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Integrated production, sampling quality control and maintenance of 

deteriorating production systems with AOQL constraint 

Abstract – This paper considers the problem of integrated production, preventive 

maintenance and quality control for a stochastic production system subject to both reliability 

and quality deteriorations. A make-to-stock production strategy is used to provide protection 

to the serviceable stock against uncertainties. The quality control is performed by a single 

acceptance sampling plan by attributes. The preventive maintenance strategy consists of 

carrying out an imperfect maintenance as a part of the setup activity at the beginning of each 

lot production, while, a major maintenance (overhaul) is undertaken once the proportion of 

defectives in a lot rejected reaches or exceeds a given threshold. The main objective of this 

study is to jointly optimize the production lot size, the inventory threshold, the sampling plan 

parameters and the overhaul threshold by minimizing the total incurred cost. To meet 

customer requirements, the optimization problem is subject to a specified constraint on the 

average outgoing quality limit (AOQL). A stochastic mathematical model is developed and 

solved using a simulation-based optimization approach. Numerical examples and thorough 

sensitivity analyses are provided to illustrate the efficiency of the proposed integrated model 

and the robustness of the resolution approach. Compared with the 100% inspection policy 

which is widely used in the literature on integrated production, maintenance and quality 

control, the results obtained show that an economic design of acceptance sampling in such an 

integrated context can lead to important cost savings of more than 20%. 

Keywords – Dynamic process deterioration, production/inventory control, lot sizing, 

acceptance sampling plan, preventive maintenance, simulation-based optimization. 

1. Introduction

Many efforts have been devoted in the past few decades to integrate production planning, quality 

control and maintenance scheduling and to investigate the hidden interactions between the three 

aspects. In a recent literature review on this topic, Hadidi et al. (2012) made a difference between the 

concepts of interrelation and integration between the three fundamental functions: interrelated 

models are those in which the decisions variables of only one function is considered taking into 

account the remaining functions as constraints, while, integrated models are those in which two or the 

three functions are modelled and optimized simultaneously. Based on Hadidi et al.’s definitions, we 

find that most of the integrated models in the literature consider only two functions at a time. For 

example, many models integrating only production and preventive maintenance (PM) have been 

proposed since the second half of the 1990s without considering the quality aspect (see the literature 

review by Budai et al., 2008). Recent advances in integrated production and PM includes joint 

determination of the Economic Production Quantity (EPQ) and PM policy (e.g. Sana, 2012; Liao, 2013), 

joint production and opportunistic PM scheduling (e.g. Xia et al., 2012, 2015) and simultaneous 

control of production and PM rates (e.g. Berthaut et al., 2011; Assid et al., 2015b). On the other side, 

research on integrating only the production and quality control policies dates back to the 1970s and 

1980s (see the literature review by Goyal et al., 1993). More recently, Inman et al. (2013) surveyed the 

advances on the interface between quality and production system design in the past two decades. 
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Research during this period has been concerned with the mutual effects of production and quality 

settings such as the impact of complexity and technology of production, operations speed, setup 

planning and tolerance design on the deterioration of process quality (e.g. Sana, 2010a; Pal et al., 

2013; Liu et al., 2009; Jeang, 2012) and, conversely, the impact of quality inspection planning on the 

production flow (e.g. Kim and Gershwin, 2008), etc. In addition, there is a growing interest in the 

integration of production control design with the Statistical Quality Control (SQC) techniques such as 

control charts (e.g. Colledani and Tolio, 2011), process capability (e.g. Hajji et al., 2011a), and sampling 

plans (Bouslah et al., 2013, 2014). Nevertheless, Inman et al. (2013) have reported that there are still 

a large number of sub-areas in quality control (including reliability and maintenance scheduling) that 

have not been fully integrated with production and they recommended more investigation into the 

traditional quality control system design in the production context.   

Indeed, only a limited number of papers in the literature deal with the simultaneous integration of the 

three functions. We can classify those papers into two categories based on the quality control policy 

used. The first category includes studies integrating production and PM design with a 100% 

inspection policy of all items produced. For example, Liao et al. (2009) and Wee and Widyadana 

(2013) integrated PM programs with the EPQ model for an imperfect production process where all 

defective items produced must be reworked. Radhoui et al. (2009, 2010) suggested an integrated PM 

and production control policy for an unreliable imperfect process producing a random proportion of 

non-conforming items. They assumed that each lot produced is subject to an automated quality 

control of negligible duration and cost. The second category of integrated models corresponds to 

studies using the SQC tools rather than 100% inspection. For example, Ben-Daya and Makhdoum 

(1998) and Ben-Daya (1999) presented various integrated models for the joint determination of the 

EPQ, the economic design of control chart and the optimal PM level. Nevertheless, some other 

important aspects of the SQC such as the acceptance sampling plans have not yet been integrated 

simultaneously with production and PM planning. Acceptance sampling plans have been widely used 

in the industry for a long time to control the outgoing quality especially in situations where 100% 

inspection of all items produced is technically or economically impractical (Schilling and Neubauer, 

2009). In addition, they have significant impacts on production and inventory as shown by Bouslah et 

al. (2013). Unlike 100% inspection and control charts, the interactions between acceptance sampling 

plans and PM policies have not been investigated yet in the literature.  

In the literature on integrated models, many attempts have been made by researchers to adequately 

pattern the product quality and equipment reliability deteriorations. For example, Rosenblatt and Lee 

(1986) studied three dynamic patterns of process deterioration (linear, exponential and multi-state) 

on the EPQ. Moreover, many industrial and academic studies have shown the important impact of 

production rate on the performance deterioration intensity as in Felix Offodile and Ugwu (1991), 

Khouja and Mehrez (1994) and Sana (2010b). However, for simplicity, most of the existing integrated 

models neglect the dynamic aspect of process performance deterioration and the impact of production 

settings on the deterioration intensity. Generally, the researchers assume that the proportion of 

defective items produced during the ‘out-of-control’ periods is constant or follows a prior known 

distribution. 

Furthermore, almost all of the integrated models do not simultaneously consider the quality and 

reliability deterioration phenomena (Chakraborty et al., 2009). When both phenomena are observed, 

the PM plays a double role: increasing the reliability of the production equipment and restoring the 
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product quality to the desired level (Ben-Daya and Duffua, 1995; Rivera-Gomez et al., 2013). Due to 

the direct impact of deterioration on the production system availability and on the output quality, it is 

more appropriate to base the PM decision on the actual deterioration state rather than on the 

equipment age (Grall et al., 2002). An inference on the deterioration state could be based on the 

equipment condition or on the product quality characteristic (Colledani and Tolio, 2012). Condition-

based maintenance has attracted a great deal of attention in the past two decades in conjunction with 

the technological advances in condition monitoring techniques such as vibration, corrosion, 

thermography and acoustics analysis (Rao, 1996; Davies, 1998). On the other hand, in situations 

where quality is directly affected by the degradation of the production system, the quality information 

feedback, which does not require a costly and high technology for data acquisition and analysis as in 

the condition monitoring techniques, could represent an alternative solution to recognise the system 

degradation. Maintenance based on the quality information feedback is becoming more and more 

attractive field of research especially in the context of maintenance and quality control integration. 

Tapiero (1986) is among the first who formulated a feedback stochastic control maintenance problem 

based on the state of the products quality, assuming that quality is a known function of the machine’s 

degradation state. Hsu and Kuo (1995) studied the performance of an inspection and maintenance 

policy that begins 100% inspection of a production lot after producing a given number of items and 

then initiates a preventive/corrective maintenance activity when the fraction of defective parts 

reaches a given threshold. Similarly, Radhoui et al. (2009, 2010) also used the 100% inspection policy 

to determine the proportion of non-conforming items of each lot produced and then compare this 

proportion to some given thresholds to make decisions on PM and overhaul actions. Recently, 

Panagiotidou and Tagaras (2010), Pan et al. (2012) and Zhang et al. (2015) suggested integrating 

condition-based maintenance and statistical process control strategies where the maintenance 

decisions are made based on the quality information from the control chart. Nevertheless, the 

interactions between the acceptance sampling plans and maintenance strategies have never received 

the same attention in the literature. To the best of our knowledge, there is no published study that 

investigates the usefulness and relevance of information provided by sampling plans such as the 

observed percentage of lots accepted/rejected, the current inspection mode (sampling or 100% 

inspection), etc., for process condition monitoring and maintenance decision-making.  

To overcome the limitations of the existing integrated models, in this paper, we intend to develop a 

new model integrating production lot sizing, production rate control, inventory control, single 

acceptance sampling plan and PM strategy. Our focus on the acceptance sampling plan techniques in 

the context of integrated operations management is motivated by three considerations. Firstly, 

acceptance sampling plans have specific statistical properties (Schilling and Neubauer, 2009) that 

should be deeply analyzed in order to extract relevant information for process condition monitoring 

and to make accordingly the appropriate maintenance decisions. Secondly, compared with the 100% 

inspection policy which is extensively used in the integrated models in the literature, sampling plans 

are usually more economical and they significantly reduce the unnecessary inspection essentially 

during periods when the process is in the ‘in-control’ state (Montgomery, 2008a). Thirdly, it is 

expected that an economic design of acceptance sampling plans in such a context, instead of using 

traditional sampling inspection standards such as ANSI/ASQC Z1.4 and ISO 2859, could lead to 

important economic savings (Nikolaidis and Nenes, 2009). In fact, those standards are purely based on 

quality considerations and they completely neglect the economic aspect and the interactions with the 

production, inventory and maintenance in the design of sampling plans.  
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In this study, we present a stochastic dynamic model considering non-negligible delays and costs of 

setup, quality control and maintenance operations. The product quality and machine reliability 

deteriorations depend both on the production equipment usage. We consider that the production 

setup includes an imperfect PM activity. An overhaul is also required to perfectly restore the 

performance of the production process. Our objective is to jointly design and optimize the production, 

quality control and maintenance policies. The optimal integrated solution should minimize the total 

incurred cost while meeting a predefined restriction on the average outgoing quality limit (AOQL). We 

used a simulation-based optimization approach to solve such a complex and stochastic problem. 

