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Abstract: This paper deals with the production control policy of an unreliable manufacturing system producing one 
part type, and subject to random failures and repairs. The applied production control policy is based on the so-called 
hedging point policy (HPP), which consists in building and maintaining a safety stock of product in order to fulfill the 
demand, and protect the production system against shortages during maintenance actions. The main objective of the 
study is to determine the most efficient option of the ARENA simulation software that simulates properly the production 
systems under consideration. To this end, four simulation models mimicking the dynamics and the stochastic behavior 
of the proposed manufacturing system were developed. Concepts of discrete and continuous simulation and modules 
from the ARENA flow process template, are applied to develop the models. The hedging point policy is used as input 
parameter of the simulation models, where we seek to determine the optimal production threshold that minimizes the 
inventory and backlog cost. Based on simulation results, the performance of the models is evaluated, in terms of accu-
racy and time economy. The obtained results shows that the continuous simulation model that uses C++ inserts outper-
forms the other models.     
 
Keywords: Modeling methodologies, Manufacturing system, Discrete simulation, Continuous simulation, Optimal 
control. 
 

 
 
1  Introduction 
 
In this paper we study the optimal control problem of an 
unreliable manufacturing system consisting of one ma-
chine producing one part type. The unreliable nature of 
the manufacturing system is due to the fact that the 
machine is subject to random breakdowns and repairs. 
The decision variable, denoted by the production rate of 
the machine, influences the number of parts in the stock 
level. Additionally, the state variable of the system is 
denoted by the current stock. We can state that we are 
facing a state constrain control problem where we have 
to choose an admissible production rate to minimize the 
inventory and backlog cost over an infinite horizon. In 

practical terms, this kind of manufacturing system is 
considered as a complex optimal control model, because 
it leads in general to intractable problems, and analytical 
solutions for this type of systems are only known for 
relatively few simple models. This difficulty promotes 
the development of alternative approaches, for instances 
based in computer simulation, to determine optimal 
control policies. 
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Faced with such a control problem, it should be first be 
ascertained that in this paper, we are interested in  de-
veloping simulation models using the software ARENA, 
this allow us to pinpoint  its capabilities at reproducing 
accurately the dynamics and the stochastic behavior of 
the manufacturing systems under  consideration.     
Generally, in simulation it exists different ways to   
tackle a given problem, and in this respect, the ARENA 
simulation software offers different options to model 
our production system, such as discrete or continuous   
models, and flow process templates. Hence, we intend 
in this research to examine these possibilities and de-
termine the most efficient option to simulate our pro-
duction system, in terms of accuracy and time economy. 
 
Many researchers have studied the area of optimal con-
trol of manufacturing systems, for example Akella and 
Kumar (1986) proposed a complete analytical solution 
for the problem of controlling the production rate of a 
failure prone manufacturing system with constant de-
mand. We have other analytical solution with the work 
of Bielecki and Kumar (1988), where they presented a 
solution of the previous model but without the  dis-
counted cost criterion. These works helped to consoli-
date the so-called Hedging Point Policy. Later Sharifnia 
(1988) established that the HPP is susceptible to      
generalizations such as multi state, in particular, he 
described a method for solving a short term production 
control problem of a failure prone manufacturing sys-
tem. At first sight, finding an analytical solution to this 
type of productions systems is a difficult task, fortunate-
ly, alternative approaches based in discrete event simu-
lation have been developed. For example, Kenné et al. 
(1997) combined a discrete-event simulation model with 
an analytical approach to include stochastic demand and 
lot sizes production. Other application of discrete simu-
lation modeling was done by Kenné and Gharbi (1999), 
where they developed a simulation  model considering 
the age of the machine and preventive maintenance, also 
they proposed a simulation- based control-approach that 
analyze the simulation results with design of experiment 
and optimize the control parameters with response sur-
face methodology. Gharbi and Kenné (2003) deals with 
the production control problem of a system which in-
volves multiple machines producing different part types. 
Several other factors have been included during the time 
to the area, for example Hajji et al. (2004) studied the 
impact of set-ups in the control policy, and they pro-
posed a corridor policy that outperforms the Hedging 
point policy. A more complex model is found in the 
work of Gharbi and Kenné (2006), who studied a pro-
duction and set-up policy for an unreliable                     
multiple-machine, multiple-part type manufacturing 
system. Transfer lines are treated by Lavoie et al. 
(2007), where they achieved to optimize the parameters 
of the control policy with a discrete and a continuous 
simulation model.  Other interesting simulation model 
was done by Lavoie et al. (2009), who compared     
different control mechanism such as Kanban, CONWIP 
and Hybrid for a tandem production line via simulation. 
Randomness has been extended to a more complex case 

by Hajji et al. (2009), where they studied the context of 
a supply chain, with unreliable producer and supplier.  
 
