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Abstract: This article presents an integrated production and quality control model for an unreliable and imperfect 
batch manufacturing system. The production is controlled by a hedging point policy, while, the quality control is per-
formed by a lot-by-lot double acceptance sampling plan by attributes. The decision variables of this model are the pro-
duction lot sizing and the hedging level. The purpose of this work is to develop and validate a simulation model to fairly 
represent the dynamic and stochastic aspects of the system under study. Then, a simulation optimization approach 
based on the response surface methodology is used to optimize the decision variables when the failure and repair times 
and the percentage of nonconforming items produced follow general probability distributions. 
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1  Introduction 
 
Manufacturing systems are subject to many stochastic 
phenomena such as random failures and repairs, imper-
fect production, quality deterioration, etc. In the litera-
ture, batch manufacturing systems are controlled using 
the economic production quantity (EPQ) models. Re-
search on the EPQ model has been undertaken in differ-
ent contexts of reliability and/or quality imperfection, 
especially during the last two decades.  
 
In one of the pioneered papers that addressed the EPQ 
problem of unreliable batch manufacturing systems, 
Groenevelt et al. (1992a) investigated the impact of 
system breakdowns and corrective maintenance on 
production lot sizing decisions. Under the assumptions 
of deterministic constant production rate, negligible 
repair time, exponential failures and no backlogs, the 
authors determined the optimal lot sizing for two pro-
duction reorder policies (no-resumption policy and 
abort/resume policy). Later, Groenevelt et al. (1992b) 
defined a production control policy to simultaneously 
determine the optimal lot sizing and the safety stock 
level that satisfy a prescribed service level. They as-
sumed that, during a production run, a certain fraction 
of the produced items is instantaneously diverted into 

the safety stock. Kim et al. (1997) extended the 
Groenevelt et al. (1992a) model assuming that the times 
between failures follow general distributions. Chung 
(1997) determined an approximate formula for the op-
timal lot sizing of the Groenevelt et al. (1992a) model 
by calculating its bounds. Giri et al. (2005) focused on 
the problem of EPQ for an unreliable production system 
where the production rate is treated as a decision varia-
ble. They developed two models; with and without 
safety stock. Giri and Dohi (2005) extended the Giri et 
al. (2005) model with safety stock, taking into account 
the preventive maintenance and assuming that the fail-
ure and repair times are general distributions. Bouslah et 
al. (2011) obtained an integrated optimal lot sizing and 
feedback production policy, considering a transportation 
delay of lots produced to the serviceable stock.  
 
All the above cited studies deal with the effect of pro-
cess reliability on the EPQ model, and do not consider 
the quality issue. It is assumed that all produced items 
are perfect quality. On the other hand, many works have 
considered the quality imperfection problem in the EPQ 
model, without considering the reliability issue. Porteus 
(1986) and Rosenblatt and Lee (1986) are among the 
first researchers who investigated the effect of quality 
imperfection on the EPQ. In both studies, they assumed 
that the deterioration of production system is a random 
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process characterized by two states: ‘in-control’ state 
when all items produced are conforming of quality and 
‘out-of-control’ state when some percentage of items 
produced are defectives. Lee and Rosenblatt (1987) 
considered maintenance by inspection feature to moni-
tor the production process deterioration. If the produc-
tion process is found to be out of control by inspections, 
it will be restored to the ‘in-control’ state. Then, they 
focused on simultaneously determining the EPQ and 
optimal inspection schedules. Khouja and Mehrez 
(1994) have formulated an EPQ model, assuming that 
production rate is a decision variable and quality of the 
production process deteriorates with increased produc-
tion rate. Salameh and Jaber (2000) presented a modi-
fied inventory model which extends the traditional EPQ 
model by accounting for imperfect quality items. Hayek 
and Salameh (2001) derived an optimal operating policy 
for an EPQ model under the effect of imperfect quality. 
They assumed that all of the nonconforming items pro-
duced are reworked and added to perfect quality inven-
tory, and shortages are allowed and backordered.  Ben-
Daya (2002) developed an integrated model for the joint 
determination of EPQ and preventive maintenance level 
for an imperfect process having a general deterioration 
distribution with increasing hazard rate. Chiu (2003) 
extended the Hayek and Salameh (2001) model, by 
assuming that not all of the nonconforming items pro-
duced are reworked, and that a portion of the imperfect 
quality items are scrapped and discarded before starting 
the rework process. Finally, Sana (2010) considered that 
the percentage of nonconforming items varies linearly 
with both production rate and production-run time, and 
the probability distribution of shift time from ‘in-
control’ to ‘out-of-control’ state depends also on the 
production rate. Therefore, he focused on determining 
the optimal lot sizing and the optimal production rate. 
 