Moreover, we present a thorough analysis of the performance and benefits of the proposed integrated 

model.  

The paper is organized as follows. Section 2 presents the notation and the description of the problem 

under study. The system dynamic modelling and the optimization problem are formulated in Section 

3. In Section 4, we present the simulation-based optimization approach. Illustrative numerical 

examples, and sensitivity and comparative analysis are given in Section 5. Section 6 discusses some 

managerial implications for the proposed integrated control policy. Finally, Section 7 concludes the 

paper and provides some directions for future research.  

2. Notation and problem description 

2.1. Notation 

The notations used in this paper are defined as follows. 

Decision variables: 

Q Production lot size  

S Surplus inventory threshold  

n Sample size  

c Acceptance number  

r Overhaul threshold (ratio)   

Model parameters: 

umax Maximum production rate 

d Demand rate  

AOQLmax Maximum accepted level of the Average Outgoing Quality Limit  

τcm Random variable denoting the corrective maintenance duration 

τovr Random variable denoting the overhaul duration, ( ovr  >> cm ) 

τins Unit inspection duration  

τset Setup duration for each production run 

Ch Unit inventory holding cost per unit time 

Cb Unit backlog cost per unit time (Cb >> Ch) 

Cset Setup cost (including the cost of the imperfect PM) 

Ccm Corrective maintenance cost 

Covr Overhaul  maintenance cost (Covr >> Ccm) 

Cins Unit inspection cost 

Crej Unit rejection cost of a defective item 

Cdef Unit cost of selling a non-inspected defective item 
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Other notations will be used to model the system deterioration and the dynamic of inventories.  

2.2. Problem description and assumptions 

The manufacturing system under study consists of a single-product batch-processing production unit 

supplying a downstream serviceable stock as illustrated in Figure 1. This stock is used to fulfill a 

continuous and constant market demand d. The production rate u(.) is flexible and can be set at any 

time at a value between 0 and a maximum level umax. The production unit is subject to a continuous 

operation-dependent degradation which leads to an increasing failure probability and an increasing 

proportion of defectives produced. Therefore, maintenance interventions are required to maintain 

and restore the performances of the production unit. In response to each failure event, a corrective 

maintenance (minimal repair) is undertaken, which returns the production unit to the ‘as-bad-as-old’ 

condition. To preventively cope with the system degradation, an imperfect PM is carried out as a part 

of the setup activity at the beginning of each production run. We consider that the efficiency of this 

imperfect PM decreases continuously as the production unit ages. Thus, we assume that the setup 

reduces the effective age a(.) of the production unit by a certain amount ɸ(.) called improvement factor 

which is a decreasing function of the real age A(.) (Wang and Pham, 2006). In addition, a major perfect 

maintenance (overhaul) is conducted as soon as the rate of defective items produced reaches or 

exceeds a given threshold r. This feedback overhaul policy is used for two reasons. First, the PM 

during setups is insufficient to perfectly improve the production unit performance as its perfectness 

deteriorates with process usage. Second, as the product quality depends intimately on the production 

unit condition, the rate of defectives that are produced provides a relevant indication of the overall 

deterioration state and therefore it could be useful as a control parameter for the overhaul scheduling.  

In order to ensure that the delivered products meet the outgoing quality requirement, a quality 

control of lots produced is performed before they arrive to the final serviceable stock. Herein, a single 

acceptance sampling plan by attributes is used to guarantee an acceptable outgoing quality level. A 

sample of size n is drawn randomly from each lot produced and inspected item by item. If the number 

of defectives does not exceed the acceptance number c, then the lot is accepted. Otherwise, the lot is 

rejected and a 100% inspection is performed in order to sort all the defective items. We assume that 

the defective items are not rectifiable. Hence, all the defectives, found either in sampling or in 100% 

inspection, are rejected with no replacement. Depending on the proportion of defective items found in 

each lot rejected compared to the threshold value r, the decision maker can decide whether or not to 

immediately initiate the overhaul.   

The duration of the setup (including the imperfect PM) is constant. However, the durations of the 

corrective maintenance (CM) and the overhaul are stochastic, following general probability 

distributions. Under these assumptions and because the quality control delay of each lot produced is 

unpredictable and variable depending on the acceptance/rejection decision, shortages may occur. A 

make-to-stock production strategy is used in order to provide protection to the serviceable stock 

against uncertainties in production and quality control. Hence, the production rate is controlled over 

time by a feedback base-stock control policy derived from the well-known hedging point policy 

(Akella and Kumar, 1986). Our choice of the hedging point method for the production-inventory 

control is motivated by its optimality, simplicity and ease of implementation features (Hu et al., 1994; 

Gershwin, 2000; Sarimveis et al., 2008). Finally, we consider that the production of the interrupted 

lots is always resumed after maintenance interventions.      
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https://www.researchgate.net/publication/263313064_Design_and_operation_of_manufacturing_systems_The_control-point_policy?el=1_x_8&enrichId=rgreq-42fd9940-4bb4-4a16-ba36-123bb35fd1e7&enrichSource=Y292ZXJQYWdlOzI4MTYyNzk0NztBUzoyNzIxMTI4MDM5MDU1MzZAMTQ0MTg4ODE1NjY4OQ==
https://www.researchgate.net/publication/263313064_Design_and_operation_of_manufacturing_systems_The_control-point_policy?el=1_x_8&enrichId=rgreq-42fd9940-4bb4-4a16-ba36-123bb35fd1e7&enrichSource=Y292ZXJQYWdlOzI4MTYyNzk0NztBUzoyNzIxMTI4MDM5MDU1MzZAMTQ0MTg4ODE1NjY4OQ==
https://www.researchgate.net/publication/3021993_Optimality_of_Hedging_Point_Policies_in_the_Production_Control_of_Failure_Prone_Manufacturing_Systems?el=1_x_8&enrichId=rgreq-42fd9940-4bb4-4a16-ba36-123bb35fd1e7&enrichSource=Y292ZXJQYWdlOzI4MTYyNzk0NztBUzoyNzIxMTI4MDM5MDU1MzZAMTQ0MTg4ODE1NjY4OQ==
https://www.researchgate.net/publication/3021993_Optimality_of_Hedging_Point_Policies_in_the_Production_Control_of_Failure_Prone_Manufacturing_Systems?el=1_x_8&enrichId=rgreq-42fd9940-4bb4-4a16-ba36-123bb35fd1e7&enrichSource=Y292ZXJQYWdlOzI4MTYyNzk0NztBUzoyNzIxMTI4MDM5MDU1MzZAMTQ0MTg4ODE1NjY4OQ==
https://www.researchgate.net/publication/223906067_Dynamic_modeling_and_control_of_supply_chain_systems_A_review?el=1_x_8&enrichId=rgreq-42fd9940-4bb4-4a16-ba36-123bb35fd1e7&enrichSource=Y292ZXJQYWdlOzI4MTYyNzk0NztBUzoyNzIxMTI4MDM5MDU1MzZAMTQ0MTg4ODE1NjY4OQ==
https://www.researchgate.net/publication/223906067_Dynamic_modeling_and_control_of_supply_chain_systems_A_review?el=1_x_8&enrichId=rgreq-42fd9940-4bb4-4a16-ba36-123bb35fd1e7&enrichSource=Y292ZXJQYWdlOzI4MTYyNzk0NztBUzoyNzIxMTI4MDM5MDU1MzZAMTQ0MTg4ODE1NjY4OQ==
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Our objective is to find jointly the optimal production lot size Q, the optimal inventory surplus S, the 

optimal sampling parameters n and c, and the optimal overhaul threshold r that minimize the total 

incurred cost. This includes the inventory and backlog costs, quality control costs and maintenance 

(setup, overhaul and CM) costs. The optimal solution must satisfy a number of constraints related to 

the system dynamic and the customer-perceived quality.  

Production unit

Serviceable stock

Corrective 
maintenance

Lot 
accepted

Lot rejected

xf(t)

Overhaul

Demand

Batch-in-process

Overhaul control policy = f(rate of defectives)

Setup/Preventive 
maintenance

Failure

Perfect 
maintenance Minimal 

repair

Imperfect 
maintenance

Process 
deterioration

New 
production 

run

xq(t)

Rejection of 
defectives

Production-inventory control policy = f(inventory position)

Material flow Information flow

Quality control center

q(t) Sampling

100% 
inspection 

Batches-in-Quality Control

Figure 1. A deteriorating production system with quality control, PM and overhaul. 

3. Problem formulation 

3.1. Deterioration model 

The state of the production unit can be characterized at each instant t by five continuous-time 

components including: 

- A discrete-state stochastic process {α(t), t≥0} which describes the status of the production unit at 

each time t, and takes values {0,1,2,3} such that : α(t) = 0, if the production unit is under CM, α(t) = 1, 

if it is available for production, α(t) = 2, if it is under setup, and α(t) = 3, if it is under overhaul. 

- A piecewise continuous variable, A(t), which represents the cumulative number of items produced 

since the last overhaul until time t. We call this variable the real age and it is calculated using the 

following formula: 

 
( )

, ( )
A t

u t t
t







, ∀ t ≥ T, A(T) = 0        (1) 

where T is the completion time of the last overhaul.  

- A piecewise continuous variable, a(t), which represents the reduced age of the production unit at 

time t. This variable measures the cumulative effects of the setups on the real age of the production 

unit and is called the virtual age (also called effective age). It is calculated using these equations:

   1

( )
, ( ) , ,

k k

a t
u t t t

t
  




  


, k = 0,1,..,∞, a(T) = 0                 (2)

 ( ) , 1,..,( ) ( ) ( )
kk k ka a A a k     

                        (3) 
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where θk is, at the same time, the end time of the kth setup activity and the start time of the kth 

production run.  

- The improvement factor, ɸ(.), which is a decreasing continuous function of the real age A(.) and is 

described by the following equation: 

   ( ) exp ( ) set
setA t A t            (4) 

where λset and γset are given positive constants.    