As we can realize in the literature review, this area is 
very active, and  there are a lot of interesting works 
analyzing different factors. Some of these works con-
sisted in mathematical formulations based on the opti-
mal control theory. It has to be emphasized, however, 
that analytical solutions are known only for a few sim-
ple cases, and so applications based in simulation, have 
proved to be an efficient alternative to circumvent the 
difficulty of finding analytical solutions. This amounts 
to the necessity of determining the best way to simulate 
this kind of manufacturing systems. Thus, in this paper 
we use the manufacturing system consisting of one 
machine producing one part type to compare four simu-
lation models developed with the simulation software 
ARENA. We select this computational program because 
it is one of the most applied and extended simulation 
software in engineering. The simulation results will 
provide us some insight about the implementation of 
this software to simulate manufacturing systems that 
applies the Hedging Point Policy. The conclusions ob-
tained will serve us to address more complex issues in 
future contributions, since simulation-based approaches 
are an effective alternative to examine this type of  
manufacturing systems, as discussed in the literature 
review. Applying different modules of the ARENA 
software, four simulation  models were developed; the 
first model is based in discrete simulation concepts, two 
models were based in the concept of continuous simula-
tion, where ARENA offers the possibility to comple-
ment the model with  C++ or VBA files. The fourth 
model consisted in the implementation of Flow Process 
modules available in the ARENA software. It is im-
portant to note that, we are interested in two perfor-
mance indices: the accuracy in the results and the veloc-
ity of the models. These indicators are used as parame-
ters to determine the most efficient simulation model, 
since the next stage in our research methodology, im-
plies the study of much more complex aspects that re-
quire several simulation runs.   
 
The rest of the paper is organized as follow: Section 2 
states the notation required by the model.  The formula-
tion of the production planning problem is then  pre-
sented in Section 3. The proposed approach is described 
in Section 4 and Section 5 describes the logic applied 
for the simulation models. Subsequently, a comparison 
of the four simulation models with regards to the accu-
racy of the results and time economy is presented in 
Section 6. Finally, Section 7 concludes the paper and 
summarizes the main results.  
 
 

2 Notations  
 
The following notation are used in this paper: 
 
x(t)  Inventory level at time t 
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u(t) Production rate of the manufacturing system at 

time t 
d   Constant demand rate 
Umax  Maximum production rate  
c+ Incurred cost per unit of produced parts for 

positive inventory 
c-  Incurred cost per unit of produced parts for 

backlog 
MTTF   Mean Time to Fail 
MTTR   Mean Time to Repair 
Z*  Optimal Hedging point  ��� � Total cost obtained by simulation ����� Cost function estimated by regression ���	
  Cost function of the Discrete model �
�� Cost function of the Continuous C++ model ��
� Cost function of the Continuous VBA model �����    Cost function of the Flow process model ��  Regression coefficients �� ���       Differential equation for the stock dynamics 

θ Binary variable that indicates failures and re-
pairs 

 
 
3  Problem statement 

 
The present section introduces the manufacturing sys-
tem used for the comparison of the simulation models. 
The system consists of an unreliable single machine 
producing one part type. The machine can work at  
maximum capacity Umax  to satisfy a constant demand 
rate d of products. It is assumed that Umax > d. The ma-
chine is subject to failures, which are defined by an 
exponential distribution, and its respective mean is de-
noted by MTTF. After a failure the machine is repaired 
during a random amount of time given by an exponen-
tial distribution with mean MTTR.  At failure the ma-
chine stops producing parts, at this moment, the inven-
tory stock starts decreasing until the value of zero. If the 
machine is still not available, then the backlog stock 
will increase. We assume that the demand of finished 
parts is only satisfied by the inventory stock.  We can 
understand the role of the inventory stock as a safety 
stock, used to protect the machine from the effect of 
failures. Therefore, the systems dynamics are defined by 
the following differential equation: 
 �� ��� � ���� � �                                 �1� 
 
where ���� is the production rate at the instant of time � 
and � in the demand rate. The inventory and backlog 
stock implies a cost denoted by c+ and c- respectively. 
Once the production is restarted the machine is able to 
increase the inventory stock until a defined threshold or 
hedging point Z. If there is some backlogged stock the 
machine first will satisfy this backlogged demand be-
fore increasing the inventory stock.  The objective is to 
determine the production rate u(t) that minimizes  the 
total cost given by the inventory and backlog cost.  
Figure 1 presents the block diagram of the    manufac-
turing system under study. Also we want to stress that 

the production system considers the following assump-
tions: 
 

1) The machine is flexible  
2) There is an infinite supply of raw parts 
3) The machine is controlled by the Hedging Point Poli-
cy   
4) Production planning is determined in a stochastic 
environment 
5) The machine does not deteriorate after every failure 
6) The machine produces only conforming parts 
7) The failure and repair rate are constant in time 
 

 
 

