1587.4 
s*↑ Q*↑ Z*↓ 
n*↑ Cost*↑ 

3 
  cF

B
 

100 835.13 1850 854.85 137 12991.8 
s*↓ Q*↓ Z*↓ 
n*↓ Cost*↓ 

200 957.13 1974 1109.52 140 14298.2 
s*↑ Q*↑ Z*↑ 
n*↑ Cost*↑ 

4 
  

cinsp 

15 905.52 1895 1059.62 142 13728.7 
s*↑  Q*↓ Z*↑  
n*↑ Cost*↓ 

20 890.37 1945 1059.26 137 13859.3 
s*↓ Q*↑ Z*↓ 
n*↓ Cost*↑ 

5 
  δ 

Expo(1) 542.74 1680 929.62 138 11780.6 
s*↓ Q*↓ Z*↓ 
n*↓ Cost*↓ 

Expo(2) 1270.44 2396 1138.56 166 15708.2 
s*↑ Q*↑ Z*↑ 
n*↑ Cost*↑ 

6 ω 

0.8 1041.52 1984 1101.43 85 15840.6 
s*↑ Q*↑ Z*↑ 
n*↓ Cost*↑ 

0.6 1267.7 2042 1062.42 76 17195.1 

0.2 548.68 1453 1002.44 1 17373.5 

7.2. Case 2: Variation of the finished product holding cost cF
H 

When the 𝑐𝐹
𝐻 cost increases, the level 𝑍∗ decreases to reduce the FP inventory costs. 

By reducing the transformation of the RM, the system will make creates more RM stocks 

(𝑠∗ and 𝑄∗ increase), and with better quality (𝑛∗ increases), to be used when required. 

When the 𝑐𝐹
𝐻 cost decreases, we note an opposite variation of the optimal parameters. 
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7.3. Case 3: Variation of the finished product backlog cost cF
B 

When increasing the 𝑐𝐹
𝐵 cost, the values of all the decisions variable 𝑠∗, 𝑄∗, 𝑍∗ 

and 𝑛∗ increase. In fact, the manufacturer must keep a significant stock level (𝑍∗ 

increases) with better quality (𝑛∗ increases) to limit the risk of shortage. The increase in 

the supply parameters aims to reduce the stock-out RM frequency due to the presence of 

the lead-time and inspection decision. In the opposite case (𝑐𝐹
𝐵 decreases), we have an 

opposite effect on the different optimal parameters. 

7.4. Case 4: Variation of the inspection cost cinsp 

When the inspection cost 𝑐𝑖𝑛𝑠𝑝 increases, the system tends to reduce the total 

inspection cost by decreasing the optimal sample size 𝑛∗. This variation leads to an 

increase in the 𝑃𝑎 probability, and then to an increase in the acceptance frequency for the 

supplied lot. As result, the FP level 𝑍∗ decreases due to the decrease in the RM stock-out 

frequency. Regarding the supply parameters, 𝑠∗ decreases and 𝑄∗ increases to avoid a 

high level of RM stock. The decrease in inspection cost produces the opposite effects. 

7.5. Case 5: Variation of the lead-time δ 

When the 𝛿 increases (respectively decreases), 𝑠∗ and 𝑄∗ increase (respectively 

decrease) to ensure a higher (respectively lower) RM stock level. Facing an increased 

(respectively decreased) supplied lot size, the system decreases (respectively increases) 

the 𝑃𝑎 probability by increasing (respectively reducing) the sample size 𝑛∗. At the same 

time, the 𝑍∗ level increases (respectively decreases) to face the RM stock-out frequency 

(respectively availability). 

7.6. Case 6: Variation of the degree of supplier’s involvement ω 

When the degree of supplier involvement 𝜔 decreases, the system promotes an 

acceptance decision by increasing the acceptance probability 𝑃𝑎 (𝑛∗decreases). This effect 

must be balanced by higher supply parameters (𝑠∗ and 𝑄∗ increase) to maintain an 

appropriate RM availability. In this situation, the level 𝑍∗ increases to face the stock-out 

and the reduction of the product quality.  



20 

 

It is interesting to note that when the degree of the supplier involvement 𝜔 is very low 

(𝜔=0.2), the system determines that the supplier involvement is not enough to offset the 

effect of additional delivery delay. The system will then prefer to omit the return policy 

of a rejected inspected lot by maximizing the acceptance probability 𝑃𝑎. This trend is 

illustrated by the optimal sample size 𝑛∗=1. 

Through this analysis, we can conclude the following: Firstly, we have confirmed that 

varying the control parameters evolves as expected with respect to parameter variations. 