- The probability of failure, F(.), which depends instantly on the current virtual age a(.) following a 

Weibull distribution: 

   exp( ) 1 ( ) r

raF t a t
           (5) 

where λr and γr are given positive constants.  

- The proportion of defective items produced at time t, p(t), which depends also on the current virtual 

age a(.) as follows: 

    0
( ) 1 exp ( ) q

q
p a t p a t


            (6) 

where, p0 is a very small proportion of defectives produced at the initial condition (i.e., ‘as-good-as-

new’ state), λq and γq are given positive constants and η is the boundary considered in the quality 

deterioration. 

From Eqs. (4), (5) and (6), the deterioration functions of the improvement factor ɸ(.), the probability 

of failure F(.) and the rate of defectives p(.) belong to the two-parameter exponential family of 

distributions (Ferguson, 1962). The parameters of those functions can be determined from historical 

information using estimation methods such as the maximum likelihood and the least squares (Hossain 

and Zimmer, 2003).  

3.2. Integrated control policy of production, quality and maintenance 

3.2.1. Quality control policy 

The decision on the acceptance/rejection of each lot produced is based on the number of defective 

items found in the random sample n which itself depends on the number of defective items in the 

entire lot. Let Xk be the variable denoting the number of defectives in the kth lot produced, k = 1,2,..,∞. 

Xk can be determined by solving these equations: 

 
 

     ( ) , ( ) , ,
k k

k t
p a t u t t t

t

X
  


   


,   0

kkX       (7) 

where, δk is, the end time of the kth production run (i.e., time when the kth lot is completely 

processed). 

Let Yk be the variable indicating the number of defective items in the sample n of the kth lot. The 

probability of finding j defective items, 0 ≤ j ≤ n, in the sample n of the kth lot, k = 1,2,..,∞, can be 

calculated using the binomial distribution as follows:  

  1Pr

j n j

k k

k

n X X
Y j

j Q Q



 
    

    
    

        (8) 

Then, the probability of acceptance of the kth lot produced (.)
k

aP , k = 1,2,..,∞, is calculated as follows 
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https://www.researchgate.net/publication/233160296_Comparison_of_estimation_methods_for_Weibull_parameters_Complete_and_censored_samples?el=1_x_8&enrichId=rgreq-42fd9940-4bb4-4a16-ba36-123bb35fd1e7&enrichSource=Y292ZXJQYWdlOzI4MTYyNzk0NztBUzoyNzIxMTI4MDM5MDU1MzZAMTQ0MTg4ODE1NjY4OQ==
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     
0

, , , (.) Pr Pr
k k

k

a

c

k
j

n c Q X Y jP Y c


                          (9) 

As the accepted lots do not undergo a 100% screening inspection, the defective items existing in these 

lots will be transmitted to the final serviceable stock and therefore will be sold to the customers. The 

average proportion of defective items transmitted to the serviceable stock through each kth lot 

produced, also called the Average Outgoing Quality (AOQk), k = 1,2,..,∞, is given by    

 

 

   
1

0

0

Pr

Pr Pr( = )

( = )

, , , (.)

( = )
n

k

j c

c

k k

j

k k c

k k k

j

Y j

Y j X j

AOQ n c Q X

Y j Q Y Q X
 









  




      (10) 

The maximum level of AOQk, k = 1,2,..,∞, over all possible values of Xk is called the Average Outgoing 

Quality Limit (AOQL) which can be calculated as follows (Schilling and Neubauer, 2009): 

    
0

1
, , max . ( )

1

k

k
X Q

AOQL n c Q AOQ y c
Qn 

  
 
 
 

      (11) 

where, y(c) is equal to  
2

( )
( )

!

Mn p c

Me n p
y c

c

 

         (12) 

and pM is the value of the ratio Xk/Q at which the AOQL occurs. Tables containing the closed 

approximated values of y(c) for each given c independently of the sample size n can be found in 

Schilling and Neubauer (2009).  

The manufacturer must select the combinations of production lot size Q and sampling plan parameters 

n and c in such a way that the AOQL(.) does not exceed a maximum limit imposed by the customers 

denoted AOQLmax. Thus, from Eq. (11), we obtain this inequality    

max

1
( )

1
y c

Q
AOQL

n

 
  

 
        (13) 

3.2.2. Production-inventory control policy 

The finished products can be held in three storage locations before being delivered to customers as 

schematized in Figure 1: 

- A production downstream area to cumulate the produced parts of the ongoing batch-in-process 

until the end of the current production run. This inventory is measured instantly by a piecewise 

continuous variable denoted q(.), where  0≤ q(t) ≤Q, ∀ t. The dynamic of the inventory q(.) can be 

described by the following equations 

     1

( )
, ( ) , 0, , , 1,..,

k k

q t
u t t q t k

t
   


      


    (14) 

    , 1,..,
k k

q q Q k 
 
            (15) 

where, 
k




and 
k




denote the left and right boundaries of the kth production run end time δk. Recall 

that each kth production run, k=1,..,∞, can be interrupted many times by the CM and overhaul 

interventions. As mentioned before, the durations of these interventions are stochastic. In the case 

https://www.researchgate.net/publication/230770788_Acceptance_Sampling_in_Quality_Control?el=1_x_8&enrichId=rgreq-42fd9940-4bb4-4a16-ba36-123bb35fd1e7&enrichSource=Y292ZXJQYWdlOzI4MTYyNzk0NztBUzoyNzIxMTI4MDM5MDU1MzZAMTQ0MTg4ODE1NjY4OQ==
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where the production rate u(.) remains unchanged during the production run, δk can be estimated 

as follows  

( ) ( )

/ i j

k k cm ovr

i k j k

Q u   
 

           (16) 

where, 
i

cm is the duration of the ith CM, i=1,..,∞, and 
j

ovr is the duration of the jth overhaul, 

j=1,..,∞. ( )k and ( )k are respectively the sets of CM and overhauls performed during the kth 

production run.  

- A storage area where each lot produced is temporary held for quality control. This Work-In-

Progress (WIP) inventory is measured by the continuous-time variable xq(.). Its dynamic is given 

by  

    , 1,..,
k kqqx x Q k 
 
            (17) 

    , 1,..,
k kq qx x Q k 
 
            (18) 

where k


and k


denote the left and right boundaries of the completion time of quality control, 

k
 , of the kth lot produced. 

k
 depends on the lot acceptance/rejection decision as follows: 

if  (lot accpeted)

if  (lot rejected) 

k ins k

k

k ins k

n Y c

Q Y c

 


 

 


 





      (19) 

Note that 
k

 indicate also the arrival time of the kth lot to the serviceable stock.  

- The final serviceable stock which is used to meet the market demand. This stock (inventory if 

positive and backlog if negative) is measured by a piecewise continuous variable denoted xf(.). The 

dynamic of the serviceable stock is described by these equations 

   1

( )
, 0 , , , 1,..,

f f k k

fx t
d x x t k

t
 




       


                    (20) 

          , 1,..,
k k k kf f k kx x Ind Y c Ind Y c kQ Y Q X 
 
          (21) 

where, Ind{.} is an indicator function defined as follows:  Ind{Θ(.)}=1 if Θ(.) is true, and Ind{Θ(.)}=0 

if Θ(.) is false. Thus, this function is used in Eq. (21) to indicate if the kth lot has been accepted (i.e., 

Yk ≤ c) or not (i.e., Yk > c).  

From Eqs. (16), (19) and (21), one can see that the final serviceable stock is affected by two sources of 

disruption: the uncertainty in the duration of production runs due to the stochastic maintenance 

interventions, and the variability in the duration of quality control activities due to the uncertain 

decision on acceptance/rejection of lots produced. A surplus inventory S is used to protect the 

serviceable stock against stochastic variability and to mitigate the risk of shortage. According to the 

classical hedging point policy (HPP), the production rate u(.) should be set at its maximum level during 

the build-up of the buffer stock S, which shall be maintained by setting u(.) at the same level of the 

demand rate. In our context, some considerations should be included in the production-inventory 

control policy. First, the control of the surplus inventory should take into account the total amount of 

the on-hand lots including those under sampling and 100% inspection. Second, as the setup is a 

regular activity with a non-negligible delay, the loss in production during each setup should be 

systemically recovered in the subsequent production run. Otherwise, the surplus inventory S will be 

prematurely depleted. Third, for practical purposes, we consider some restrictions on the variation of 
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the production rate during each production run. In fact, the classical HPP assumes that there is an 

infinite surplus of raw material that allows the instantaneous augmentation of the production rate. In 

the case of unreliable supply systems, the production controllers are more concerned with the 

availability of the raw material (Hajji et al., 2011b). In order to reduce the effects of the operations 

speed variation on the upstream supply chain, we assume that the production rate setting is 

determined only at the beginning of each production run [θk, δk[, k= 1,2,..,∞.  

Thus, by dividing the production-planning horizon into consecutive periods {[θk, θk+1[, k= 1,2,..,∞}, we 

suggest the following production-inventory control policy: 

  

      

      

     

1

1

max

1,2,..,

if ( )  or ( ) 1 and ( ) 1 and ,

, , , if and ( ) 1 and ,                    

0 if ( ) 0,2,3 or ,                                  

( )
1

k

k k k

k k k k

k k

k
k set

x S t t t

u t x t t

t t

u

x S
d

d Q

   

     

  






 

     



   


  





(22) 

where x(.) is called the inventory position and it is calculated instantly as follows  

0( ) ( ) ( ),q f tx t x t x t             (23) 

and, ( )
k

t  is binary function with 1 if a maintenance (CM or overhaul) occurs in [θk, t[, and 0 if not. In 

fact, if the inventory position x(.) at the beginning of each new kth production run is strictly below the 

threshold S, then the corresponding kth lot is manufactured at the maximum production rate umax. 

Otherwise, if the inventory position x(.) is exactly equal to the threshold S, then the production rate of 

the kth lot is set to an adjusted-demand rate d/(1- τset⋅ d/Q). This adjustment is required to 

compensate the loss in production during setups and to therefore maintain the surplus S. The 

production rate setting, either umax or d/(1- τset⋅ d/Q), is preserved until the end of the production run. 