Figure 1: Block diagram of the manufacturing system  
 
An important remark has to be made at this point, the 
production policy of this model can be characterized by 
a single threshold level Z* called hedging point, as  
suggested by Kimemia and Gershwin (1983). In this 
case, the production rate is defined in function of the 
stock level, as denoted in equation (2): 
 

����� � ��� ! "# ���� $ ��� ���� � ��0 ���� & �� '                                       �2� 

 
 
More precisely equation (2) defines the Hedging Point 
Policy, which suggests that when the machine is in the 
operational state it should produce at the maximum 
possible rate Umax, if the inventory level x(t) is inferior 
than the hedging point ��. Furthermore,  the machine 
should produce at demand rate d,  if the inventory level 
is exactly equal to the threshold  ��, and not produce at 
all if the inventory level exceeds the hedging point ��. 
 
 
4  Proposed approach 

 
Before presenting our proposed approach, let us point 
out that is well known in this area, that normally, the 
type of manufacturing systems such as the one   pre-
sented in section 3, yields in general to intractable  
problems, due to its complex structure. Finding an ana-
lytical solution to this type of production systems is 
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quite difficult. To cope with this difficulty, we adopt a 
simulation-based approach to determine the control 
parameter ��,  identified in equation (2). The perfor-
mance measure of interest is the expected total cost 
C(Z),  that consists of the sum of the inventory and 
backlog cost for a given capacity vector Z. This total 
cost is denoted in equation (3) as follows: 
 ��� � � +��� , +-�-                                           �3� 
 
where +� and +- are the unit cost for inventory and 
backlog, respectively. We can interpret the expressions �� and �- are the time persistent statistics of the posi-
tive and negative stock, and as a matter of fact they are 
two of the outputs of our simulation models.   
 
We are now in position to define that the first stage of 
our proposed approach, uses as base, the manufacturing 
system presented in section 3, and the production policy 
described by equation (2), to develop four simulation 
models using different modules of the ARENA soft-
ware. It has to be noted that the objective is to determine 
the most efficient option, available in this software to 
simulate this type of manufacturing systems. Subse-
quently, in the second stage of the approach, several 
simulation replications are conducted, given by a de-
fined test plan, to fit a regression equation. This  process 
is repeated for the four simulation models. At this point 
we identified from the control policy, defined in equa-
tion (2), that there is one independent variable denoted 
by the hedging point Z, and one dependent variable 
denoted by the total cost C. The idea is to use a quad-
ratic regression model to optimize the simulation results 
and estimate the total cost C as a function of the control 
parameter Z.   
 
To this end, a statistical analysis of the simulation re-
sults is carried out. More precisely, a multifactor analy-
sis of variance (ANOVA) is used to indicate if the re-
gression model gives a good fit for the simulation data. 
This analysis also provides the proportion of the ob-
served variability explained by the model that is denoted 
by the coefficient of determination.  The most important 
is that we identify the parameters of the regression 
model that will allow us to estimate the optimal value of 
the hedging point ��*, and the optimal cost ��. The re-
gression model proposed is given by equation (4) as 
follows: 
 ����� � �/ , �0  � ,  �1�1 , 2                                      �4� 
 
 
where (�/, �0, �1), are unknown parameters and 2 is the 
residual error. Non significant effects are ignored or 
added to the residual error. Using the software 
STATGRAPHICS we determine the unknown parame-
ters based on the data collected from the simulation 
runs. Also we can verify the homogeneity of the      
variances and the residual normality condition. After 
that, we compare the results in terms of accuracy and 
time economy to identify the best simulation model. 

5  Simulation models 
 
We would like to emphasize that the main concern of 
this paper, is the development of four simulation models 
to identify the most accurate and fastest option, availa-
ble in the ARENA software, for modeling systems such 
as the one presented in Section 2. Concepts as discrete 
and continuous simulation are used to develop our mod-
els. Let us remark that our first simulation model is 
based in discrete simulation. Typically, in the ARENA 
software, it exists two forms to build continuous     
models: one uses a file with C++ code to perform    
calculations for the state variable of the system, and the 
other form uses a VBA file for the calculations. We note 
that both forms are explored in this paper. Besides, there 
is other option in the ARENA software to model con-
tinuous flow of material, called Flow process, which 
also is examined in this research. The developed simula-
tion models are composed by several modules and rou-
tines that follow a network structure. The models seek 
the same objective, as discussed in section 2, but they 
differ in their internal logic. The four simulation models 
developed are:  
 
A. The Discrete model:  where changes in the state 

variable, the level of the total stock, happen at dis-
crete instants of time. 
 

B. The Continuous VBA model: combines modules of 
the ARENA software with a Visual Basic routine 
(VBA) that calculates the value of the state equa-
tion (1). 
 

C. The Continuous C++ model: combines ARENA 
modules with a C++ routine for the calculation of 
the state equation (1).  
 

D. The Flow Process model:  uses modules from the 
ARENA Flow Process template. It applies modules 
such as tanks, sensors and regulates to model the 
production system. 