Secondly, given the economic challenges at play, it is important to coordinate quality 

control for the delivered lot with production and replenishment activities. By choosing 

the RET policy, gains obtained can be up to 15% compared to the 100% policy. Finally, 

it is important to consider the sample size as a control parameter for the integrated 

production-supply-raw material quality control problem. In fact, the determination of the 

optimal sample size parameter provides the decision maker with the possibility of varying 

the severity of the inspection plan. This parameter can be set to 𝑛∗=1 where there is 

maximum acceptance of delivered batches. 

From Table 6 (case 6), we observe that when the degree of involvement 𝜔 of the 

supplier decreases, the optimal expected cost increases. This variation causes a decrease 

in the cost saving  %∆C∗ (Table 7), which influences the decision maker in his choice of 

the 100% or the RET (𝜔) policy. In fact, when %∆C∗ > 0, the decision maker has to 

select the return policy. However, if  %∆C∗ < 0, the 100% policy must be selected. In the 

next section, a detailed comparative study between these two policies is conducted to 

highlight the main aspects differentiating them. 

Table 7: %∆C∗ variation 

ω 1 0.8 0.6 0.2 

%∆C∗ 14.4% 3.4% -4.8% -9.4% 

8. Comparative study between 100% and RET (ω) strategies 

The objective of this section is to conduct an in-depth comparative study in order to 

determine the best quality policy in terms of cost. Even if the preference of the decision 
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maker depends essentially on the degree of involvement of the supplier 𝜔, other 

parameters (such as the proportion of non-conforming items 𝑝 and the lead-time 𝛿) may 

have a significant influence on the manufacturer choice.  

Fig. 7 and Fig. 8 illustrate the variation of cost saving  %∆C∗ depending on the quality 

of the delivered lot p and the lead-time 𝛿, respectively. The different steps performed to 

establish Fig. 7 (respectively, Fig. 8) are as follows: For each percentage of non-

conforming items 𝑝 (respectively, lead-time 𝛿), we first determined the optimal parameter 

value and the optimal expected cost for the 100% policy. Secondly, we determined the 

optimal parameter value and the optimal expected cost for the RET (𝜔) policy, for 

different degrees of involvement 𝜔. The cost saving %∆C∗ was then calculated as in the 

previous sections. 

8.1. Effect of 𝑝 

From Fig. 7, we note that the decision maker may have more than one decision to make, 

depending on 𝑝 values: 

 𝑝 =1%: RET (ω) and 100% policies should be avoided. We notice that %∆C∗ =

0%, ∀ 𝜔 ∈ [0,1]. In fact, this observation is illustrated through the optimization 

of the different control parameters, where the optimal sample size 𝑛∗ is equal to 1. 

When it encounters a good quality lot, the system tries to maximize the 

probability of acceptance 𝑃𝑎 and then encourages the decision maker to omit the 

inspection operation and its involvement to avoid additional delays and costs 

caused either by a return decision or a 100% inspection and rectification 

operation. 

 𝑝 =1.5%: The RET (ω) policy is more advantageous than the 100% policy only 

for a certain value of ω. The system still considers that quality of the delivered lot 

is good. As a result, the system tries to maximize the probability of acceptance 𝑃𝑎 

and then encourages the decision maker to omit additional inspection costs caused 

by a 100% inspection and rectification operation. This decision is in keeping with 

the policy to return the inspected lot when the degree of involvement of the 



22 

 

supplier 𝜔 is low. However, from a certain degree of ω (𝜔 > 0.78), the systems 

prefers the return policy to ensure better performance of the supply chain. 

 𝑝 ≥ 2.5%: The RET (ω) or 100% policy may be selected. The %∆C∗ curve 

shows a switching point 𝜔𝑠 of decision for which %∆C∗ = 0% (no preference for 

a specific quality policy). Fig. 7 shows also that when the percentage of non-

conforming items p increases, the ωs  value decreases (for 𝑝 = 2.5%, ωs = 0.74; 

for 𝑝 = 3.5%, ωs = 0.68). This is explained by the need to avoid incurring 

additional significant rectification costs due to the presence of more non-

conforming items in the lot. For the remaining values of ω, the decision maker 

has to select the RET (𝜔) policy, if %∆C∗ > 0%, and the 100% policy, if 

%∆C∗ < 0%. 