In the aforementioned EPQ models, the reliability and 
quality issues are studied separately. However, these 
two problems are often observed simultaneously in real-
life manufacturing systems. Only few recent EPQ mod-
els jointly consider the effects of equipments break-
downs and quality deterioration of production process. 
Among these works, Chiu et al. (2007) extended the 
works of (Chung, 1997) and (Chiu, 2003) in order to 
determine the optimal run time problem of EPQ models 
with scrap, reworking of nonconforming items, and 
stochastic machine breakdowns. Liao et al. (2009) inte-
grated maintenance programs (perfect/imperfect preven-
tive maintenance and imperfect repair) with EPQ model 
for an imperfect and unreliable manufacturing system. 
Chakraborty et al. (2009) developed integrated produc-
tion, inventory and maintenance models in order to 
study the joint effects of process deterioration, machine 
breakdown and inspections on the optimal lot sizing 
decisions. Sana and Chaudhuri (2010) extended the Giri 
and Dohi (2005) model, considering the effect of an 
imperfect production process subject to random break-
downs and variable safety stocks.  
 

In most existing EPQ models, the effects of using such 
quality control policy on the production policy parame-
ters (including lot sizing) have not been sufficiently 
studied. Indeed, the inspection is considered only as a 
tool to control the quality deterioration of the production 
process. Also, most models assumed that the inspection 
delay is negligible. However, inspection is in itself an 
important part of quality assurance that should be fairly 
represented in EPQ model. Some authors such as Sala-
meh and Jaber (2000) assume that all lots produced are 
100% inspected. Liao et al. (2009) consider complete 
quality audit using automated inspection. From econom-
ic point of view, the cost of 100% inspection is very 
high, particularly with automation systems which need 
high technology (Chin and Harlow, 1982). 
 
In real life manufacturing organisations, it is recom-
mended to use statistical quality control techniques, 
such as control charts and acceptance sampling plans, 
when the cost of 100% inspection is higher than the cost 
of delivering a certain proportion of nonconforming 
items (Besterfield, 2009). Only few researchers have 
integrated quality control techniques into EPQ models. 
Among these, Ben-Daya (1999) presented an integrated 
model for the joint optimization of production quantity, 
design of quality control parameters using x -control 
chart, and maintenance level. Quality control using lot-
by-lot acceptance sampling plans by attributes are not 
sufficiently studied in the literature. Another critical 
assumption made in most EPQ models is that, the lot 
which is currently processed, can instantly meet the 
demand, and even build a safety stock (the difference 
between production and demand). This assumption is 
unrealistic for a wide range of manufacturing systems 
where certain delays, for lot sampling, inspection, re-
working, etc., exist between the production and the final 
stock that truly serves the demand. 
 
In this paper, we propose an integrated production and 
quality control model for unreliable manufacturing 
systems, which has the following three features: the 
production is controlled by a hedging point policy 
(HPP), the lot sizing and the hedging level are decision 
variables, and the quality control is performed by a 
double acceptance sampling plan by attributes. Our 
choice of the HPP for the production control is motivat-
ed by its flexibility, feedback and optimality properties 
((Akella and Kumar, 1986), (Bielecki and Kumar, 
1988)). The double sampling plan is widely used in 
industry, such as military (MIL-STD-105D, 1963), 
electronic (Sultan, 1994) and construction (Chang and 
Hsie, 1995) industries. Given that the considered prob-
lem is complex and highly stochastic, which time be-
tween failures, time to repair and the percentage of 
nonconforming items produced are general random 
variables, our objective is to develop and validate a 
simulation model to fairly represent the system under 
study. Then, we use a combination of experimental 
design, simulation and statistical methods to optimize 
the parameters of the production control policy which 
minimize the total incurred cost including manufactur-
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ing cost, transportation cost, quality control costs, hold-
ing and backlog costs. 
 
The remainder of this paper is organized as follows. 
Section 2 presents the notation. Section 3 describes the 
problem under study. The optimization problem formu-
lation is presented in section 4. Section 5 explains the 
resolution approach used to determine the optimal pa-
rameters of the control policy and the optimal incurred 
cost. An illustrative numerical example of the resolution 
approach with a sensitivity analysis is given in section 
6. Finally, section 7 concludes this paper. 
 

 

2  Notation 
 
The following are the notations used in this paper: 

q(t) 
x(t) 
y(t) 
u(.) 
ui 
umax 
d 
~p 
	݌
 
n1 
A1 
R1 
n2 
A2 
R2 
Q 
θi 
δi 

N∞ 
~TBF 
~TTR 
τinsp 
τrect 
c+ 
c- 
cp 
ctr 
cinsp 
crect 
crep 

WIP lot level at time t (units) 
Inventory level at time t 
Inventory position at time t 
Production rate (units/time) 
Production rate of the ith lot (units/time) 
Maximum production rate (units/time) 
Constant demand rate (units/time) 
Proportion of nonconforming items (random variable) 
Long-term average proportion of nonconforming 
items  
Sample size on the first sample 
Acceptance number on the first sample 
Rejection number on the first sample 
Sample size on the second sample 
Acceptance number on the second sample 
Rejection number on the second sample 
Lot sizing (units) 
Production start time of the ith lot 
Production end time of the ith lot 
Long-term cumulative total number of lots produced  
Time Between Failures (random variable) 
Time To Repair (random variable) 
Inspection delay (time) 
Rectification delay (time) 
Unit holding cost ($/unit) 
Unit backlog cost ($/unit) 
Unit production cost ($/unit/time) 
Cost of transportation a lot ($/load) 
Unit inspection cost ($/unit) 
Unit rectification cost ($/unit) 
Unit replacement cost ($/unit) 