 
We close this section with a brief remark concerning 
our simulation models. We adopt a block diagram struc-
ture to facilitate the understanding of the logic of the 
different models. In the next section, is explained in 
detailed the logic applied in every model. 
 
 
5.1  Discrete simulation model 
 
We shall begin the explanation of the discrete model by 
defining that it was developed based in the block dia-
gram presented in Figure 2. The distinctive feature of 
the discrete model is that all the random events and 
actualizations of the state variable, denoted by the stock 
level, are done in discrete points in time. Moreover, in 
this model, the simulated machine produces discrete 
parts. The respective description of the blocks used for 
this model is as follows: 
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1. The INITIALIZATION block read some inputs 

from an Excel file, such as the control parameter Z.  
Also it initializes the values of the rest of parame-
ters required by the model, such as: the demand rate 
d, the means MTTF and MTTR for the random   dis-
tributions of failures and repairs, and the maximum 
production rate �� !. 

2. The DEMAND RATE block uses an expression 
derived from the demand d to simulate a delay of 
time that models the constant demand of products.  
The UNRELIABLE MACHINE block, simulates 
the production of discrete parts, it defines as re-
source of the model the machine, and it uses the 
production time defined by the Control Policy 
block. The machine is unreliable due to the random 
failures and repairs defined by the MTTF and 
MTTR. 

3. The CONTROL POLICY block, is based on equa-
tion (2), and it defines the production time required 
to produce a part. To implement this block it is 
needed the value of the current stock. Also a FLAG 
is used to restart the production if the current level 
stock is inferior to the production threshold Z. 

4. The UPDATE INVENTORY LEVELS block  
actualizes the level of the positive and negative 
stock after every discrete event. In this case, after 
the production of a part, at the arrival of a demand 
or at failures. 

5. The TIME ADVANCE block actualizes the current 
time based on a schedule of discrete events, which 
are given by the exponential distribution used to 
simulate failures and repairs. 

6. The OUTPUT block sends to an external file three 
outputs of interest, such as; time persistent statistic 
of the positive and negative stock, and the durations 
expressed in seconds required to run a replication of 
the simulation model.  

 
The simulation runs until the simulation time Tsim 
reaches the stopping time Tend. This time is defined as 
the amount of time needed to ensure steady state condi-
tions.   
 

 
 

Figure 2: Simulation block diagram for the Discrete model 

 
5.2  Continuous simulation models 
 
With regard to the continuous models, the block dia-
gram applied for the C++ and VBA models is presented 
in Figure 3. The distinction of the continuous simulation 
models is that they use the differential equation (1) to 
describe changes in the stock level. The  difference 
between our two continuous simulation models,  is 
based in the type of programming language used  for the 
calculations of the differential equation (1). The name 
of the model indicates if we use a C++ or a VBA file for 
the calculations. We can understand the logic of these 
models as the continuous flow of material that is 
stopped by random failures of the machine. The descrip-
tion of the different block used in these models is as 
follows: 
 
 
1. The INITIALIZATION block reads from an Excel 

file the required input and initializes the values of 
the rest of parameters needed for the simulation, 
such as; Z, d, MTTF,MTTR and �� !. 
 

2. The FAILURES AND REPAIRS block changes the 
value of a binary variable 4 to indicate the presence 
of failures and repairs, in the systems dynamics de-
noted by equation (1).  
 

3. The CONTROL POLICY block defines the produc-
tion rate that  is implemented through the use of ob-
servation networks that raise a flag whenever the 
production threshold Z  is crossed, as denoted in 
equation (2). 
 
 

4. The STATE EQUATIONS block is defined in a 
C++ or VBA file attached to the continuous     
models. It describes the dynamics of the inventory 
using the differential equation (1), it needs for its 
operation; the production rate set by the Control  
Policy block, the constant demand d, and the value 
of the binary variable from the Failures and Repairs 
block.  

 

5. The TIME ADVANCE blocks changes the current 
time based on a schedule of discrete events, the 
value of continuous variables, threshold crossing 
events and time step specifications. 
 
 

6. The UPDATE INVENTORY LEVELS block traces 
the variations of the positive and negative stock for 
the chosen step size. The cumulative variables are 
integrated using the Runge-Kutta-Fehlberg method. 
 