However, if a maintenance occurs during the production run, then the production is immediately 

stopped (i.e., u(.)=0) and, once it is completed ( ( ) 1
k

t  ), the production is resumed at the maximum 

production rate umax. Finally, the production rate is reset to 0 once the production run is completed 

and during setups (i.e., δk < t < θk+1). 

3.2.3. Maintenance policy 

Once the surplus inventory S is built by setting the production rate at the maximum level umax, it must 

be maintained through two mechanisms. First, the production rate has to be set at the adjusted-

demand rate d/(1- τset⋅ d/Q) as previously explained. Second, the setup activities should be controlled 

in such a way that the inventory position is equal to the threshold S before starting a new production 

run. This means that the setup should be started before the inventory position is depleted to S+τset⋅d, 

where τset⋅ d is the amount of inventory consumed during the setup. Let Пk(t,x,α) denote a binary 

function with 1 if the kth setup (including the PM) has to be carried out at time t, and 0 if not. Thus, the 

setup control policy is given by: 

 
     11 if ( ) + and and ( ) 1

, ( ), ( ) , 1,..,
0 Otherwise                                                        

set k

k

x t S d t t
t x t t k

  
     

   


  (24) 

From Eq. (24), a new kth setup is executed only when the following three conditions are satisfied: the 

inventory position is less or equal to S+τset⋅d, the previous production run is finished  

(i.e., t ≥ δk-1) and the production unit is available (i.e., α(t)=1).  
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On the other hand, the overhaul is carried out when the 100% inspection of a kth lot rejected (i.e., 

Yk>c) results to a rejection rate greater or equal to the threshold r. Let Ωk(.) denote a binary function 

with 1 if an overhaul has to be performed based on the proportion of defectives in the kth lot 

produced, and 0 if not. Then, the overhaul control policy is represented by the following equation: 

 
 

(.)
1 if and

, , , , 1,..,

0 Otherwise                       

k
k

k k

X
Y c r

n c Q X kQ

  
   

     



     (25) 

Although the overhaul decision is made only based on the quality of rejected lots, the relevance of this 

policy to recognize the real state of the production process quality and whether to react accordingly 

by undertaking or not the overhaul lies in the fact that the frequency of rejection of lots produced 

reflects in itself the degree of quality deterioration. Indeed, one of the intrinsic characteristic of 

sampling plans is that the probability of rejection 1
k

a
P , k=1,2,..,∞, increases systematically as the 

quality deteriorates. Figure 2 depicts the deterioration of process quality with respect to the effective 

age a(.), and its impacts on the quality of lots produced and the probability of rejection, as described 

by Eqs. (6), (7) and (9). In practice, regardless of the values of the sampling parameters n and c, the 

quality deterioration generates an increasing number of lots rejected which improves the availability 

of information about the rate of defectives and therefore increases the visibility on the process 

condition.  
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Figure 2. Impacts of process usage-deterioration on the quality of lots produced and on the probability of 

rejection. 

3.3. Optimization problem 
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From the above mathematical formulation, many complex interactions between production, 

inventory, quality and maintenance have been highlighted. For example, the quality deterioration is 

influenced by the production run length and the production rate which depend respectively on the 

production lot size Q and the surplus threshold S, as shown in Eqs. (2), (6), (16), (7) and (22). The 

production lot size Q impacts also the frequency of the PM which improves partially the process 

performance as in Eq. (3). The overhaul decisions are impacted by the design of the sampling plan (n, 

c) as explained in section 3.4. The outgoing quality depends on the production lot size Q, on the quality 

deterioration state and on the sampling plan (n, c) as shown in Eq. (10). Hence, a trade-off solution 

resulting from a joint optimization approach can take into consideration all these interactions and 

accordingly increases the overall performance of the manufacturing system. Indeed, our aim is to 

determine jointly the optimal values of the production lot size Q, the inventory threshold S, the 

sampling plan parameters c and n and the overhaul threshold r which minimize the expected total cost 

per unit time, ETC(.) and at the same time satisfy the AOQL constraint (i.e., Ineq. (13)). The ETC 

consists of the sum of the inventory holding and backlog costs, the costs related to quality, the setup 

cost and the maintenance costs.  

Let G(t) denote the total cost of inventory holding and backlog in the period [0,t]. G(t) is given at any 

time t by  

  
0

( ) ( ) ( ) ( )( )
h q f b f

t

C q z x z x z C x zG t dz 
          (26) 

where  ( ) max ( ),0f t x tx  and  ( ) max ( ),0f t x tx   . 

The expected quality cost Q(t) in the period [0,t] includes the sampling cost, the 100% inspection cost 

of rejected lots, the cost of rejected items and the cost of accepting/selling the non-inspected defective 

items as follows:  

  
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N t c

k k

k j

C Y j X j
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  

 (27) 

where, N(t) is the total number of lots produced in the period [0,t]. N(t) can be calculated as follows  

( )
( )

d t x t

Q
N t

 
          (28) 

The expected maintenance cost M(t) during the same period [0,t] includes the costs of setup, CM and 

overhaul activities. It is given by 

( ) ( ) ( )  ( )set cm ovr mM t C N t C f t C t         (29) 

where f(t) and m(t) are respectively the expected numbers of CM and overhaul interventions in the 

period [0, t].  

Thus, the ETC(.) is obtained  

   , , , , ( ) ( ) ( )
1

lim
t

Q S c n r G t Q t M tETC
t

       (30) 
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The optimization problem is to solve the following mixed-integer, non-linear and stochastic model: 

 
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, , , ,
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Since it is extremely hard to solve this problem either analytically or numerically, because of the 

complexity of the dynamic constraints (i.e., continuous-state equations with impulsive ‘jumps’ as in 

Eqs. (1)-(3), (7), (15) and (17)-(21)) and the difficulty of computing the inventory/backlog cost as in 

Eq. (26), and some probabilistic elements such as the quality and maintenance costs, as in Eqs. (27) 

and (29) respectively, the simulation-based optimization approaches are more suitable herein to find 

the optimal solution (Fu, 1994). Hence, using simulation as a powerful tool to imitate the dynamic and 

stochastic aspects of complex systems, it is possible to run instantly the continuous-time variables, to 

calculate accurately the expected levels of inventories and backlog, the amount of defectives produced, 

the number of lots rejected and the number of overhaul and CM interventions, and to accordingly 

compute the ETC(.).  

4. Resolution approach 

4.1. Simulation-based optimization approach 

Simulation-based optimization approaches consist of combining computer simulation with 

optimization techniques such as evolutionary algorithms, the Response Surface Methodology and 

stochastic approximation algorithms to heuristically solve problems which are analytically and 

numerically intractable (Gosavi, 2003; Tekin and Sabuncuoglu, 2004). Computer simulation has been 

successfully and widely applied to various real-world manufacturing problems in order to provide 

practical and implementable solutions (Jahangirian et al., 2010). However, most of the existing 

simulation models in the literature are limited to the discrete-event simulation (Jahangirian et al., 

2010). In our study, we use a combined discrete-continuous simulation to model both discrete events 

and continuous variables and to therefore solve the optimization problem formulated above (Berthaut 

et al., 2011; Assid et al., 2015a). We suggest the following optimization approach (Figure 3): 

a. Mathematical model: Formulate analytically the problem as shown in Section 3. This provides an 

accurate modeling of the system dynamic as a function of its state, and the formulation of the 

optimization problem.    

b. Simulation model: Transform the mathematical model into a discrete-continuous simulation model 

according to the following logic: the continuous-time equations (i.e., Eqs. (1), (2), (4)-(7), (14), 

(20) and (23)) are modelled and calculated instantly with C++ subroutines, and the difference 
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equations which can be called also discrete-time equations (i.e., Eqs. (3), (8), (9), (15), (17)-(19), 

(21), (22), (24) and (25)) are transformed into discrete events using the SIMAN simulation 

language. Hence, for given values of the decision variables Q, S, c, n and r, the system performance 

and the costs incurred are obtained from simulation. 

c. Optimization: Use an optimization algorithm to conduct experiments and to find the optimal 

values of the decision variables Q, S, c, n and r which minimize the ETC under the AOQL constraint 

(see Section 4.3). 

Differential equations

Difference equations

(a) Mathematical model

Continuous simulation 
with C++

Discrete-event 
simulation with SIMAN

(b) Combined discrete-
continuous simulation model

Experimental plan 
(values of  Q, S, c, n, r)  

Value of the ETC(Q, S, c, n, r)   

Optimal solution 
(Q*, S*, c*, n*, r*)

Optimal 
solution 
found ?

YesNo(c) Optimization 
algorithm

 
Figure 3. Simulation-based optimization procedure. 

4.2. Simulation model 

A combined discrete-continuous simulation model has been developed and executed through the 

Arena Simulation software. The discrete model imitates both the material flow and the logic of the 

integrated production, quality control and maintenance policy as described in Section 3. The 

differential equations, i.e. Eqs. (1), (2), (7), (14) and (20), are integrated continuously using the 

Runge–Kutta–Fehlberg method (Pegden et al., 1995; Cheney & Kincaid, 2013), while the remaining 

continuous-time equations are calculated instantly using the C++ mathematical functions and 

operators. Both discrete and continuous parts of the simulation model work synchronously to 

calculate the variations in the real age A(.), the virtual age a(.), the number of defectives Xk in each kth 

lot produced and the inventories q(.), xq(.) and xf(.). Accordingly, the improvement factor ɸ(.), the 

probability of failure F(.) and the proportion of defectives p(.) are instantly updated in the C++ 

subroutines using Eqs. (4), (5) and (6), respectively. The surplus (.)
f

x


and the backlog (.)
f

x


 are also 

instantly derived from the instantaneous level of the final inventory xf(.). The duration of simulation 

runs, t∞, is set in such a way to ensure that the steady-state is reached. At the end of each simulation 

run, the total inventory/backlog cost G(t∞), the quality cost Q(t∞) and the maintenance cost M(t∞) are 

calculated respectively using Eqs. (26), (27) and (29). The stochastic durations of the CM and overhaul 

are randomly generated following predefined probability distributions.   

