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Abstract—In this paper, we propose a fast H.264-to-HEVC
transcoder composed of a motion propagation algorithm and a
fast mode decision framework. The motion propagation algo-
rithm creates a motion vector candidate list at the coding tree
unit (CTU) level and, thereafter, selects the best candidate at
the prediction unit level. This method eliminates computational
redundancy by pre-computing the prediction error of each
candidate at the CTU level and reusing the information for
various partition sizes. The fast mode decision framework is
based on a post-order traversal of the CTU, and includes several
mode reduction techniques. In particular, the framework permits
the early termination of the rate distortion cost computation, a
highly complex task, when a mode is unpromising. Moreover, a
novel method exploits the data created by the motion propagation
algorithm to determine whether a coding unit (CU) must be
split. This allows the pruning of unpromising sub-partitions.
Compared to a cascaded pixel-domain transcoding approach, the
experimental results show that the proposed solution using one
reference frame is on average 8.5 times faster, for an average BD-
Rate of 2.63%. For a configuration with 4 reference frames, the
average speed-up is 11.77x and the average BD-Rate is 3.82%.

Index Terms—Fast mode decision, H.264, HEVC, Motion
estimation, Video transcoding

I. INTRODUCTION

H IGH Efficiency Video Coding (HEVC) is the most recent
video coding standard jointly developed by ITU-T and

the ISO/IEC Moving Picture Experts Group (MPEG) [1]. Like
prior video coding standards, HEVC adopts the hybrid video
coding scheme. Existing coding tools have been improved, at
the cost of greater computational complexity, and new tools
have been introduced, notably for better parallel processing
support. Coding efficiency is significantly improved, in partic-
ular by replacing the macroblock (MB) with a more flexible
structure, called the coding tree unit (CTU). Compared to its
predecessor, H.264 [2], HEVC halves the bit rate for similar
video quality.

To benefit from this increased coding efficiency, and to
allow interoperability between H.264 and HEVC systems,
several H.264 video sequences must be transcoded to HEVC.
We denote two important use cases: offline transcoding and
on-the-fly transcoding. The first one consists in transcoding
and storing the resulting stream for a future usage, while
the latter consists in transcoding and delivering the resulting
stream in real time to a device. In this paper, we focus on this
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second scenario on H.264 sequences using an IPPP structure
(a structure commonly used by mobile devices).

The simplest transcoding solution is to fully decode the
input sequence and re-encode the pixels data in the output
format. This approach, called cascaded pixel-domain transcod-
ing (CPDT), achieves high coding efficiency and does not
add any constraint on the encoding parameters. However, its
computational complexity is very high.

Since video compression is based on spatial and temporal
predictions, modern transcoders reuse decoded information
from the input stream to accelerate tasks related to predic-
tion. These transcoders adapt the prediction information from
one format to another, taking onto account the prediction
model differences between these two formats. In practice, this
adaptation must achieve a good compromise between coding
efficiency and computational complexity reduction.

Hence, several works propose different mode reduction
techniques since the computational complexity greatly depends
on mode evaluation [3]–[14]. Some of them perform a map-
ping between the H.264 decoded information and the HEVC
modes to evaluate. For example, Fang et al. propose heuristics
based on H.264 modes, motion vectors (MVs) variance and
encoded residual to determine a list of candidate HEVC
modes [3]. Jiang et al. adapt the CTU depth search range
according to H.264 encoded bits, and eliminate unpromis-
ing partitioning structures by an MV clustering method [4].
Because only H.264 information is considered, this kind of
approach achieves a limited speed-up or greatly affects the
coding efficiency. To improve performance, other approaches
exploit HEVC information in addition to H.264 information.
For example, Peixoto et al. build a statistical model of HEVC
rate distortion (RD) cost to establish mode-specific thresh-
olds [5]. When the RD cost for a candidate mode is below
its corresponding threshold, the rate distortion optimization
(RDO) process ends. Similarly, Shen et al. propose numerous
conditions based on H.264 information, depth levels statistics
and HEVC RD cost to terminate the CTU splitting process
[10]. However, these methods process the coarsest regions
firstly and are then not very effective in complex regions that
require a fine partitioning structure.