 

7. The OUTPUT block sends to an external file three 
outputs of interest, where the total cost is calculated 
using equation (3). 
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Figure 3: Simulation block diagram for the Continuous   
models 

 
 
5.3  Flow process simulation model  
 
In essence, the Flow Process model simulates the pro-
duction systems as a continuous flow of material, and 
the difference with respect to the continuous models is 
that  the Flow Process model does not use the differen-
tial equation (1) to simulate changes in the stock level. 
Instead, the Flow Process model uses a graphical    
approach, based on tanks and regulators modules that 
represent in a visual form the production system. The 
logic for this model divides the total stock in two parts; 
we use a tank to simulate the positive stock and other 
tank for the negative stock. The flow between tanks is 
controlled by a series of sensors and regulators        
according to the hedging point policy. The simulation 
block diagram for the Flow Process model is presented 
in Figure 4, and the description for its blocks is as   
follows:  
 
1. The INITIALIZATION block reads from an Excel 

file the required inputs and initializes the value of 
the variables that are used to control the flow of 
material to the tanks. 
 

2. The CONROL POLYCY block uses the values of 
current stock of the tanks, detected by the Sensors 1 
block, to implement the control policy. This block 
changes, opens or closes the flow of the valve de-
fined in the Production Regulator 1 block according 
to equation (2).  
 

3. The PRODUCTION REGULATOR 1 block simu-
lates the production of material, it is a valve located 
in the tank 1 of positive stock that adds material to 
this tank. It has a flow capacity defined by the   
maximum production rate  �� !, this regulator is 
opened or closed by the random failures or other 
events detected by the sensors block. 
 

4. The SENSORS TANK 1 block, includes tree sen-
sors located in the tank of positive stock and they 
are used to detect the three conditions required by 

the production policy of equation (2). Also it indi-
cates the moment to change the flow of material to 
tank 2. 
 

5. The TANK 1 block, is the tank devoted to the posi-
tive stock, it has installed sensors to implement the 
control policy and regulators to simulate the pro-
duction and demand of products. 
 

6. The DEMAND REGULATOR 1 block, simulates 
the constant demand of product, it consist of a valve 
that subtracts material from the tank of positive 
stock at a flow rate equal to the demand d. This ac-
tivity will stop until the FLAG 1 is raised, which 
indicates the moment when it is needed to redirect 
the flow of material to tank 2 of negative stock. 
 

7. The UPDATE INVENTORY LEVELS   1 block, 
actualizes the levels of the stock after every failure, 
reparation or any other event detected by the sen-
sors. 
 

8. The FAILURES block simulates the random    
failures and repairs that influence the flow of mate-
rial in the Production Regulator 1. These events 
close or open this valve depending of the events 
experienced. 
 

9. The TIME ADVANCE block, actualizes the current 
time according to a schedule of discrete events. 
 

10. The LOGIC FOR TANK 2 block, represents the 
series of modules required to simulate the negative 
stock. The logic for this tank is very similar to the 
one of the positive stock. The difference with this 
tank 2 is that we use only one sensor to detect the 
moment to change the flow to tank 1. The rest of 
module works in the same way as explained for 
tank 1. 
 

 
 
Figure 4: Simulation block diagram for the Flow Process  

model 
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At this point we have completed the explanation of the  
block diagrams of our four simulation models, it re-
mains to determine which of these models is the best 
option to simulate the production system under    con-
sideration. The next section provides numerical exam-
ples to address this issue. 
 
6   Simulation results analysis 
 
Our primary concern in this section is to examine our 
four simulation models and eventually, determine the 
best model, based in their performance assessment. In 
this section, we have  two objectives: 1) verify the accu-
racy of the results obtained, this is done by calculating 
the error in the total cost for every model. 2) measure 
the computational time required to complete a simula-
tion run and detect any time economy with respect to 
the discrete model. We shall proceed by defining that 
from a series of off-line replications, the simulation run 
length was defined as 100,000 time units. This period 
ensures steady state condition, and the warm-up period 
is defined as 10,000 time units. The input parameters to 
be applied in the simulation models are presented in 
Table 1. According to  the given values of the MTTF 
and MTTR, the system has an availability of 91%, this 
means that the machine is be capable to fulfill the de-
mand of product, since  the condition of feasibility is 
satisfied, (Umax x 0.91 > d ).   
 

MTTF MTTR Avail. d Umax C- C+ 
1 0.1 0.91 100 120 1 10 

 
Table 1. Simulation data 

We concentrate next in the determination of the un-
known coefficients of the regression model (4), To 
resolve this problem, an interval for the production 
threshold Z was defined. Once again from off-line simu-
lations we establish that Z varies from 3 to 60. Then, we 
use an increment of 3 units in this interval to have a 
total of 20 observations. We run four replications for 
these observations, using for every replication a       
different random number stream. This is done with the 
purpose to have enough data to determine the unknown 
coefficients, and ensure independence in the results. In 
total, every simulation model, was run  (20x4) =80 
replications.  Moreover, as discussed in section 4, 
ANOVA analyses are carried out to the simulation re-
sults, applying the software STATGRAPHICS. For 
instances, Table 2 illustrates the ANOVA table for the 
data collected from the continuous C++ simulation 
model.  The statistic analysis shows that the quadratic 
regression model is a good fit for the data since the      
P-value satisfies the condition (P-value < 0.05).  Fur-
thermore, we note that the variability of the cost as a 
function of the production threshold Z, is well repre-
sented by the regression model, since the R2 adjusted 
value is 96.32%. This implies that about 97% of the 
total variability is explained by the model. The ANOVA 
table for the Discrete, Continuous VBA and Flow Pro-

cess model lead to similar conclusions, with R2 adjusted 
values of 96.6%, 96.32%, 96.36% respectively. 