To check the accuracy of the simulation model, we used a set of verification and validation techniques 

such as tracing the model’s operation, testing for reasonableness, model structure and data, and using 

the animation and debug features of Arena Simulation (Pegden at al., 1995; Law, 2008). For example, 

Figure 4 shows that the integrated production, quality control and maintenance policy operates 

properly as intended:  Figures 4.(a), 4.(b) and 4.(c) confirm that the setup and production decisions 

are adequately controlled with respect to the inventory position x(.) and the production unit state α(.) 

as in Eqs. (22) and (24). Figures 4.(d), 4.(e) and 4.(f) depict, respectively, the impact of the production 

equipment usage on the deterioration of reliability, quality of lots produced and PM efficiency, as 

described in Eqs. (4)-(7). Those Figures show also the effects of the overhaul interventions on the 
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restoration of the production process to the initial conditions. Figure 4.(e) shows that the rate of 

defectives in lots produced, Xk/Q, k=1,..,∞, increases as the production progresses and it can exceed 

the threshold r. However, according to the overhaul control policy (i.e., Eq. (25)), if it is found that the 

defective rate in a rejected lot exceeds the threshold r, then an overhaul is immediately undertaken as 

shown in Figure 4.(a). The quality deterioration implies an increase of the probability of rejection of 

lots produced,1 k

aP , k=1,2,..,∞, as shown in Figure 4.(f). The impact of the 100% inspection of 

rejected lots on the inventory is clearly shown on the time lag between the inventory position x(.) and 

the serviceable inventory level xf(.) as in Figure 4.(c). 
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Figure 4. Evolution of production, inventory and operations performance during the simulation run.  

4.3. Optimization algorithm 

The optimization algorithm consists of a combination of an enumeration procedure with respect to the 

acceptance number c, a design of experiments (DOE), a statistical analysis and the Response Surface 

Methodology (RSM) to find a solution close to the global optimum. This algorithm can be summarized 

in the following steps: 
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Step 0. Set 0c  . 

Step 1. For a fixed acceptance number c, determine (.)c a quadratic approximation function of the 

expected total cost  , , ,
c

ETC Q S n r  using a combination of DOE, regression analysis and RSM (Myers et 

al., 2009). (.)c  is called the response surface and should take the following equation: 

  0 1 2 3 4 12 13 14 23 24 34

2 2 2 2

11 22 33 44

, , ,

                     

c Q S n r Q S n r QS Qn Qr Sn Sr nr

Q S n r

           

    

          

    
 (31) 

where, β0, βi, βii and βij, (i, j) ∈ {1,2,3,4}, are unknown parameters to be estimated from the collected 

simulation data, and ɛ is a random error. 

Step 2. Find 
*

cQ ,
*

cS , 
*

cn and 
*

cr  the optimal solution of the following non-linear constrained problem 

 

 max
1 1( )  

                           

                       0    1

Minimize     , , ,

Subject to     ,

, 

,  0

c

y c AOQL
n Q

c n Q

r S

Q S n r

 
 
  
 

 

 

 












      

and calculate  * * * *, , ,c c c c cQ S n r . If 0c  , then set 1c   and go to Step 1. 

Step 3. If    * * * * * * * *

1 1 1 1 1, , , , , ,c c c c c c c c c cQ S n r Q S n r       , then set 1c c   and go to Step 1. Otherwise, 

find the optimal acceptance number *c such that 

     * * * * * * * * * * * *

1 1 1 1 1 1 1 1 1 1, , , , , , , , ,c c c c c c c c c c c c c c cQ S n r Q S n r Q S n r             .  

Thus, the optimal values of the production lot size, the surplus inventory, the sample size and the overhaul 

threshold are respectively
*

*cQ ,
*

*cS ,
*

*cn  and 
*

*cr . 

The enumeration procedure is used since the acceptance number c is usually a very small discrete 

which cannot be approximated by a continuous variable. In step 1, we check the fitness of the second-

order regression model (.)c  in the local region of the optimal solution using three ways as in Myers 

et al. (2009). First, the model’s overall performance is evaluated. This is referred to as the coefficient 

of multiple determination R-squared and the adjusted R-squared which represent the proportion of 

total variation explained by the regression model. The values of these two coefficients should be close 

to 1. Second, a complete residual analysis should be done to check the normality assumption and the 

homogeneity of residuals. Third, once the optimization is performed, the optimal solution is cross-

checked to ensure the validity. In step 2, the minimization problem can be solved using the non-linear 

constrained optimization techniques such as the penalty and barrier methods (Luenberger and Ye, 

2008). It can be also solved using the MS-Excel Solver. In step 3, for practical implementation, the 

optimal values 
*

*cQ , 
*

*cS  and 
*

*cn should be rounded to the nearest integers.  

5. Experimentation and analysis of the results 
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5.1. Numerical example 

A hypothetical example of the proposed model is provided for illustration. Let us consider the 

following parameters in the appropriate units : umax=380, d=200, Ch=0.1, Cb=5, Cset=2500, Covr=30000, 

Ccm=7500, Cins=2.5, Crej=20, Cdef=35, τins=5×10-4, τset=0.15, τcm~Log-Normal(3,1), τovr~Gamma(1,9), λset= 

5×10-10, γset=2.55 , λr=8×10-10, γr=2.4, λq=4×10-6, γq=1.4, p0=0.3%, η= 0.075 and AOQLmax= 2.0%. 

For each fixed acceptance number c, simulation runs are conducted according to a four factors Box-

Behnken experimental plan (27 runs) for each combination of factors Q, S, n and r. This type of design 

is suitable because of its rotatable feature and its efficiency in terms of number of required runs 

(Montgomery, 2008b). To adequately select the levels of the experimental design plan factors, we 

repeat the DOE, simulation and RSM, narrowing the domain of (Q, S, n, r) until it is centered about the 

optimum design point. Through this sequential procedure, the admissible experimentation region is 

fully explored, and therefore the obtained solution will be a global optimum. In order to ensure that 

the steady-state is reached, the duration of each simulation run t∞ is set to 500,000 units of time (it 

takes on average 2.5 seconds on a computer with a 2.80 GHz CPU). 

Table 1 presents the results obtained from the step-by-step application of the resolution approach 

procedure to the present numerical example. The adjusted R-squared for all acceptance number is 

always greater than 97%. This states that about 97% of the observed variability in the ETCc(.) is 

explained by the second-order models (.)c . It should be mentioned here that the ANOVA of fitting 

models for all acceptance number showed that the linear and quadratic effects of the factors Q, S, n and 

r and their interactions are significant for the response variable at a 5% level of significance. For 

example, Table 2 shows the ANOVA of standardized effects for the Box-Behnken design when the 

acceptance number c is equal to 4.  

Table 1. Optimum solutions with respect to the acceptance number c. 

c R2-adj 
*

c
n  

*

c
Q  

*

c
S  

*

c
r  

*
(.)

c
  y(c) AOQL AOQ(∞) Pa(∞) 𝑓̅(∞) 𝑚̅(∞) Av(∞) 

0 0.9701 57 1324 2933 2.990% 1 890.6 $ 0.3679 0.62% 0.24% 0.375 0.0359 0.0217 0.807 

1 0.9710 84 1341 2632 2.838% 1 839.2 $ 0.84 0.94% 0.44% 0.645 0.0330 0.0213 0.814 

2 0.9740 129 1411 2549 2.526% 1 791.4 $ 1.371 0.97% 0.50% 0.712 0.0251 0.0229 0.818 

3 0.9713 150 1474 2636 2.199% 1 723.2 $ 1.942 1.16% 0.60% 0.758 0.0312 0.0224 0.811 

4 0.9740 157 1484 2631 1.996% 1 681.5 $ 2.544 1.45% 0.74% 0.829 0.0333 0.0227 0.808 

5 0.9749 168 1451 2762 1.864% 1 696.1 $ 3.168 1.67% 0.89% 0.842 0.0388 0.0219 0.797 

For each combination of c, 
*

cQ ,
*

cS , 
*

cn and 
*

cr  in Table 1,  we used the simulation to calculate some 

performance measures such as the long-term proportion of acceptance of lots produced denoted by 

Pa(∞), the long-term average outgoing quality denoted by AOQ(∞), the long-term frequency of 

overhauls denoted by 𝑚̅(∞), the long-term frequency of CM denoted by 𝑓̅(∞) and the long-term 

system availability denoted by Av(∞), using the formula in Appendix A. Thus, we see that the variation 

of the acceptance number c, which systematically affects the severity of the sampling plan (i.e., 

measured by Pa(∞)), has very significant impacts on the remaining decision variables (i.e., optimal 

values of Q, S, n and r), on the optimal expected cost *(.)c , on the frequency of failures𝑓̅(∞) and 

obviously on the outgoing quality AOQ(∞). This emphasizes the relevance of the acceptance number 

optimization in an integrated production, quality control and maintenance context. The optimal 
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acceptance number c* is 4 because it corresponds to the minimum expected total cost which is 

$1681.5. Using the statistical software STATISTICA the related second order cost function
4 (.) is 

given by:

   4

2

-3 -3 -3 -6

-3 -6 -3 -6 -6

-6

, , , 4908.37 277.62 10 784.92 10 24.55 6.27 10 252.35 10

                     6.59 10 3.99 10 3.92 10 1.14 10 8.83 10

                     638.67 10 107.76

Q S n r Q S n r Q S

Q n Q r S n S r n r

Q

      

    

 

   

    

  2 2 2-6 -3 -8
10 77.11 10 11.9 10S n r  

 (32) 

Table 2. The ANOVA table for the total expected cost (c = 4). 