Motion estimation is another important issue extensively
covered in the video transcoding literature. In video coding,
motion search algorithms usually define a large search window
to find the best MV since the motion is unknown. In contrast,
several works on video transcoding refine the motion from
the input sequence by using a smaller window. This motion
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refinement is usually performed in three steps. The first step
determines an initial integer MV, usually an H.264 MV located
in the corresponding H.264 region. The second step refines
this MV with a small search range. Finally, the third step
refines the best integer MV at half and quarter pixel precision.
For the second step, some approaches use a constant search
range. For example, Shen et al. propose a heuristic, based
on H.264 MV and HEVC predictors, to select the starting
point and refine it with a search range of 4 pixels [10]. Other
authors compute the search range dynamically. For example,
Zong et al. use advanced motion vector prediction (AMVP)
as a starting point and define the search range as the greatest
difference between this point and all H.264 MVs covering
the processed region [3]. These different approaches reduce
the computational complexity for the integer pixel search
stage. However, they do not reduce the complexity of the
last step, a complex process that requires the application of
interpolation filters to calculate the pixel values located at
fractional positions.

In our previous work [15], we proposed an H.264-to-HEVC
transcoder combining a fast motion propagation algorithm
and a fast mode decision framework. The motion propagation
algorithm creates an MV candidate list at the CTU level.
Thereafter, it selects the best candidate for each inter partition
evaluated during the mode decision process. Compared to
other methods, this algorithm requires no motion refinement
and avoids computational redundancies by pre-computing pre-
diction errors during the CTU initialization. The fast mode
decision framework is based on a post-order traversal of the
CTU, and includes several mode reduction techniques. In
particular, the framework permits the early termination of the
rate distortion cost computation, a highly complex task, when
a mode is unpromising. The finest partitioning structure of
the CTU is determined by using a structural split decision
method. This method reuses the extracted H.264 modes to
determine whether a coding unit (CU) must be split to evaluate
sub-CUs. It preserves the coding efficiency, but overestimates
the maximal quadtree depth, notably for a high quantization
parameter (QP) transcoding. This overestimation limits the
speed-up since more modes are evaluated.

In this paper, we extend our previous work to improve
the transcoding performance in terms of speed-up and coding
efficiency. The motion propagation algorithm is improved
by supporting multiple reference frames, by considering the
chroma components in the motion cost equation and by using
a summed area table (integral image) to store the pre-computed
prediction errors. To improve the fast mode decision process,
a method to compute the lower bound of motion cost given
a partitioning structure is proposed. This method computes
the bounds by reusing information created by the motion
propagation algorithm during the CTU initialization. These
lower bounds are notably used by a novel CTU split decision
algorithm. The paper also presents a detailed analysis of our
motion propagation algorithm, as well as a more detailed
description of the various components and methods of the
proposed transcoder.

An overview of the proposed transcoder is given in Fig. 1.
The transcoding system receives extracted information (modes,

TABLE I: H.264 and HEVC tools comparison

Tool H.264 HEVC

Partition Size 16×16 (MB) 64×641 (CTU)
Inter partitioning 16×16 to 4×4 64×64 to 8×4 and 4×8

Motion prediction Median predictor Advanced motion vector
predictors (2 candidates)

Motion copy Skip (1 candidate) Skip/merge (5 candidates)
Motion precision Half and quarter pel Quarter pel
Intra Partitioning 16×16, 4×4 From 64×64 to 4×4

Intra prediction Up to 9 predictors Up to 35 predictors
1 CTU size is configurable from 8×8 to 64×64 samples. For our experiments, the CTU
size is set to 64×64.