 
Table 2. ANOVA table for the Continuous C++ model 

 

It is worth repeating that we use the software 
STATGRAPHICS to define the unknown parameter of 
the regression model. This statistical software has been 
successfully applied in similar context as in Berthaut et 
al. (2010). Once determined the coefficients, the      
corresponding cost functions are defined as follows: 
  ���	
 � 103.201 � 3.07156� , 0.0388909�1         �5� 
 �
�� � 98.461 � 2.86223� , 0.0367528�1            �6� 
 ��
� � 98.4602 � 2.8622� ,  0.0367522�1           �7� 
 ����� � 95.5453 � 2.71367� ,  0.035007�1        �8� 
 

 
where ���	
 , �
��, ��
� and �����  denote the cost 
functions of the discrete, continuous model with C++ 
inserts, continuous model that applies VBA and the 
Flow process model, respectively. It follows from equa-
tion (6) and equation (7), that their coefficients are very 
close. This indicates that both models provide similar 
results, since the code in the C++ and VBA files is the 
same. Conversely, it is observed a difference in the 
coefficients of the Discrete and Flow process model. 
Examining Figure 5 we observe a well fit for the regres-
sion model by the data of the continuous C++ model.  
The optimal production threshold ��*  is calculated with 
a numeric resolution method that consist in applying the 
second derivative to the cost function �����, and then 
solve the expression obtained with respect to Z. Follow-
ing this resolution, we estimate the optimal threshold as ��*=38.93 for the Continuous C++ model. This value is 
the optimal control parameter that ensures an optimal 
cost and that should be applied to the manufacturing 
system.   
 

 
 

Figure 5: Cost graphic for the Continuous C++ model 

Source SS Df MS F-Ratio P-Value 

Model 14841,2 2 7420,61 1010,09 0,0000 
Residual 565,679 77 7,34649   

Total 
(Corr.) 

15406,9 79    
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We summarized the obtained optimal control parame-
ters and optimal cost of the regression models (5-8) in 
Table 3.  
 

Model Discrete. 
 

Cont.C++ 
 

Cont.VBA 
 

Flow 
Pr. 

Estimated 
threshold, ��*    :1 (%) 

 
 

39.48 

96.6 

 
 

38.93 

96.32 

 
 

38.93 

96.32 

 
 

38.75 
96.36 

 
Table 3. Results from the regression models 

 
 
For the purpose of testing the accuracy of the results, we 
compare the simulation models with a reliable pattern, 
denoted by an analytical solution. Fortunately, the man-
ufacturing systems consisting of one machine producing 
one part type, has been studied previously by Bielecki 
and Kumar (1988), where they found an analytical solu-
tion  for the optimal threshold Z*  and optimal total cost 
C*.  Based on this, we determine the accuracy of our 
approach by   calculating the relative error between the 
total cost  given by the regression models (5-8) and the 
cost reported by the analytical solution. For this pur-
pose, we use the data of table 1 as input for the analyti-
cal model to calculate the optimal cost C* and its re-
spective optimal threshold Z*. Then, we run 30 extra 
replications using as input for the simulation models, 
the threshold ��* , estimated by the regression models. 
With the obtained data from these extra replications, we 
proceed to calculate the average total cost �;�. This pro-
cess is repeated for the four simulation models. After 
that, we calculate the relative error between the optimal 
cost C* given by the analytical model and the cost  �;� 
obtained by the regression of simulation results. 
 
The next step in our analysis involves the discussion 
about the results of  table  4, where we present the value 
of the optimal threshold Z* and the optimal cost C* 
calculated with the analytical solution., also we find the 
estimated threshold ��*  given by the regression models 
and their average total cost �;* . By analyzing table 4, it 
is therefore evident that the Discrete model presents the 
biggest relative error of 0.69%. The Continuous C++ 
and Continuous VBA model reported a small error of 
0.20%; we think that this value is similar, because in 
both models it is applied the same code in the routine 
that calculates the dynamics of the state equation. The 
Flow Process model presents a very small error of          
-0.28%.  We infer that the discrete model presents the 
biggest error because the analytical solution was origi-
nally conceived to model a continuous system and our 
discrete simulation models is only an approximation to 
the continuous case. This observation explains the  
difference in the total cost reported by the discrete simu-
lation model. Examining the results of table 4, we note 
that the Continuous simulation models (C++ and VBA) 
reports small errors compared with the analytical solu-
tion, because both, the continuous models and the ana-

lytical solution address the same system, under similar 
assumptions.  
 