Factor SS d.f. MS F-Ratio P-value Significant 

Q (Linear + quadratic) 1094586 2 547292.9 12273.34 0.000000 Yes 

S (Linear + quadratic) 1033646 2 516822.9 11590.04 0.000000 Yes 

n (Linear + quadratic) 84681 2 42340.4 949.51 0.000000 Yes 

r  (Linear + quadratic) 31655 2 15827.4 354.94 0.000000 Yes 

Q  . S 297388 1 297387.6 6669.08 0.000000 Yes 

Q  . n 105329 1 105328.5 2362.05 0.000000 Yes 

Q  . r 379 1 379.3 8.51 0.014027 Yes 

S  . n 80598 1 80597.9 1807.45 0.000000 Yes 

S  . r 14366 1 14366.1 322.17 0.000000 Yes 

n . r 1187 1 1186.9 26.62 0.000314 Yes 

Error 73869 21 7337.8    

Total SS 2835513 35   R2-Adjusted=0.97395 

Figure 5 presents the projection of the cost response surface 
4 (.)  on two-dimensional spaces. The 

region with gray-shaded contours in the (n, Q) two-dimensional space represents the set of the 

infeasible solutions where the AOQL constraint is not satisfied. The minimum expected total cost 

$1681.5 is located at Q* = 1484, S* = 2631, n* = 157 and r* = 1.996%. These values represent the best 

approximation of the optimal solution of the integrated (Q, S, c, n, r) policy which should be applied to 

jointly control the setup operations, the production rate, the outgoing quality and the overhaul 

interventions. From 20 replications of the simulation, we validated the solution by verifying that the 

estimated optimal cost 
*

4
(.) $1681.5    is within the 95% Confidence Interval [$1675.7, $1682.4].  

Also, from Table 1, we observe a high correlation (about -95%) between the optimal threshold rc* and 

the severity of the corresponding sampling plan measured by Pa(∞): the optimal overhaul threshold 

rc* decreases as the optimal sampling plan (c, nc*) becomes more and more reduced (i.e., Pa(∞) 

increases), and vice-versa. In fact, because a reduced inspection narrows increasingly the visibility on 

the process condition and implies an increasing outgoing quality, rc
* decreases gradually in order to 

maintain the frequency of the overhauls at an optimal level (about an average frequency of 0.0221). 

Such an observation illustrates how the overhaul control policy and sampling plan technique interact 

together to monitor the process deterioration (as discussed in Section 3.4).    
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Infeasible 
region

(AOQL > AOQLmax)

 
Figure 5. Contour plots of the estimated expected total cost 

4 (.) . 

5.2. Sensitivity analysis 

Another set of experiments has been conducted to measure and analyse the sensitivity of the 

proposed integrated policy with respect to ranges of system parameters. The purpose of this analysis 

is to validate the simulation-based resolution approach and to study the reaction of model outputs and 

the variation of the optimal solution in response to changes of model parameters (inputs). Table 3 

presents twenty four configurations of system parameters derived from the basic case by varying 
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significantly their values above and below one at a time. The results obtained make sense as expected 

and can be explained as follows: 

 • Variation of the holding cost: When the holding cost Ch increases (case 1), the optimal hedging 

threshold S* decreases in order to reduce the global inventory cost. The optimal lot size Q* decreases in 

order to reduce the WIP inventory in production and quality control centers. Due to the fact that the 

100% inspection delay decreases proportionally to the decrease of the lot size Q*, the optimal 

sampling plan becomes tighter (as n* increases and Pa(∞) decreases). However, a tightened plan 

involves an increasing cost of rejected items. For that reason, the optimal threshold r* decreases in 

order to perform more frequently the overhaul interventions (i.e., 𝑚̅(∞) increases). Note that the 

decrease in the inventory cost produces the opposite effects on the control variables (case 2).   

• Variation of the backlog cost: When the backlog cost Cb increases (case 3), the optimal inventory 

surplus S* increases in order to enhance protection to the serviceable stock against shortages. 

Moreover, the optimal lot size Q* decreases in order to reduce the production delay and therefore 

ensure a better supply to the final stock. In addition, the optimal sampling plan becomes slightly 

reduced (as n* decreases) in order to reduce the quality control delay. The optimal threshold r* 

decreases to maintain the outgoing quality at an acceptable level. Note that the decrease in the backlog 

cost has the opposite effects (case 4).   

• Variation of the setup cost: When the setup cost Cset increases (case 5), the optimal lot size Q* 

increases in order to reduce the total number of setup operations. As the production cycle and the 

100% inspection become both longer proportionally to the increase in the lot size Q*, the optimal 

inventory surplus S* increases in order to provide better protection to the serviceable stock. Note that 

a bigger lot size reduces the effects of PM during setups, increases the quality deterioration rate and 

therefore contains more defective items. Thus, the optimal sampling plan becomes tighter (i.e., Pa(∞) 

decreases). In addition, the optimal threshold r* decreases (so 𝑚̅(∞) increases) to improve both the 

reliability and quality of the production process. Note that the decrease of the setup cost has the 

opposite effects (case 6).  

• Variation of the CM cost: When the corrective maintenance cost Ccm increases (case 7), the optimal lot 

size Q* and the optimal inventory threshold S* decrease both in order to reduce the reliability 

deterioration rate. In fact, setting the inventory surplus S* at a lower level restrains the usage of the 

production unit during the period of the surplus build up and therefore slows down the reliability 

detrioration. In addition, the optimal overhaul threshold r* decreases in order to restore more 

frequently the production unit to the ‘as-good-as-new’ state and accordingly reduces the probability of 

failure. Note that a decrease in the CM cost has the opposite effects (case 8). 

• Variation of the overhaul cost: When the overhaul cost Covr increases (case 9), the optimal threshold r* 

increases in order to reduce the number and therefore the total cost of the overhauls. The optimal 

sampling plan becomes reduced (as Pa(∞) increases) in order to lower the number of overhaul 

interventions based on the quality of rejected lots. As the reduction of the overhaul maintenance 

makes system breakdowns more frequently, the optimal inventory surplus S* increases in order to 

improve the protection of the serviceable stock against shortages during the CM operations. Note that 

the decrease of the overhaul cost produces the opposite effects (case 10). 

• Variation of the inspection cost: When the inspection cost Cinsp increases (case 11), the optimal 

sampling becomes reduced (as Pa(∞) increases) in order to minimize the cost of 100% inspection of 

lots rejected. In order to mitigate with the risk of accepting a higher number of poor quality lots, more 
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perfect maintenance operations (overhaul) are required to improve the process quality, which 

explains the decrease of the optimal threshold r*. The optimal inventory surplus S* increases in order 

to meet the increasing shortage risk as the overhaul maintenance becomes more frequent. Note that a 

lower inspection cost produces the opposite effects (case 12). 

• Variation of the rejection cost: When the rejection cost Crej increases (case 13), the optimal overhaul 

threshold r*decreases in order to improve the process quality and to accordingly reduce the number 

and the cost of rejected items. As the total rejection cost represents only a small portion of the total 

operating cost, the optimal lot size Q* and the optimal inventory surplus S* decreases slightly in order 

to reduce the quality deterioration rate. Also, the optimal sampling plan becomes more reduced (i.e., 

Pa(∞) increases) in order to diminish the number of rejected lots. Because a reduced inspection 

narrows the visibility on the process quality, the optimal threshold r* decreases to maintain the 

frequency of overhaul maintenances at the same level. Note that the decrease of the rejection cost 

produces the opposite effects (case 14). 

• Variation of the cost of selling a defective item: When the cost of selling a defective item Cdef increases 

(case 15), the severity of the optimal sampling plan increases slightly (as Pa(∞) decreases) in order to 

improve the quality of lots produced. Accordingly, the optimal overhaul threshold r* increases as the 

visibility on the process condition increases. The optimal inventory surplus S* decreases slightly in 

order to reduce the quality deterioration rate. Note that a lower cost of a defective item sold has the 

opposite effects (case 16).  

• Variation of the inspection delay: When the unit inspection delay τinsp increases (case 17), the optimal 

inventory surplus S* increases in order to provide additional protection to the serviceable stock 

against the increasing quality control delay. The optimal lot size Q* decreases in order to reduce the 

100% inspection delay. Although the optimal sampling plan becomes tightened, the long-term 

proportion of acceptance Pa(∞) increases due to the important decrease of the optimal overhaul 

threshold r*. In fact, the mechanism (c*, n*, r*) reacts by improving the process quality and reduces the 

full inspection operations of rejected lots accordingly. Note that a lower unit inspection delay leads to 

the opposite effects (case 18). 

• Variation of the quality deterioration rate: When the quality deterioration rate increases (case 19), 

the optimal lot size Q* decreases in order to perform more frequently the setup operations (i.e., 

imperfect PM). Moreover, the optimal sampling plan (c*, n*) and the optimal overhaul threshold r* vary 

in such a way that more lots produced are effectively rejected (i.e., Pa(∞) decreases significantly) in 

order to increase the full inspection activities and to improve the outgoing quality. The optimal 

inventory surplus S* decreases in order reduce the usage-deterioration of the production unit during 

the periods of buffer stock build up. Note that the decrease of the quality deterioration rate produces 

the opposite effects (case 20).  

• Variation of the reliability deterioration rate: When the reliability deterioration increases (case 21), 

the optimal threshold r* decreases in order to more frequently carry out the overhauls. In addition, the 

optimal lot size Q* decreases in order to increase the setup activities and to reduce the degradation 

rate between setups. The increase of the maintenance activities improves the process quality which 

explains the increase of the long-term proportion of acceptance Pa(∞), whereas, these activities 

reduce the production unit availability Av(∞). As a result, the optimal inventory surplus S* increases in 

order to mitigate the high risk of shortage during periods of system unavailability. Note that a lower 

reliability deterioration rate has the opposite effects (case 22). 
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• Variation of the PM efficiency: The decrease of the improvement factor ɸ(.) intensifies both the 

process quality and reliability deteriorations (case 23). The optimal lot size Q* decreases in order to 

reduce the production unit aging between setups which also implies an increase in the number of the 

setups to therefore slow down deterioration of the efficiency of the PM. The optimal settings of the 

sampling plan and the overhaul threshold lead to increasing the 100% inspection operations (i.e., 

long-term proportion of acceptance Pa(∞) decreases), in order to cope with the increasing number of 

defectives produced. As the increasing number of failures reduces the production unit availability 

Av(∞), the optimal inventory surplus increases in order to ensure better protection to the serviceable 

stock against shortages. Note that the increase of the PM efficiency produces the opposite effects (case 

24). 