 
 

3  Problem description 
 
3.1  Production system 
 
We study an imperfect production system subject to 
stochastic breakdowns and repairs, and supplying a 
downstream stock	ݔሺ. ሻ. One single item is manufac-
tured in lots of size Q in order to face a constant and 
continuous demand. The work-in-process (WIP) lot is 

stored in a downstream area of the facility until the 
production lot is completed (Figure 1). The system 
availability state can be described at each time t by a 
stochastic process ሼߙሺݐሻሽ taking values ሼ0,1ሽ. ߙሺݐሻ ൌ 1, 
if the production system is available. ߙሺݐሻ ൌ 0, if not. 
We assume that, when a failure occurs during the pro-
duction cycle, the production of interrupted lots is al-
ways resumed after repair. Let ݍሺݐሻ be a piecewise 
continuous variable which describes the lot processing 
progress (WIP level) at time t. Let 0 ൑ ሻݐሺݍ ൑ ܳ be the 
capacity constraint of the WIP lot. 

 
Figure 1: Unreliable and imperfect production system 

with quality control. 
 
The production system is imperfect where the produc-
tion of a certain proportion p(.) of nonconforming items. 
As there is lot-to-lot variation in manufacturing, we 
assume that the percentage of nonconforming items also 
varies from lot-to-lot with a known probability distribu-
tion. As in Salameh and Jaber (2000), we assume that 
the number of nonconforming items in each ith lot is 
equal to ݌௜ܳ proportionally to the lot sizing Q, where ݌௜ 
is the proportion of nonconforming items in the ith lot. 
Once produced, a quality control is performed on the lot 
to decide whether it is acceptable or not. 
 
3.2  Quality control 
 
The quality control policy consists on a lot-by-lot dou-
ble acceptance sampling plan with parameters n1, A1, R1, 
n2, A2 and R2. A sample of size n1 is drawn randomly 
from the lot, and inspected item-by-item by attributes. 
The duration of sample inspection is equal to n1×τinsp. If 
the number of nonconforming items d1 in the first sam-
ple does not exceed the acceptance number A1, the lot is 
accepted and the d1 nonconforming items are replaced 
from a stock of known good items, before the transport 
of the entire lot to the final stock area. If the noncon-
forming items d1 found in the first sample exceeds the 
rejection number R1 on the first sample, the lot is reject-
ed. Otherwise (A1<d1<R1), no decision is made and a 
second sample of size n2 is taken. The duration of the 
second sample inspection is equal to n2×τinsp. If the 
number of nonconforming items in both samples 
(d1+d2) does not exceed the acceptance number A2, the 
lot is accepted. Otherwise (d1+d2 ≥ R2), the lot is reject-
ed. Note that the rejection number of the second sample 
is equal to the acceptance number A2 plus 1. Figure 2 
illustrates the procedure for double sampling by attrib-
utes.  
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Figure 2:  Decision process for double acceptance  

sampling by attributes. 

When a lot is rejected, a 100% inspection is performed 
and all nonconforming items are sorted by inspection 
personnel. The duration of this operation is equal to (Q-
n1)×τinsp if the lot is rejected in the first sample, and 
equal to (Q-n1-n2)×τinsp if the lot is rejected in the sec-
ond sample. Then, the nonconforming items are recti-
fied. The delay of rectification of the nonconforming 
items discovered in the ith lot is equal to pi×Q×τrect. 
After that, the entire lot is transported to the serviceable 
stock. Let ξi be the arrival time of the ith lot to the on-
hand serviceable inventory x(.). Then, ξi = δi + n1×τinsp, 
if the ith lot is accepted after the first sample. ξi = δi + 
(n1+n2)×τinsp, if it is accepted after a second sample. ξi = 
δi + Q×τinsp, if the lot is rejected. We assume, in our 
study, that ξi ≤ δi+1 (i=1..N), which means that the quality 
control operations of the ith lot is finished before the 
end of production of the next i+1th lot.    

The probability Pa1 of accepting an ith lot in the first 
sample can be calculated using the Poisson probability 
distribution F(.|.) (Besterfield, 2009), as follows: 

   1 1 1 1
i i

aP p F d A n p          (1) 

where, d1≤A1 is the condition that determining the num-
ber of occurrence and n1×pi is the mean of the Poisson 
function.  