We next turn our attention to the fact that from the re-
sults of table 4, we observe a difference between the 
value of the production threshold obtained by simula-
tion with respect to the threshold reported by the  ana-
lytical solution. The intuition behind this difference is 
that if we observe Figure 5, it is readily apparent that the 
zone, where is located the optimum threshold ��*, indi-
cated that the graph of the cost function is a bit flat. 
Consequently, this condition implies that in the optimal 
zone, even big changes in the production threshold Z, 
report small changes in the total cost, and so is quite 
difficult for the regression model, to capture this varia-
tions. In general, this phenomenon explains the differ-
ence found in the production thresholds of table 4. Nev-
ertheless, after comparing the optimal cost and calculat-
ing the relative error, we notice that our proposed ap-
proach based in the combination of the regression model 
and simulation works well. A prove of that is that the 
cost difference between our approach and the analytical 
solution is negligible, with a relative error below 1%.  
 
 

Model ��* 
(Sim.) 

Z* 
(Ana) 

�;* 
(Sim.) 

C* 
(Ana) 

Relative 
error 
(%) 

Discrete. 
Cont. C++  
Cont.VBA  
Flow Pr. 

39.48 
38.93 
38.93 
38.75 

35.85 
35.85 
35.85 
35.85 

45.23 
45.01 
45.01 
44.79 

44.92 
44.92 
44.92 
44.92 

0.69 % 
0.20 % 
0.20 % 
-0.28 % 

 
Table 4. Comparison of the simulation based approach and 

analytical results 
 
 
As a matter of interest, we present in table 5 some com-
plementary indices of the simulation models, such as: 
the time persistent statistics of the inventory and back-
log stock and their respective costs. The difference, 
observed in these indices for all the models, is very 
small. In future applications, we can modify the simula-
tion models to report other indices of interest such as; 
the availability of the system or the number of failures. 
Based on the obtained results, we can conclude that in 
terms of accuracy, the Continuous C++ , Continuous 
VBA and Flow Process models performs better than the 
Discrete model, if we compare their results with the 
analytical solution. 
 
 

Model X+ 
 

X - Inventory 
cost  ($/day) 

Backlog 
 cost 

($/day) 
Discrete. 
Cont. C++  
Cont.VBA  
Flow Pr. 

29.76 
29.57 
29.57 
29.23 

1.54 
1.54 
1.54 
1.55 

29.76 
29.57 
29.57 
29.23 

15.47 
15.44 
15.44 
15.55 

 
Table 5. Complementary performance indices measured 

by simulation  
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The second parameter of our interest deals with the 
computational time. We want to determine not only the 
most accurate but also the fastest option to simulate our 
manufacturing system. To accomplish this, we included 
a VBA routine to all the simulation models, that calcu-
lates the required computational time, defined in se-
conds, to simulate a replication run. The times reported 
in table 6 indicate for every simulation model, the aver-
age computational time of 80 replications. The time 
economy was calculated using as base for the indicator, 
the time of the discrete model. From the results of table 
6, we notice that the slowest model of the group is the 
Continuous VBA model, since requires in average 
782.95 seconds to run a replication. This result is even 
seven times slower than the time obtained with the dis-
crete model. In contrast, it is a remarkable fact that the 
computational time of the  Continuous C++ model re-
ports in average an outstanding time of 1.18 seconds, 
this means that compared with the discrete model it 
reports a time economy of 98.92%. This average is an 
excellent result, because it means that we obtain output 
data in almost 1% of the time required by the Discrete 
model. Besides, the benefit of the Continuous C++ 
models is double because the error reported in the total 
cost is much smaller than the discrete model.    
 

Model Discrete 
 

Cont. 
C++ 

Cont.VBA 
 

Flow 
Pr. 

Computational 
Time (sec.) 

Time Econo-
my (%) 

 
110.55 

 
- 
 

 
1.18 

 
98.92% 

 

 
782.95 

 
none 

 

 
1.34 

 
98.78% 

 
 

Table 6. Time economy 

 
Following the discussion about the results of table 6, we 
notice that the Flow Process model also runs extremely 
fast, it requires in average 1.34 seconds to simulate a 
replication run. This result implies also an excellent 
time economy, that in this cases is 98.78%.  Therefore, 
the advantage of the Flow process model is that is ex-
tremely fast and the difference in the total cost is as 
small as the Continuous C++ model.  Based on these 
results we can conclude that in terms of time economy 
the Continuous C++ and the Flow Process models are 
the fastest options, meanwhile the worse performance of 
the analysis was obtained by the Continuous VBA  
model. 
 