MVs and residuals) from the H.264 decoder. This system
also receives information (MVs, RD cost, best mode) from
the HEVC encoder, as illustrated by the feedback loop. The
transcoding system is composed of the motion propagation
algorithm, represented by the yellow boxes, and the fast mode
decision process, illustrated by the blue boxes. These processes
will be discussed in detail in this paper.

The rest of this paper is organized as follows: Section II
presents a technical background of the H.264 and HEVC
standards, and of the HEVC HM Reference Software version
12.1. Section III presents and analyzes our motion propagation
algorithm. Section IV describes the improved fast mode de-
cision framework and present the novel split decision method
based on motion propagation information. Section V shows
the experimental results of the proposed transcoder. Section VI
summarizes the work and draws conclusions.

II. TECHNICAL BACKGROUND

This section provides the technical background and nota-
tions essential to understanding the rest of this paper. Sec-
tion II-A compares H.264 and HEVC coding tools, with a
focus on prediction tools. Section II-B and section II-C re-
spectively describe the mode decision process and the motion
search algorithms of HEVC HM Reference Software 12.1 [16],
two important modules modified in the implementation of our
approach.

A. HEVC and H.264 Coding Tools Comparison

In H.264 [2], the basic processing unit is the macroblock
(MB), and represents a block of 16×16 samples. Each MB
has a prediction mode (intra, inter or skip). An intra MB
supports 2 partition modes: 16×16 and 4×4. An inter MB
must be partitioned into 16×16, 16×8, 8×16 or 8×8 blocks.
An 8×8 block can be sub-partitioned into 8×4, 4×8 or 4×4
blocks. Each inter block has its own MV. The skip MB is a
special case of an inter MB encoded with the predicted MV
and without residual data.

In HEVC [1], the maximum block size is extended to
64×64 samples, notably to reduce the prediction cost of simple
regions [17]. The basic processing unit is the coding tree
unit (CTU), and is represented by a quadtree structure. In
this tree, each node is associated with a coding unit (CU)
denoted Ci,j , representing the jth CU at depth level i. The
quadtree maximum depth is 4 and the CU minimum size is
8×8. When a CU Ci,j is split, its children correspond to sub-
CUs Ci+1,4j+k with k = 0 . . . 3. Fig. 2 shows an example of
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Fig. 1: Proposed transcoder architecture.

C0,0

C1,0

C2,0 C2,1 C2,2 C2,3

C1,1 C1,2

C2,8 C2,9

C3,36 C3,37 C3,38 C3,39

C2,10 C2,11

C1,3

(a) Quadtree representation

C2,0 C2,1

C2,2 C2,3

C1,1

C2,8

C2,10 C2,11

C1,3

(b) Geometrical representation

Fig. 2: Example of CTU partitioning. The red path shows the z-scan
coding order and dependencies between CUs.

a CTU quadtree and its corresponding partitioning structure.
The red path in (b) shows the z-scan coding order of CUs. This
coding order determines dependencies between CUs. Hence,
a CU can only be processed when sibling nodes located to its
left and their descendants have been processed, as shown in
Fig. 2(a).

When a CU is a leaf node, it is associated with a prediction
unit (PU). The PU contains the prediction model. A PU may
be of type intra, inter or skip/merge. An inter PU supports 4
symmetric partition modes (2N×2N, N×2N, 2N×N, N×N)
and 4 asymmetric motion partition (AMP) modes (2N×nD
2N×nU, nL×2N, nR×2N).

For motion compensation, H.264 and HEVC support quarter
pel precision, but HEVC uses more efficient interpolation
filters [18]. H.264 predicts the motion by a median predictor.
HEVC improves the motion prediction by supporting two
modes: the AMVP mode and the merge mode. The AMVP
mode supports up to two motion predictors, and commonly
uses a motion search algorithm to find the best MV. The merge
mode copies motion information from a neighboring (spatial
or temporal) block. This mode supports up to 5 candidates and
activates a skip flag when no residual is encoded. In general,
the merge process propagates motion information in uniform
regions, while the AMVP process discovers a new MV in
a complex region. Table I summarizes the main differences
between H.264 and HEVC.