The probability Pa2 of accepting an ith lot in the second 
sample can be calculated as follows:  

     
1

1

1

2 1 1 2 2 2
1

.
R

i i i
a

k A

P p F d k n p F d A k n p


 

   
 

 (2) 

The probability Pa of accepting an ith lot containing pi 
proportion of nonconforming items after quality control 
is obtained by combining the two equations (1) and (2): 

     1 2
i i i

a a aP p P p P p         (3) 

Similarly, the probability of rejection Pr of an ith lot pi 
proportion of nonconforming items after quality control 
is obtained by combining the probabilities of rejection 
Pr1 and Pr2 respectively in the first and the second sam-
ples, as follows: 

     1 2
i i i

r r rP p P p P p          (4) 

where,      1 1 1 1 1 1 11 1i i i
rP p F d R n p F d R n p       (5) 

and,  

     
1

1

1

2 1 1 2 2 2
1

.
R

i i i
r

k A

P p F d k n p F d R k n p


 

      (6) 

As the accepted lots do not receive 100% inspection, the 
nonconforming items existing in these lots will be 
transmitted to the final stock and therefore to the con-
sumer. The long-term average proportion of noncon-
forming items that contains the final stock, also named 
the Average Outgoing Quality AOQ, can be calculated 
using the following formulae (Schilling and Neubauer, 
2009): 

1 1 2
1 2a a

Q n Q n n
AOQ pP pP

Q Q

     
    

   
    (7) 

We assume that, in the producer-consumer relationship, 
all nonconforming items are returned to the producer 
and replaced by good ones. While the demand/backlog 
is filled, the returned quantity at each time t is consid-
ered proportional to the demand rate d, and is replaced 
by good items immediately. Then, the long-term real 
demand rate during times of serving the demand be-
comes equal to  1d AOQ .  

 
3.3  Production control policy 
 
In production systems management, one of the main 
useful strategies for responding to uncertainty is to build 
a surplus inventory, or safety stock, to hedge against 
periods in which the production capacity cannot satisfy 
the demand (Hu et al., 2004). For continuous-flow unre-
liable manufacturing systems, the optimal production 
policy is of a hedging point policy (HPP) type ((Akella 
and Kumar, 1986), (Bielecki and Kumar, 1988)). For 
unreliable batch manufacturing systems, some authors, 
e.g. (Giri and Dohi, 2005) and (Sana and Chaudhuri, 
2010), used an optimal safety stock in inventory to pro-
tect against possible stock-out during system repair and 
to enhance customer service level. For batch manufac-
turing systems with delays which cannot be considered 
as continuous-flow systems, (Bouslah et al., 2011) 
showed that the optimal feedback control policy can be 
closely approximated by a base-stock policy expressed 
by a modified HPP. Considering a transportation delay 
for lots produced to the serviceable stock, the authors 
assumed that the feedback inventory control is based on 
the concept of the inventory position which includes the 
on-hand inventory in the final stock and the total pend-
ing quantities in transportation, as in Mourani et al. 
(2008) and Li et al. (2009).  

In our study, we define the inventory position y(t) at 
each time t as the sum of the stock (inventory/backlog) 
level x(t) and the total amount of  lots-under-sampling, 
100% inspection and rectification. Then, the production 
control policy based on the concept of HPP and taking 
into account the effect of quality imperfection on the 
real demand rate can be described by the following 
equation:  
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  

 
 

 

max

1
1,2,..,

( ) if ( )

( )
, ,   if ( )

1

0    if ( )

i

i
i i i

i

i

t u y S

t d
u t y S

AOQ

y S

 

   










 

 



   
 

   (8) 

In fact, the production rate ui(.) of the ith lot can take 
three possible levels depending on the inventory posi-
tion evolution and the instantaneous system availability, 
as follows: 
1.  If the inventory position at the beginning of the ith 
production cycle (t=θi) is strictly below the threshold 
level S, and while the production system is available 
(α(t)=1), the corresponding ith lot is manufactured at the 
maximum production rate umax. Such a case happens 
when the production is restarting just after a corrective 
maintenance.  
2.  If the inventory position at the beginning of the ith 
production cycle is exactly equal to the threshold level 
S, and while the production system is available (α(t)=1), 
the production rate of the corresponding ith lot is set to 
the demand rate d/(1-AOQ) in order to maintain the on-
hand inventory position.  
3.  If the inventory position at a time t ϵ ]θi, θi+1] be-
comes strictly greater than the threshold level S or the 
production system becomes unavailable, the manufac-
turing is stopped (u(.)=0) until the inventory position 
falls to the threshold S by the effect of the demand. 
 