 

Fig. 7: %∆C∗= f (ω) with different values of p, cinsp=18$/u, δ= Expo (1.5) 

8.2. Effect of δ 

From Fig. 8, we note that, depending on the 𝛿 value, the decision maker may decide as 

follows:  

 δ= Expo (3.5): Only one inspection policy may be selected, and the return policy 

should not be taken (%∆C∗ < 0%, ∀ 𝜔 ∈ [0,1]). To avoid an increase in the RM 
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stock-out frequency, an increase in the risk of stoppage of the production process 

and then, an increase in the final product backlog cost, the decision maker must 

choose the 100% inspection and rectification operation policy. 

 𝛿 <Expo (2.5): RET (ω) or 100% policies may be selected. The ∆C∗ curves show 

a switching point ωs of decision for which %∆C∗ = 0%. It can be seen that when 

the lead-time 𝛿 decreases, the ωs value decreases. Indeed, when 𝛿 is low, the 

decision maker will accept a lower level of involvement of the supplier. For the 

remaining values of 𝜔, the decision maker must select the return policy, if 

%∆C∗ > 0% and the 100% policy, if %∆C∗ < 0%. 

 

Fig. 8: %∆C∗= f (ω) with different value of lead-time δ, case cinsp=14$/u, p=2.5%  

8.3. Effect of cinsp and cF
B 

Fig. 7 and Fig. 8 showed that 𝜔𝑠 values vary depending on the supply chain parameters. 

In fact, the latter represents the minimum implication degree that the supplier must 

provide so that the return policy ensures better results. To select the most economic 

policy, we present in Fig. 9 the indifference curves for lead-time 𝛿 and degree of 

involvement of the supplier 𝜔.This curve devises the area in two zones which present 

whether or not to choose the 100% policy as the best quality control policy. 
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Fig.9.a shows the effect of the inspection cost 𝑐𝑖𝑛𝑠𝑝variation on the indifference curve. 

It can be seen that when cinsp increases from 14$/u to 22$/u, the area in which a return 

policy is more advantageous increases. Indeed, this variation is explained by the tendency 

of the system to avoid greater total inspection costs. The decrease in the 𝑐𝑖𝑛𝑠𝑝cost 

produces the opposite effect. Fig. 9.b shows the effect of the finished product backlog 

cost 𝑐𝐹
𝐵 variation on the indifference curve. It can be seen that when 𝑐𝐹

𝐵 increases from 

100$/day/u to 400$/day/u, the area where the 100% inspection and rectification operation 

policy is more advantageous increases. Indeed, this variation is explained by the tendency 

of the system to avoid the risk of stoppage of the production process due to RM stock-out 

caused by delivery times. The decrease in 𝑐𝐹
𝐵 cost produces the opposite effect. 

Cinsp=22$/
u

Cinsp=18$/
u

Cinsp=14$/
u

 

(a): For different value of cinsp 

CF
B=100$

/day/u
CF

B=150$
/day/u

CF
B=400$/
day/u

 

(b): For different value of cF
B 

Fig. 9: Indifference curve for lead-time δ and degree of involvement of the supplier ω, 

p=2.5%  

9. Conclusion  

In this work, the simulatneous production, replenishement and raw material quality 

control problem was addressed for the case of a manufacturing-oriented supply chain 

with a failure-prone transformation stage, random lead-time and imperfect delivered lot. 

Upon reception of the lot, the manufacturer performs an acceptance sampling plan with a 

zero non-conforming criterion applied. The problem was formulated in a stochastic 

dynamic context, where the production rate, the order quantity, the reorder point and the 
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sample size are considered as decision variables. We focused first on the determination of 

the optimal control parameters, and secondly on the best quality control issues 

concerning the rejected sampled lot. Two quality policies were considered, with  the first 

involving a return of the lot to the supplier who is committed to improve its quality, while 

the second assumed that the manufacturer executes a 100% inspection and rectification 

operation. An experimental approach based on simulation modelling, design of 

experiment and response surface methodology was applied to determine the parameters 

of the control policy involving the two quality policies.  

This paper highlighted two interesting results. First, we observed that it is important 

to consider the sample size of the acceptance sampling plan as a control variable. In fact, 

depending on the entire supply chain parameters, this parameter varies the severity 

degree of the quality control at the reception to ensure the minimum total cost. Secondly, 

in the supply chain management context, the manufacturer must investigate both the 

100% and return policies. Indeed, we showed that the different parameters of the supply 

chain and the degree of involvement of the supplier have a significant influence on the 

decision to be made following inspection. 

In conclusion, the findings of this work set the stage for further studies, including 

other sampling policies, such as double sampling plans and selection between multiple 

suppliers. The evaluation and optimization of such a supply chain remains a challenging 

area.  
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