B. Mode Decision in the HM Encoder

To determine the best mode, the HM mode decision process
visits the CTU tree in a pre-order traversal, as shown in
Fig. 3(a). When a CU is visited, the skip/merge, inter, and then
intra modes, are evaluated by the RD cost function defined as:

JRD = (SSEluma + wchroma SSEchroma) + λmode ·Rmode (1)

where SSEluma and SSEchroma are the sum of squared errors
between the original input image block and the reconstructed
block for luma and chroma, respectively; wchroma is a weighting
factor dependent on the encoding configuration, as specified in
[16]; Rmode is the number of bits to encode the current mode
and λmode is the Lagrange multiplier.

When all the descendants of the current CU have been
visited, its JRD is compared with the combined JRD values
of these 4 sub-CUs. The CU is split when the sum of the JRD
values of the sub-CUs is smaller than that of the current CU.
This process is repeated recursively on each sub-CU when the
CU is split. At the end of the process, the best mode and CTU
partitioning are obtained.

To reduce the number of evaluated modes, the HM early
terminates the mode decision process when the current best
mode contains no residual data. This method is particularly
effective in uniform regions.
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Fig. 3: Comparison between a) HM CTU traversal and b) proposed
CTU traversal. Indices in nodes show the order in which CUs are
processed by the traversal method.

C. Motion Search in the HM Encoder

To find the best MV for an AMVP PU partition, the HM
encoder applies a four-stage motion estimation algorithm as
follows:

• 1: Select the best starting point between the two AMVP
predictors and V(0,0).

• 2: Perform a motion search with integer pel precision.
• 3: Refine the best MV at half and quarter pel precision.
• 4: Update the selected AMVP predictor as needed.
The third stage successively performs a refinement at half

and quarter pixel precision. Each refinement evaluates the 8
neighbors of the best MV. This is a complex stage because all
evaluated candidates must be interpolated with an 8-tap filter.

To select the best MV, the HM defines two motion cost
functions, one for the integer pixel precision and one for sub-
pel precision, defined respectively as :

JSAD = SAD(D) + λpred ×Rmotion (2)

JSATD = SATD(D) + λpred ×Rmotion (3)

where Rmotion is the number of bits to encode motion
information, D is the difference between the predicted block
and the original block, and λpred is the Lagrange multiplier
of the cost function, defined as:

λpred =
√
λmode (4)

For integer pixel precision, the prediction error is measured
by the sum of absolute differences (SAD), defined as:

SAD(D) =

N∑
i=1

M∑
j=1

|(dij)| (5)

where N and M are respectively the height and the width
of the block. For fractional pixel precision, the prediction error
is measured by the sum of absolute transformed differences
(SATD). However, to limit the transform complexity, the
current block is divided into partitions of 8× 8 pixels or, for
smaller blocks (4×8 and 8×4), into partitions of 4×4 pixels.
More formally, each block is divided into partitions Di,j of
S × S pixels. Then, the SATD is applied to each partition
using:

SATD(Di,j) = SAD(T(Di,j)) (6)

where Di,j is the difference between the predicted partition
and the original partition, and T(Di,j) its Hadamard trans-
form. Finally, the SATDs of each PU partition are summed up
as:

SATD(D) =

N/S∑
i=1

M/S∑
j=1

SAD(T(Di,j)). (7)

The last stage selects the AMVP predictor that minimizes
the motion cost defined by Eq. (3). The HM applies this four-
stage motion search algorithm to each AMVP PU partitions.

III. PROPOSED MOTION PROPAGATION ALGORITHM

Several approaches proposed in the video transcoding liter-
ature assume the motion information extracted from the H.264
sequence must be refined during the transcoding to preserve
the coding efficiency, compared to a CPDT approach. In fact,
motion refinement is required to exploit more accurate motion
estimation tools, such as MVs with a greater fractional pixel
precision and smaller block sizes. For example, an H.263-to-
H.264 transcoder must refine the input MVs from a half-pel
precision to a quarter-pel precision to reduce the prediction
error [19] and hence achieve a better coding efficiency.