[Insert Table 3] 

 

5.3. Influence of the AOQL constraint  

Table 4 presents the optimal solutions of the integrated policy for different levels of the AOQLmax. For 

values of AOQLmax from 0.1% to 1.45%, the AOQL constraint is active (i.e., AOQL = AOQLmax). However, 

for all values of AOQLmax > 1.45%, the AOQL constraint is inactive as the optimal solution obtained at 

AOQLmax = 1.45% realizes the minimum possible cost (i.e., 1681.5 $) among all solutions obtained for all 

given acceptance numbers and AOQLmax values. Thus, we see that the total expected cost increases as 

the AOQLmax decreases (with AOQLmax < 1.45%), while, it remains the same for AOQLmax > 1.45%. 

Moreover, faced with a decrease of the AOQLmax level, the optimal solutions (Q*,S*,c*,n*,r*) lead to 

increase the severity of the optimal sampling plan (i.e., as shown by the decreasing values of Pa(∞)) 

and to increase the frequency of the overhauls (i.e., as shown by the increasing values of  

𝑚̅(∞)) in order to improve the quality of lots produced (i.e., as shown also by the decreasing values of 

AOQ(∞)) and to accordingly satisfy the AOQL constraint. When the optimal acceptance number c* 

remains unchanged (e.g. cases when AOQLmax takes values from 0.1% to 0.5%, and values greater than 

1.25%), we remark that, as the AOQLmax decreases, the optimal sample size n* increases to tighten the 

quality control, the optimal threshold r* decreases in order to more frequently perform the overhauls, 

the optimal inventory threshold S* decreases in order to reduce the usage of the production unit 

during the periods of the inventory surplus build up and to consequently slow down the process 

quality deterioration, and finally the optimal lot size Q* increases in order to reduce the setup activities 

as the overhauls, which are more efficient than the setups, become more frequent. 

Table 4. Sensitivity analysis for the AOQL constraint. 

AOQLmax c* n* Q* S* r* 
*

*
(.)

c
  AOQL AOQ(∞) Pa(∞) 𝑓(̅∞) 𝑚̅(∞) Av(∞) Δ-Cost 

0.10% 0 294 1485 2024 1.945% 2 103.8 $ 0.10% 0.01% 0.089 0.0108 0.0273 0.826 -0.6% 

0.25% 0 134 1458 2481 2.303% 1 946.5 $ 0.25% 0.06% 0.246 0.0212 0.0243 0.821 -8.0% 

0.50% 0 70 1394 2841 2.610% 1 898.9 $ 0.50% 0.19% 0.450 0.0215 0.0238 0.820 -10.3% 

0.75% 2 162 1431 2117 2.425% 1 801.4 $ 0.75% 0.38% 0.635 0.0227 0.0232 0.819 -14.9% 

1.00% 3 172 1485 2246 2.182% 1 734.4 $ 1.00% 0.52% 0.719 0.0276 0.0230 0.813 -18.1% 

1.25% 4 179 1508 2262 1.852% 1 701.3 $ 1.25% 0.66% 0.806 0.0280 0.0228 0.809 -19.6% 

≥1.45% 4 157 1484 2631 1.996% 1 681.5 $ 1.45% 0.74% 0.829 0.0333 0.0226 0.808 -20.6% 
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In addition, Table 4 shows that, for a highly restricted AOQL constraint (i.e., AOQLmax ≤ 0.5%),  the zero-

acceptance number sampling plans are more economical than the non-zero acceptance sampling 

plans, as they provide a higher discriminatory power (Schilling and Neubauer, 2009). However, for a 

higher acceptable level of AOQL (e.g. AOQLmax ≥ 0.75%), non-zero acceptance number plans are more 

economical as they reduce the extra 100% inspection cost. For example, for an AOQLmax = 2.0% (basic 

case), we observe in Table 1 that the optimal zero-acceptance number sampling plan (c=0, nc*=57) 

provides the best quality protection for the customer (i.e., with the lowest values of AOQL and 

AOQ(∞)) but it is too far to be economically optimal for the manufacturer (i.e., 11.38% more costly 

than the optimal sampling plan (c*=4, nc*=157)). These results are in line with previous findings in the 

literature, showing that the total inspection cost of zero acceptance sampling plans are generally 

significantly higher than non-zero acceptance sampling plans (Baker, 1988). 

5.4. Comparative study  

In this section, we compare the performance of the integrated (Q, S, c, n, r) policy, called Policy-I, with 

a similar integrated model proposed in the literature by Radhoui et al. (2009, 2010) and others where 

the quality control consists of a 100% inspection of all lots produced instead of using the acceptance 

sampling plan techniques. In reality, the 100% inspection policy can be viewed as a special case of 

sampling inspection where each lot produced is fully inspected during the sampling step (i.e., n=Q) 

and the acceptance number is set to zero. Thus, a simplified version of the optimization approach 

described in section 4 can be used to find the optimal values of the lot size Q, the inventory surplus S 

and the overhaul threshold r for fixed parameters c=0 and n=Q (called Policy-II). Therefore, we used a 

combination of a three factors Box-Behnken experimental plan for each combination of Q, S and r, 

regression analysis and RSM to fit the total expected cost by a quadratic model denoted by 100% (.) . 

Using the same basic case data, the ANOVA of this model leads to an R-squared adjusted equal to 

0.9766. In addition, the three design factors (including the linear and the quadratic effects) and their 

interactions are significant (P-value < 0.05). Thus, we get the following quadratic function:   

2 2
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
 (33) 

The minimization of the 100% (.)  function provides the following optimal solution: Q* = 1573, S* = 

3374 and r* = 2.022% and the corresponding expected total cost is $2116.7. Herein, Policy-I (with 

acceptance sampling plan) is 20.6% more economical than Policy-II (with 100% inspection). Table 5 

presents complementary performance measures obtained by simulation with the optimal solutions of 

both policies I and II for the basic case. According to Policy-I, only 17.1% (i.e., 1-Pa(∞)) of lots 

produced are fully inspected to economically meet the output quality requirement and to provide 

sufficient visibility on the process quality for the overhaul control system. Under this policy, the long-

term average outgoing quality of all lots produced is 0.74%, while, one lot could contain, on average, a 

maximum outgoing quality of 1.45%. In the other side, Policy-II ensures always the delivery of defect-

free products to customers through the 100% inspection of all lots produced (i.e., AOQ(∞)=0). The 

significant gap between the costs of both policies is due to two factors. First, Policy-II generates extra 

quality control costs especially during periods when the process quality is perfect. Second, the 100% 

inspection operations (Policy-II) lead to incur extra holding costs due to the increase of the WIP in the 

Quality Control center, and the increase of the optimal inventory surplus S* in the serviceable stock as 

the total quality control delay increases. From Table 5, the WIP inventory E[xq] under Policy-II is 4 



p. 25 
 

times greater than the E[xq] under Policy-I. Similarly, the average positive inventory [ ]
f

E x


 in the 

serviceable stock under Policy-II is 1.5 greater than the [ ]
f

E x


 under Policy-I. However, the average 

negative inventory [ ]
f

E x


 under Policy-I is much higher than the [ ]
f

E x


under Policy-II. This is due to 

the increasing degree of uncertainty in Policy-I caused by the effects of the probabilistic 

acceptance/rejection decision of lots produced. Also from Table 5, we remark that the optimal lot size 

Q* under Policy-I is smaller than that under Policy-II. In fact, smaller lots reduce the number of 

defectives transmitted to the serviceable stock and improve the visibility on the process quality as 

discussed in Section 5.2. 

 

Table 5. Comparison of the optimal control policies. 

Policy 
Optimal solution 

 
Quality control 

 
Inventory 

c* n* Q* S* r* ETC* 
 

AOQL AOQ(∞) Pa(∞) 
 

E[xq] [ ]
f

E x


 [ ]
f

E x


 

Policy-I 4 157 1485 2631 1.996%   1 681.5 $  
 

1.45% 0.74% 82.9% 
 

39.0 1642.9 27.5 

Policy-II - - 1573 3374 2.022%   2 116.7 $    0.0% 0.0% 0.0%   159.3 2482.9 0.6 

 

Additional comparisons are also provided in Tables 3 and 4. For each configuration of the system 

parameters in those tables, we calculated the cost savings resulting from using the acceptance 

sampling plan rather than 100% inspection as follows: 

 
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
            (34) 

For all configurations of model parameters presented in both Tables 3 and 4, Policy-I is always more 

economical than Policy-II. However, the level of savings Δ-Cost achieved under Policy-I depends on the 

settings of the system parameters. For example, the savings are much more important for high 

inspection cost, as well as the process quality is improved by increasing the efficiency and frequency 

of maintenance activities (setups and overhauls) or by decelerating the quality deterioration. The 

savings are negligible in situations where the maximum allowed AOQL is very low (e.g. AOQLmax ≤ 

0.1%). In addition, all the results obtained in both Tables 3 and 4 confirm the observations mentioned 

above: the optimal inventory threshold S* and the optimal lot size Q* under Policy-I are always smaller 

than those under Policy-II.   

6. Managerial implications  

The integrated production, quality control and maintenance policy proposed in this paper can be 

implemented in batch processing manufacturing systems where both acceptance sampling techniques 

and dynamic production-inventory control are effective. For example, in the pharmaceutical industry, 

single acceptance sampling plan is used to reduce the delivery lead time of drugs which are safe and 

unique in the market and can improve the survival of some vulnerable patients. The cost of 100% 

inspection of a lot of such a drug is far greater than accepting a bad lot. This is because delayed 

treatment could result in a patient's death while, in accepting the bad lot, the drug could still have 

some beneficial placebo effect on the patient (Yang and Carlin, 2001). Likewise, dynamic production-

inventory control based on the concept of the Hedging Point Policy has various applications in the 

pharmaceutical industry are reported in Assid et al. (2015). Other potential applications of the 
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integrated control policy include also military, electronic, semiconductor, paper pulp and food 

industries (see MIL‐STD‐105 series; Pearn and Wu, 2007; Anthony, 2004; GonzÁLez and Palomo, 

2003; Gershwin, 2000).  