 

4  Optimization problem formulation 

The dynamics of production q(.), inventory position y(.) 
and final inventory level x(.) can be characterized by the 
following difference and differential equations: 

     

   

 
 

   

 
 

 

1

1

( )
, , 0 , , ,

,

  if ( ( ) 0)&( ( ) 0)
0 ,( )

,
 otherwise , ,

1

,

  if ( ( ) 0)&( ( ) 0)
0 ,( )

,
 otherwise , ,

1

i i

i i

i i

i i

i i

i

dq t
u t q q t

dt

q q Q

d x t t
y ydy t

d
tdt

AOQ

y y Q

d x t t
x xdx t

d
tdt

AOQ

x x

  

 



 

 



 

 

 



 





   

 

       

 

       

   ,

1,..,

i Q

i N

 

 

(9) 

where, q, x and y denote respectively the WIP level, the 
inventory position and the finished product inventory 
level at initial time. ߜ௜

ି and ߜ௜
ା denote the left and right 

boundaries of the ith production run end time ߜ௜, and 
i


and 
i
 denote the left and right boundaries of the arrival 

time ξi
 of the ith lot to the final stock x(.). 

Figure 3 depicts graphically the dynamic of production 
(WIP lot level), and the evolution of the serviceable 
inventory level as function of instantaneous system 

availability, production cycle length, and acceptance or 
not of lots produced. 

 

Figure 3:  Production and inventory level dynamics. 

Our objective is to determine the optimal lot sizing Q 
and the optimal hedging level S wich minimize the 
long-term expected total cost ETC per unit time includ-
ing; the average total holding cost including the storage 
of batch in processing, the batches under inspection, 
100% inspection and rectification and the final invento-
ry stock, the average backlog cost, the average cost of 
sampling (including first and second samples), the aver-
age cost of 100% inspection and rectification of the 
rejected lots, the average cost of transportation of lots to 
the serviceable stock, and the average cost of replace-
ment of nonconforming loaded to the consumer.   

Any admissible solution (Q, S) must satisfy the follow-
ing two constraints:  
- 0 ൏ ܳ ൑ 	minሼܳ௠௔௫

௪௜௣ , ܳ௠௔௫
௜௡௦௣ሽ          (10) 

where, ܳ௠௔௫
௪௜௣  is the maximum WIP storage capacity, and 

ܳ௠௔௫
௜௡௦௣ is the maximum inspection area capacity.   

- 0 ൏ ܵ ൑ ܵ୫ୟ୶             (11) 
where, ܵ୫ୟ୶	is the maximum storage capacity of the 
inventory position. 

Therefore, the optimization model associated to the 
problem under study can be described as follows :  

 
 

    
    

,

1 2 2

1 1

2 1 2

[ ] [ ] [ ]

[ ] [ ]

[ ]

[ ]

[ ]

[ ]

. Equations (2)-(5)-(6)-(7)-(8)-(9)

         Constraints (10)

Q S

insp insp a

r insp rect

r insp rect

rep

tr

Min ETC c E q E y c E x

c n E N c n P p E N

P p c Q n c pQ E N

P p c Q n n c pQ E N

c E AOQ d

c E N

S C



   

 







  

 

  

   





-(11)
















 (12) 

where, ( ) max(0,  ( ))y t y t  , - ( ) max(0,- ( ))x t x t , E[N∞] 

is the expected number of lots produced per unit time. 
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β(t) is the instantaneous satisfaction level  of the de-
mand/backlog; β(t)=1 if x(t)>0 or α(t)=1. β(t)=0, other-
wise. 

Due to the complexity of the system dynamic described 
by Eqs. (9), and given the high stochastic nature of the 
problem under study, it is almost impossible to derive 
an analytical solution for (12). Thus, we advocate a 
simulation-based optimization approach to determine 
the optimal values of the decision variables (Q, S). 
 
 

5  Resolution approach 
 

5.1  Simulation-based optimization ap-
proach 
 

To optimize the expected total cost with respect to the 
design factors (Q*, S*), we adopt a simulation optimiza-
tion approach which combines simulation model with 
design of experiments, statistical analysis and response 
surface methodology ((Kleijen, 1999), (Fu, 2002)). This 
approach has been used to control diverse problems in 
manufacturing (Gharbi and Kenné, 2000). It can be 
applied in our study through the following four steps: 
1. Mathematical problem formulation: The objective 
of this step is to formulate analytically the optimization 
problem, as shown in section 4. This allows to under-
stand the dynamic of the system as function of its states, 
and to calculate the expected long-run average cost. 
2. Simulation model: The simulation model describes 
the dynamic of the system and evaluates its performanc-
es (i.e., cost) for given factors (Q, S) using the mathe-
matical problem formulation. These factors are consid-
ered as input of such a model, and the related incurred 
cost is defined as its output.  
3. Design of experiments: The experimental design 
defines how the control factors (Q, S) should be varied 
in order to determine the effects of the mains factors and 
their interactions (i.e. analysis of variance ANOVA) on 
the incurred total cost. 
4. ANOVA, Regression analysis and Response surface 
methodology: A multi-factor statistical analysis 
(ANOVA) of the simulated data is carried out to pro-
vide the effects of the design factors (Q, S), their inter-
action and their quadratic effects on the response varia-
ble (i.e. the cost). Then, the main significant factors and 
their interactions are considered as input of a regression 
analysis which is used in conjunction with the response 
surface methodology, to fit the relationship between the 
cost and the input factors. Response surface methodolo-
gy is a collection of mathematical and statistical tech-
niques that are useful for modelling and analysing prob-
lems in which a response of interest is influenced by 
several variables and the objective is to optimize this 
response (Montgomery, 2008).  
 