For an H.264-to-HEVC transcoder, motion refinement
seems less necessary since both coding formats support
quarter-pel precision MVs, and the smallest block size in-
creased in HEVC from 4×4 to 8×4 and 4×8 pixels. However,
other factors may motivate the use of motion refinement. For
example, Zong et al. observed that motion refinement improves
the coding efficiency when the H.264 MV and the AMVP
selected by the HEVC encoder are different [8].

In this section, we present a motion propagation algorithm
as an alternative solution to motion refinement. The main idea
behind this algorithm is that H.264 contains motion infor-
mation sufficiently accurate to be reused in HEVC without
further refinement, but this motion information is propagated
differently in HEVC than in H.264. Hence, although the best
MV (including the reference frame index) for the currently
processed region in HEVC is generally located in the corre-
sponding region in H.264, a better MV might be found in the
neighborhood of this region or in a list of previously encoded
HEVC MVs.

The proposed algorithm creates an MV candidate list during
the CTU initialization, as will be explained in section III-A.
This list is composed of H.264 and HEVC MVs that have a
high probability of being propagated in the CTU, as analyzed
in section III-C. Thereafter, during the mode decision process,
the algorithm selects, for each AMVP PU, the best MV



1051-8215 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2017.2754491, IEEE
Transactions on Circuits and Systems for Video Technology

5

H.264 Frame n

Extraction region
of VH.264

H.264 Frame n

Extraction region
of VH.264

δ =
2

HEVC Frame n− 1

HEVC Frame n

CTU

Extraction region
of VHEVC

Fig. 4: The motion vector candidate list is composed of H.264 and
HEVC MVs extracted from the blue regions. The cells in the grids
represent the stored motion data. In the H.264 frames and the current
HEVC frame, the motion is stored on a 4×4 block basis. For HEVC
reference frames, the motion data is sub-sampled on a 16×16 block
basis. The parameter δ defines the neighborhood size around the
collocated CTU, in 4×4 blocks, of the extracted H.264 motion data.

candidate. Since all PUs evaluate the same MV candidate list,
the prediction error of each candidate is pre-computed during
the CTU initialization on a 4×4 block basis to eliminate
computational redundancy, as explained in section III-B.

A. Motion Vector Candidate List Generation

The MV candidate list generated by the proposed method is
composed of H.264 and HEVC MVs (including the reference
frame indexes) extracted from the regions shown in Fig. 4.
Since videos usually contain several regions without motion,
the null MV, denoted V(0,0), is also added to the list for all
reference frames. All duplicate MVs are removed from the
list, and the number of candidates is denoted K.

We denote VH.264 the list of all H.264 MVs extracted from
the regions collocated with the CTU region or its neighbor-
hood. The parameter δ defines the neighborhood size and
manages the trade-off between the coding efficiency and the
computational complexity. This parameter unit is a 4×4 block
because H.264 stores the motion data on a 4×4 block basis.
When δ is set to 0, the H.264 MVs are only extracted from
the region collocated in the CTU region.

We denote VHEVC the list of HEVC MVs extracted from re-
gions already processed in the CTU neighborhood (and stored
on 4×4 block basis) or collocated in the HEVC reference
frame (and stored on a 16×16 block basis since the HEVC
standard mandates the sub-sampling of temporal MVs). These
MVs are required as they can be merge candidates or AMVP
predictors for the current CTU.