Let us now discus about the remarkable difference  
between the computational time of the simulation   
models.  We state that this difference in time, is based 
on the particular characteristic features of the  pro-
gramming language, applied in the models. For exam-
ple, In general, Visual Basic for Applications (VBA) 
was originally designed to be easily learned and used by 
beginner programmers. VBA facilitates a friendly inter-
action between the user and the application by means of 
a graphical user interface. Traditionally, this VBA  
interface is based on images, buttons, text boxes, etc., 

rather than text commands. The compilation of VBA 
files with this graphical interface generates more code 
lines at the machine language level than a simple C++ 
file. Thus, this increment in code line has as a conse-
quence that the computational time increases considera-
bly for the Continuous VBA model.  
 
With respect to the Flow Process model, in practical 
terms, the Flow process template provides a graphical 
interface to model continuous applications. It uses a 
visual approach to simulate the flow of material, instead 
of using differential equations as the continuous models. 
Furthermore, the time economy of the Flow process 
model is important and this model runs extremely fast 
because internally its modules are constructed using 
C++ code. Normally, C++ code takes only seconds to 
run. The technical advantage of the Flow process tem-
plate is that is relatively simple to build a simulation 
model and it gives an acceptable accuracy on the results 
at validating with the analytical solution. From what has 
been said regarding the C++ lines, we can state that the 
models which uses C++ code in its operation, such as; 
the continuous C++  model and the Flow process model, 
reported the fastest computational time, because of the 
reduced number of code lines generated at the machine 
language level. 
 
One comment about the importance of time economy is 
based on the total of 320 simulation replications needed 
in this research. The Continuous VBA model required a 
total of 17.4 hours to complete 80 replications, the Dis-
crete model needed 2.5 hours and the Continuous C++ 
and Flow Process models needed only 2 minutes to 
complete the same work. The benefit of the Continuous 
C++ model is evident, as seen in this section, because in 
a fraction of time we can complete the same amount of 
simulation runs with even a better accuracy than the 
other models.  In the future this time  economy will be 
very useful to model more complex manufacturing 
systems involving other factors and phenomenon. For 
instance, a possible future scenario would be to apply a 
Factorial Design 34 for a given simulation model to 
optimize for instance four control parameters. If we 
replicate 5 times the 34 design, this means a total of 
(34x5)= 405 simulation runs.  Besides, if we assume that 
the Discrete model would take 300 seconds per run, we 
will need in total 121,500 seconds or 1.4 days, to com-
plete the replications. For the same case, the Continuous 
VBA would finish the simulations after 9.84 days of 
continuous work,  but if we instead develop a Continu-
ous or a Flow Process model, we will need only 20.25 
minutes to find the same results and with even a better 
accuracy. Therefore, it is clear that the economy is huge 
not only in time but also in the resources implied in the 
simulations. We terminate our discussion of the models, 
by pointing out that the practical advantage of the        
Continuous C++ model is remarkable and the results 
obtained in this research are encouraging and satisfacto-
ry for the development of future and more complex 
applications in the area.  
 



ILS’2012 - August 26-29, 2012 - Quebec - Canada 

 

7  Conclusion 
 
In this paper, the production control problem of a manu-
facturing system consisting on one machine producing 
one part type subject to random failures, was used to 
test the capabilities of the Arena simulation software.  
Due to the mathematical complexity of this kind of 
manufacturing systems alternative solutions based in 
computer simulation are justified. We used the produc-
tion threshold as input to develop different simulation 
models using the software ARENA. The idea was to 
pinpoint the best option available in this software to 
simulate such manufacturing system.  We analyzed four 
simulation models and we compared their performance 
with analytical results. Two indicators were analyzed, 
the computational time and the difference in the total 
cost. We found that the Continuous C++ and Flow Pro-
cess models reported the biggest time economy by a 
ratio of hundreds compared with the Discrete and Con-
tinuous VBA models.  We believe that this time econo-
my will be improved even more as the computers 
evolve over time, and this condition will enable the 
optimization of long lines in feasible time frames,   
problem that remains complicated at the moment. The 
accuracy of the results, tells us that the simulation  
models provide solutions close to the analytical solu-
tion, and the difference observed in the results is less 
than 1%.  Future work will include the improvement of 
the Flow process model, since we experienced some     
problems at interacting with some of its modules and 
the Excel file. We found that for this model a single 
replication run is completed rapidly, but manual work is 
needed to run several replications.  The results of this 
paper is the base for the development of future applica-
tions considering more complex manufacturing systems, 
for instance, in future contributions we can examine 
factors such as; subcontracting, preventive maintenance, 
corrective maintenance, ageing, etc., just to mention 
some of them. To examine this kind of systems, normal-
ly, it is needed a great number of simulation runs, thus 
the time  economy and the accuracy of the simulation 
model applied, plays a key role for us. So far, based on 
the experience gained with this research, we can con-
clude that the Continuous C++ is the most efficient 
option to simulate the type of manufacturing systems 
presented, and that the Flow Process model is also a 
good alternative but needs to be improved more at per-
forming several replications runs.  
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