In order to facilitate the implementation of the proposed integrated control policy in practice, an 

implementation logic chart is presented in Figure 6 for the basic case (Section 5.1), which shows how 

the integrated decisions on setup, production rate setting, lots acceptance/rejection and overhaul 

should be made. Managerial implications into business practice for the integrated policy require full 

information about the state of the production unit and the inventory position. The manager should 

monitor the production quality by observing the defective rate of batches rejected in sampling 

inspection and predictably make the decision on the overhaul intervention based on the quality of the 

latest batch rejected. In addition, the maintenance team should utilize the setup times as opportunities 

to perform PM actions. This should help industrials to eliminate production stoppages for PM and 

overcome complexity of system scheduling (Xia et al., 2015).  

 
Figure 6. Implementation logic chart of the integrated control policy of production, quality and 

maintenance. 
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7. Conclusion 

The joint design and optimization of production, PM and quality control using the acceptance 

sampling plans have never been studied before in the literature. In this paper, we proposed a new 

holistic approach to the joint optimization of the production lot size, the safety stock, the acceptance 

sampling plan and the overhaul scheduling considering an outgoing quality constraint for degrading 

production systems. The suggested approach contributes to research on integrated production, 

maintenance and quality control in three ways. First, in the context of correlated quality and reliability 

deteriorations, we investigated the intrinsic statistical characteristics of the single acceptance 

sampling plan in order to show the relevance of quality information resulting from such a quality 

control technique to support maintenance decision-making. Second, we provided a new modeling 

framework combining stochastic mathematical formulation and discrete-continuous simulation in 

order to model complex interactions between degradation phenomena, operations planning and 

settings, product quality and process reliability. Thus, this modelling framework can be employed to 

relax many unrealistic assumptions used in the literature, to overcome the limitations of classical 

resolution approaches and to solve such hard optimization problems in manufacturing systems. Third, 

due to the fact that acceptance sampling plans adapt systemically the level of quality inspection with 

the degree of process deterioration, we showed experimentally that important cost savings could be 

realized by using these plans rather than 100% inspection. At the practical level, operations managers 

should figure out from this study the strong and deep links between production, maintenance and 

quality control (acceptance sampling plans). Practitioners should recognize that the capacity of 

satisfying the demand without back orders and the level of quality perceived by the final customers, 

which impact both the marketability of the final products, are the results of the whole operations 

settings and not only the results of one separated function among production, PM or quality control.  

One limitation of our model is that we assume a single quality attribute deteriorating with age. 

Modern products are complex with numerous quality attributes that can deteriorate with different 

rates. In such a situation, various quality-control tests could be required. Moreover, separate AOQL 

could be defined for each test. Future research can be conducted to investigate the optimal sampling 

inspection and preventive maintenance settings for multi-attribute products. In addition, our study 

should stimulate further research on the interpretation and usefulness of quality information 

feedback from acceptance sampling plans in integrated operations management and control. In fact, 

other sampling techniques such as multiple sampling plans and sampling plans by variables have 

specific inspection procedures and more particular statistical characteristics that should be 

extensively explored in order to integrate additional quality measures in managerial decision-making. 

Further research could be carried out to integrate the production, inventory and process reliability 

aspects in the design of acceptance sampling schemes. Sampling schemes are widely used in industry 

to adapt the inspection severity to the variation of quality of lots produced. The switching rules 

procedures as described in MIL-STD-105E and ISO 2859-1 can be improved by including quality 

history, process reliability and inventory state in order to enhance responsiveness and adaptive 

control face to production process deterioration.  
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Appendix A – Formula used to calculate the quality and availability performances  

The long-term proportion of acceptance of lots produced, Pa(∞), is given by 
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The calculation of the long-term average outgoing quality, AOQ(∞), is derived from Eq. (10) as follows  
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The long-term frequencies of overhauls and CM, denoted respectively by 𝑚̅(∞) and 𝑓̅(∞), are 

determined as follows 
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The long-term system availability Av(∞) is given by 
( ) ( )
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Table 3. Sensitivity analysis for model parameters. 

Case 

Number 
Parameter Variation 

  Policy I (with acceptance sampling plan) 

  

Policy II (with 100% inspection) 

  

Δ-Cost 
  c* n* Q* S* r* 

*

*(.)c  AOQL AOQ(∞) Pa(∞) 𝑓(̅∞) 𝑚̅(∞) Av(∞) Q* S* r* 
*

100% (.)  

basic - -  4 157 1485 2631 1.996% 1 681.5 $ 1.45% 0.74% 0.829 0.0333 0.0227 0.808  1573 3374 2.022% 2 116.7 $  -20.6% 

1 Ch +50%  4 168 1451 2161 1.828% 1 798.9 $ 1.34% 0.69% 0.821 0.0291 0.0234 0.809  1523 2870 1.766% 2 262.5 $  -20.5% 

2 -50%  4 147 1518 3085 2.143% 1 551.3 $ 1.56% 0.79% 0.834 0.0377 0.0223 0.803  1625 3897 2.268% 1 946.2 $  -20.3% 

3 Cb +50%  4 153 1418 2812 1.967% 1 768.3 $ 1.48% 0.75% 0.831 0.0346 0.0219 0.809  1563 3595 1.937% 2 189.3 $  -19.2% 

4 -50%  4 162 1561 2155 2.085% 1 608.0 $ 1.41% 0.73% 0.813 0.0333 0.0227 0.805  1589 2776 2.140% 2 051.5 $  -21.6% 

5 Cset +50%  4 160 1605 2706 1.833% 1 825.9 $ 1.43% 0.74% 0.802 0.0362 0.0228 0.802  1677 3453 1.980% 2 252.4 $  -18.9% 

6 -50%  5 156 1004 2286 2.752% 1 498.9 $ 1.72% 0.80% 0.880 0.0329 0.0204 0.818  1231 3114 2.144% 1 953.9 $  -23.3% 

7 Ccm +50%  4 159 1449 2565 1.859% 1 777.9 $ 1.42% 0.73% 0.822 0.0318 0.0229 0.809  1548 3155 1.390% 2 188.3 $  -18.8% 

8 -50%  5 151 1522 2963 2.043% 1 629.9 $ 1.89% 0.93% 0.859 0.0464 0.0212 0.794  1622 3770 2.970% 2 027.4 $  -19.6% 

9 Covr +50%  5 165 1472 2983 2.631% 2 072.8 $ 1.71% 0.84% 0.847 0.0433 0.0210 0.801  1530 3670 2.957% 2 483.4 $  -16.5% 

10 -50%  3 164 1546 2380 0.805% 1 277.2 $ 1.06% 0.58% 0.784 0.0227 0.0263 0.802  1652 2716 0.505% 1 631.8 $  -21.7% 

11 Cinsp +50%  5 154 1451 2822 1.618% 1 777.4 $ 1.84% 0.90% 0.868 0.0441 0.0253 0.798  1572 3368 2.006% 2 370.0 $  -25.0% 

12 -50%  4 162 1503 2554 2.255% 1 589.1 $ 1.40% 0.71% 0.792 0.0323 0.0218 0.808  1574 3381 2.037% 1 863.4 $  -14.7% 

13 Crej +50%  4 155 1471 2613 1.897% 1 699.0 $ 1.46% 0.75% 0.834 0.0333 0.0227 0.806  1565 3325 1.899% 2 142.7 $  -20.7% 

14 -50%  4 159 1498 2648 2.106% 1 663.5 $ 1.44% 0.73% 0.820 0.0334 0.0226 0.807  1581 3424 2.144% 2 089.8 $  -20.4% 

15 Cdef +50%  4 158 1482 2614 2.031% 1 706.9 $ 1.44% 0.74% 0.821 0.0325 0.0227 0.807  1573 3374 2.022% 2 116.7 $  -19.4% 

16 -50%  4 155 1486 2651 1.963% 1 656.0 $ 1.47% 0.75% 0.834 0.0332 0.0226 0.806  1573 3374 2.022% 2 116.7 $  -21.8% 

17 τinsp +50%  3 166 1444 2859 1.497% 1 730.3 $ 1.04% 0.70% 0.841 0.0235 0.0246 0.805  1475 3488 2.182% 2 193.7 $  -21.1% 

18 -50%  4 151 1508 2488 2.062% 1 664.3 $ 1.52% 0.67% 0.725 0.0351 0.0224 0.800  1632 3319 1.930% 2 023.3 $  -17.7% 

19 γq +15%  4 138 1325 2144 4.329% 1 813.0 $ 1.65% 0.76% 0.703 0.0083 0.0294 0.809  1549 2790 1.201% 2 275.7 $  -20.3% 

20 -15%  3 126 1640 3946 0.411% 1 572.8 $ 1.42% 0.61% 0.969 0.0747 0.0176 0.747  1659 4779 3.319% 2 053.0 $  -23.4% 

21 γr +15%  2 134 651 3453 1.004% 2 659.2 $ 0.81% 1.55% 0.924 0.0915 0.0318 0.625  900 4052 1.516% 3 065.4 $  -13.3% 

22 -15%  7 198 1718 2258 2.628% 1 228.2 $ 2.00% 0.59% 0.800 0.0015 0.0192 0.882  1801 2842 2.222% 1 799.6 $  -31.7% 

23 γset +15%  3 118 1277 3418 2.242% 2 243.1 $ 1.49% 0.79% 0.773 0.0486 0.0327 0.719  1419 5670 2.931% 2 438.9 $  -8.0% 

24 -15%   2 127 1629 2537 1.678% 1 162.1 $ 1.00% 0.62% 0.841 0.0040 0.0093 0.937  1687 3293 1.723% 1 547.0 $  -24.9% 

 

 

 

 