 

5.2  Simulation model 
 

A combined discrete-continuous model was developed 
using the SIMAN simulation language with C++ sub-

routines (Pegden et al., 1995), and then executed 
through the ARENA simulation software. The ad-
vantage of using a combined discrete-continuous model 
is to reduce the execution time (Lavoie et al., 2007), and 
to model accurately the impulse-continuous nature of 
the production-inventory dynamic.  

 Figure 4:  Simulation block diagram. 

The simulation model can be described following the 
sequence of numbers appearing in Figure 4, as follows:  

0  INITIALIZATION: setting the values of the parame-
ters (umax, d, n1, c1, n2, c2, τinsp, τrect), the simulation run-
time T∞, the decision variables (Q, S), the unit partial 
costs (c+, c-, cinsp, crect, crep), the initial states (q, x) and 
the probability distributions of the proportion of defec-
tive items (~p), time between failures (~TBF), time to 
repair (~TTR) and the simulation run-time T∞. Note that 
the model is developed to accept any probability distri-
bution for the ~p, ~TBF and ~TTR.  

1  The DEMAND RATE is used as an input of the state 
equations. In order to represent the real system opera-
tion, we define the instantaneous real demand rate as 
݀/ሺ1 െ  ሻ is the instantaneousݐሺܱܳܣ ,ሻሻ, whereݐሺܱܳܣ
average outgoing quality. This can be calculated using 
the following formulae: 
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where, ai=1, if the lot is accepted after the first sample, 
and ai=2, if the lot is accepted after the second sample. 
Qi means the ith lot produced of size Q. N(t) is the cu-
mulative number of lots produced at time each t. 
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The AOQ(t) and the real demand rate are update each 
time a lot enters to the serviceable stock x(.). 

2  The STATE EQUATIONS are described by the 
differential equations of (9) and are modeled with a C++ 
language insert. When a lot is released at the end of 
production cycle or the lot arrives to the final stock x(.) 
a signal is send to the C++ routines to update the values 
of the variables q(t), y(t) and x(t) using the difference 
equations of (9). 

3  The PRODUCTION CONTROL POLICY is imple-
mented using equation (8). At the end of each produc-
tion cycle, the control policy is triggered to determine 
the production rate of the next production cycle depend-
ing on the current position inventory and the system 
availability. 

4  The PRODUCTION block models the processing 
delay which is calculated by dividing the lot sizing Q by 
the corresponding production rate ui(.). When the lot 
production is completed, the original entity is sent back 
to the PRODUCTION CONTROL POLICY block and a 
duplicated entity is created and sent to an ASSIGN 
block where the WIP lot level is impulsively annulled 
and the lot size is added to the inventory position.  

5  This models the failure and repair events as a close 
loop following the ~TBF and ~TTR distributions. 

6  A random proportion of nonconforming items is 
attributed to each lot produced following the ~p proba-
bility distribution, and the associated probabilities of 
acceptance and rejection are calculated, using equations 
(1)-(2) and (5)-(6).  

7  Then, the entity (lot produced) holds in a DELAY 
block for the first sample during n1×τinsp. Lots which 
need a second sample holds in another DELAY block 
during n2×τinsp. The decision to accept or reject the lot is 
modeled by a probabilistic BRANCH block of SIMAN 
using the probabilities of acceptance and rejection at-
tributed to each lot. Rejected lots hold in an additional 
DELAY block for 100% inspection and rectification. 

8  When a lot arrives in the serviceable final stock, the 
corresponding entity impulsively updates the inventory 
level as in (9). The average outgoing quantity AOQ(.) is 
also updated using Eq. (13 ). 

9  This block updates instantly the incurred cost ac-
cording to the instantaneous values of the different vari-
ables and the unit costs.  

8  Simulation run-time control: if the current time 
Tnow exceeds the predefined simulation run-time T∞, 
the simulation run is stopped.  
 
 
5.3  Validation of the simulation model 
 
To validate the simulation model we should verify the 
accuracy of the quality control (double acceptance sam-
pling plan) and production control policy (hedging point 
policy) modeling.  