B. Motion Estimation Computational Redundancy Elimination

The complex partitioning structure of a CTU can cause
major computational redundancy for motion estimation. As
the motion data of HEVC can be represented on a 4×4 block
basis, up to 24 overlapping AMVP modes (3 symmetric modes

by depth for depths 0 to 3; 4 asymmetric modes by depth for
depths 0 to 2) can cover the same 4×4 block. This number
increases to 28 if the merge modes are also considered. Hence,
the prediction error (SATD) and interpolated pixels (in case
of fractional pixel) for a given MV can be computed up
to 28 times for the same 4×4 block. The exact amount of
redundancy depends on various factors, such as the motion
activity in the CTU, the AMVP modes evaluated by the
mode decision process, and the motion estimation approach
employed (motion search, motion refinement or motion prop-
agation).

When a motion search or a motion refinement algorithm
is employed, the computational redundancy is difficult to
eliminate because the evaluated MVs are generally determined
at the PU level, and can vary from one PU to another
in the same CTU. In the literature, some parallel motion
estimation approaches have been proposed to eliminate this
redundancy [20], [21]. However, these approaches reduce the
coding efficiency because they don’t consider the real AMVP
predictors, and are not appropriate for a sequential execution.

In contrast, since the MV candidates are fixed for the whole
CTU, our motion propagation approach easily removes this
redundancy at the CTU level by pre-computing the prediction
errors (SATD) on a 4×4 block basis for each MV candidate,
as described in section III-B1. Thereafter, during the mode
decision process, the prediction errors (SATD) of each 4×4
block covering a partition are summed up to get the total
prediction error (SATD) for a PU candidate, as explained in
section III-B2.

1) Prediction Errors Pre-Computation: For all MV can-
didate, the prediction errors are pre-computed in two steps.
Since the MV has a quarter-pel precision, the first step
interpolates the predicted CTU region, usually a 64×64 region,
if necessary. The second step computes the prediction error
for each 4×4 block covering the CTU region. For a 4×4
block located at position (4x,4y) relative to the CTU upper
left corner, the prediction error function is defined as:

e4×4(x, y, k) =SATD(Bluma
x,y,k)+

SATD(BCb
x,y,k) + SATD(BCr

x,y,k)
(8)

where Bluma
x,y,k contains the differences between the predicted

and the current 4×4 luma blocks at position (4x, 4y) for
the kth MV candidate, with x, y ∈ N. BCb

x,y,k and BCr
x,y,k

represent the same differences for the corresponding 2 × 2
chroma blocks. Contrary to the original HM and our previous
transcoder [15], the chroma blocks are considered in this
equation (in addition to the luma block) to improve the
prediction accuracy.

2) Partition’s Prediction Error Computation: At the PU
level, the prediction errors of the 4×4 blocks covering the
PU partition region are summed up to get the total prediction
error. Hence, for a given PU of 4M×4N samples located at
position (4x, 4y) relative to the CTU upper left corner, the
prediction error of the kth MV candidate is computed as:

eM×N (x, y, k) =

(x+M−1)∑
i=x

(y+N−1)∑
j=y

e4×4(i, j, k) (9)
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3) Prediction Errors Using a Summed Area Table: The
complexity of prediction errors summation at the PU level
can be reduced by using a summed area table (integral image)
[22]. Hence, Eq. (8) and (9) can be advantageously replaced
by the following equations:

I4×4(x, y, k) =e4×4(x, y, k)+

I4×4(x− 1, y, k)+

I4×4(x, y − 1, k)−
I4×4(x− 1, y − 1, k)

(10)

eM×N (x, y, k) =I4×4(x+M,y +N, k)+

I4×4(x, y, k)−
I4×4(x+M,y, k)−
I4×4(x, y +N, k)

(11)

4) Best Motion Vector Selection: The cost function for an
AMVP partition is obtained by adding the motion cost to
Eq. (11) as follows:

JM×N (x, y, k, l) =eM×N (x, y, k)+

λpred ×Rmotion(k, l)
(12)

where k is the index of the selected MV and l the index
of the selected AMVP predictor. Finally, the proposed motion
propagation algorithm selects, for each partition, the k and l
combination that minimizes Eq. (12), computed as follows:

(k∗, l∗) = argmin
k=1...K,l=1..L

(JM×N (x, y, k, l)) (13)

C. Motion propagation analysis

The design of the proposed motion propagation algorithm
is based on the following hypotheses:

• Hypothesis 1: The H.264 MVs are precise enough to be
reused in HEVC without motion refinement.