A set of experiments are conducted to compare the 
observed characteristics of a given double sampling 
plans with the theoretical characteristics. Operating 

characteristic (OC) curve is an important technique to 
evaluate a given sampling plan which determines the 
acceptance probability Pa(.) of a lot with respect to 
percent nonconforming items that exist in the lot. Figure 
5 shows the observed and theoretical operating charac-
teristic (OC) curves with respect to the average propor-
tion of nonconforming items. The observed OC curve is 
determined by calculating the long-term observed ac-
ceptance probability which is calculated at the end of 
simulation run by dividing the cumulative total number 
of accepted lots by the cumulative total number of lots 
inspected. While, the theoretical OC curve is designed 
using equation (3). We can see clearly that the observed 
OC curve coincides with the theoretical OC curve.    

 
Figure 5:  Comparison of the observed  

and theoretical OC curves. 

 
Figure 6:  Comparison of the observed and theoretical 

AOQ curves . 

Figure 6 is a graphic comparison of the observed and 
theoretical AOQ curves. The observed AOQ curve is 
determined by calculating the AOQ at the end of each 
simulation run using equation (13), while the theoretical 
AOQ curve is designed using equation (7). The two 
curves are confused until the AOQ reaches the AOQL 
(average outgoing quality limit) with respect to the 
quality deterioration. When the AOQ declines, the dif-
ference between the two curves becomes apparent but 
not significant (< 5%). 

Also, we graphically examine the trajectory of the in-
ventory position during the simulation run. Figure 7 
shows that, the model performs correctly as expected 
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and intended and represents adequately the control poli-
cy. In addition, we verified that the production rate 
value changes instantaneously in response to changes in 
the inventory position and the system availability state 
as described in Eq. (8). 

 

Figure 7:  Inventory position evolution  
during simulation run. 

 
 

6  Numerical example 
 
In this section, we present a numerical example to con-
cretize the simulation-based optimization approach. The 
following parameters are considered in appropriate 
units: umax=3000, d=2000, p~Uniform(0.01,0.03), 
TBF~LogNormal(50,5), TTF~Gamma(0.5,10), τrect=10-4, 
τinsp =5×10-5, n1=40, A1=0, R1=4, n2=60, A2=3, R2=4, 
c+=0.1, c-=1.5, ctr=1500, cinsp=0.5, crect=5, crep=7.5. 

Simulation runs are conducted according to a complete 
32 experiments plan with five replications for each com-
bination of factors (Q, S). The selection of the levels of 
the experimental design plan parameters is an important 
factor in the precision of the response surface. It should 
be precise enough so that the response surface estimates 
the total expected cost function accurately, but large 
enough so that the effect of the parameters is not hidden 
by the inherent variability of the response. In order to 
select these levels correctly, we repeat the design of 
experiments, simulation and optimization using Re-
sponse surface methodology sequence, narrowing the 
domain of (Q, S) around the last found solution until it 
is centered about the optimum design point. Through 
this sequential procedure, the admissible experimenta-
tion region is explored and therefore the obtained solu-
tion will be a global optimum. 

In order to ensure that the steady-state is reached, the 
duration of simulation run is set in a way to observe 
10,000 failures in each replication, i.e. T∞ = 500,000 
units of time. The simulated data is carried out using 
statistical software (STATISTICA) to seek a regression 
model fitting the response variable (total expected cost). 
We assume here that a continuous function Ѱ(.) of Q 
and S exists, fitting a second-order regression model and 
relating the response variable to the design factors. The 
function Ѱ(.) is called the response surface and takes the 
following equation:  

  2 2
0 1 2 12 11 22,Q S Q S QS Q S                  

(14) 

where,  β0, βi (i = 1, 2), β12, βii (i = 1, 2) are unknown 
parameters to be estimated from the collected simula-
tion data, and ε is a random error. It should be noted that 
the idea of approximating the function cost by quadratic 
model has been widely used in the literature (Gershwin 
(1994), Gharbi and Kenné (2000)).  
The significant effects are provided through a multi-
factor analysis of variance (ANOVA), and the regres-
sion model is then determined using the response sur-
face methodology.  
 

Factor SS d.f. MS F-Ratio P-value 

Q (Linear + 
quadratic) 96019.7 2 48009.8 108.24 0.00000 

S (Linear + 
quadratic) 485657.7 2 242828.9 547.50 0.00000 

Q.S 392732.6 1 392732.6 885.49 0.00000 

Error 17297.2 39 443.5   

Total SS 991707.2 44    

Table 1: ANOVA table for the total cost. 
 
Table 1 summarizes the ANOVA of the collected data. 
For each design factor (including the linear and the 
quadratic effects) and their interaction, the table pre-
sents the Sum of Squares (SS), the degree of freedom 
(d.f.), the Mean Square (MS), an F-ratio, computed 
using the residual mean square, and the significance 
level of P-value. We can see that the linear and quadrat-
ic effects of the two factors (Q, S) and their interaction 
Q.S are significant for the dependent variable at a 0.05 
level of significance. The R-squared adjusted value of 
0.9803 presented in Table 1, states that 98.03 % of the 
observed variability in the total expected cost is ex-
plained by the model (Montgomery, 2008). A residual 
analysis was also used to verify the adequacy of the 
model. Therefore, it confirmed that the expected total 
cost ETC can be fitted by a second-order model. From 
STATISTICA, the corresponding quadratic function is 
given by: 
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, 8560.58 64.52 10 259.52 10

9.34 10 10.55 10 6.18 10

Q S Q S
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     (15) 

 
Figure 8: Contour plot of the cost function surface. 
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Figure 8 shows the contours of the cost function surface. 
The minimum total expected cost Ѱ*(.)=5223.03 is 
located at Q*=9354 and S*=28046 as shown in Figure 7.  

A sensitivity analysis of costs parameters is conducted 
to prove the efficiency and the robustness of the resolu-
tion approach. For twelve cases of costs changes de-
rived from the basic case of the numerical example, the 
optimal design factors and incurred cost variations (i.e., 
respectively ∆Q*, ∆S* and ∆C*) are explored and dis-
cussed. The results are summarized in Table 2. 
 

Sets Costs Changes ∆Q* ∆S* ∆C* 
      

Set I c+ -50% +2584 +5805 -1262.8 

 +50% -2559 -5607 +994.9 
      

Set II c - -50% +188 -7055 -400.5 

 +50% -247 +2373 +172.0 
    

Set III  cinsp -50% -48 -34 -136.6 

  +50% +91 +64 +273.1 
      

Set IV  crect -50% +2 +2 -26.0 

  +50% -3 -3 +52.0 
      

Set V ct -50% -5147 -3883 -426.03 

  +50% +1823 +1375 +293.6 

Table 2: Sensitivity analysis for cost parameters. 

 Variation of the inventory cost (Set I): When the 
inventory cost increases, the optimal hedging threshold 
S* decreases in order to avoid further inventory costs. In 
addition, the optimal lot sizing Q* decreases to ensure a 
better supply to the final stock against the risk of short-
ages becoming higher. The decrease in inventory cost 
produces the opposite effects.   

 Variation of backlog cost (Set II): When the backlog 
cost increases, more safety stock should be held in order 
to provide better protection to the system against short-
ages, which explains the increase in the optimal hedging 
threshold S*. The optimal lot sizing decreases in order to 
reduce the production delay and 100% inspection and 
rectification delays for rejected lots, and therefore en-
sure better supply to the final stock. The decrease in 
backlog cost produces the opposite effects.  

 Variation of quality costs (Sets III and IV):  We no-
tice that quality costs do not have significant effects on 
the optimal parameters (Q*, S*). Indeed, the expected 
total costs of inspection and rectification (model (12)) 
depend on the quantity Q×E[N∞] which is the expected 
constant amount of items to be produced per unit time to 
face the continuous demand. Thus, it can be understood 
that the change in quality costs does not have a signifi-
cant impact on the optimal lot sizing.  Moreover, from 
(12), it is clear that the total quality costs of inspection 
and rectification do not depend on the inventory state, 
which explains why there is no change in the threshold 
S* when varying the unit quality costs.  

 Variation of transportation cost (Set V):  When the 
transportation cost ct is higher, the system reacts by 
reducing the frequency of lots transportation in order to 

minimize the total transportation cost. Consequently, the 
optimal lot sizing Q* increases, and leads to a systematic 
increase in the optimal hedging level S* in order to pro-
tect the system from backlogs. When the transportation 
cost decreases, the optimal lot sizing and the optimal 
threshold decrease very significantly. 
 
 

7  Conclusion 
 
In the literature, most existing EPQ models for imper-
fect processes do not consider statistical quality control 
methods such as acceptance sampling plans, although, 
these methods are widely employed in industry. In this 
paper, we have studied an integrated model considering 
simultaneously a hedging policy for production control 
and a lot-by-lot double acceptance sampling plan by 
attributes for quality control. A combined discrete-
continuous simulation model has been developed and 
validated in order to represent the real and complex 
dynamic and the stochastic behavior of the manufactur-
ing system. Then, we used design of experiments and 
response surface methodology in conjunction with the 
simulation model to determine the optimal lot sizing and 
the optimal hedging level. The proposed simulation 
optimization approach provides an efficient way to 
surmount the difficulties of the analytical/numerical 
resolution of such non-linear, complex and high sto-
chastic problem. Moreover, the applicability of this 
approach in industrial context is guaranteed because the 
optimal solution is always obtained whatever the proba-
bility distribution functions of the time between failures, 
the time to repair and the proportion of defective items. 
Future research can be undertaken to investigate the 
joint optimization of the production control policy and 
sampling plan parameters. Another direction of further 
research is to consider jointly the preventive mainte-
nance, the production-inventory control and the eco-
nomic sampling plan design problem in deteriorating 
system in order to joint determine the optimal system 
reliability and the product quality levels. 
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