• Hypothesis 2: Although the best H.264 MV for an HEVC
region is often located in the corresponding region in the
H.264 frame, in many cases, a better H.264 MV can be
found in the close neighborhood of this H.264 region.

In order to validate these hypotheses and measure the
performance of the proposed algorithm, we conducted several
experiments on an H.264-to-HEVC transcoder. In section V,
we describe the complete methodology and show that the
motion propagation algorithm has a negligible impact on the
coding efficiency compared to the HM Test Zone Search (TZS)
motion estimation algorithm used in a CPDT transcoder. Con-
sequently, these results validate Hypothesis 1. However, these
results are insufficient to validate the second hypothesis, as
they do not provide any information on the motion propagation
process.

To resolve this problem, in this subsection, we analyze
the relationship between the H.264 MVs and the HEVC
MVs obtained with our motion propagation approach. Given
an encoded HEVC block and its optimal MV, we want to
determine the relative location of the nearest H.264 block
having the same (or a similar) MV. Hence, if the nearest H.264
block is always collocated in the HEVC block, Hypothesis 2
is invalidated, and the parameter δ (defined in section III-A)
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Fig. 5: Representation of various block locations and their Chebyshev
distance. Values inside the blocks represent the Chebyshev (chess-
board) distance between a PU and a 4×4 block. Each 4×4 block
belongs either to the PU (PU) region, the above or left (AL) region
or the bottom or right (BR) region.

must be set to 0. This would lead to a transcoder in which
the MV candidate list only needs to include H.264 MVs
collocated in the HEVC block. Conversely, if the nearest H.264
block is often located outside the collocated region, Hypothesis
2 is validated, and the parameter δ must be determined.

To determine the impact of δ on the encoded HEVC MVs,
we conducted an experiment with the parameter δ set to
16 (i.e., a size of 64 pixels). This experiment computes the
distance Dblock in 4×4 blocks, between each HEVC block
and its nearest H.264 4×4 block having a similar MV. As
illustrated in Fig. 5, the distance Dblock is measured by the
Chebyshev distance. We compute the Chebyshev distance
between two blocks located at positions b1 and b2 as follows:

Dblock(b1,b2) = max(|b1x − b2x |, |b1y − b2y |). (14)

The distance between two blocks’ MVs, m1 and m2, is
also measured using the Chebyshev distance:

DV(m1,m2) = max(|m1x −m2x |, |m1y −m2y |). (15)

When this distance is lower or equal to a tolerance param-
eter t, the MVs are considered similar. In summary, for each
HEVC block, we compute the smallest distance Dblock among
the H.264 blocks having MVs such that DV ≤ t with respect
to the HEVC MV.

The CDFs of the distance between an HEVC block and
the nearest H.264 block having a similar MV are shown in
Fig. 6 for three sequences and three t values (0/4, 1/4, 3/4
pixels). The data shows two different trends for the AMVP
and merge modes. For the AMVP mode, the HEVC MV is
often collocated in the H.264 region and the CDF rapidly
converges to 1. For the merge mode, the HEVC MV is less
frequently collocated in the H.264 frame, in particular for high
QP, and the CDF does not always reach 1. This phenomenon
is explained by the fact the merge and AMVP modes play
complementary roles in HEVC. The merge mode is typically
associated to a region with a uniform motion. It propagates an
existing HEVC MV in its neighborhood and the H.264 MVs
have no direct influence on this mode. Inversely, the AMVP
mode is usually used to represent a discontinuity in motion.
This discontinuity is generally present in the collocated H.264
region or its neighborhood. Finally, increasing the QP favors
the merge modes (as shown in Fig. 7(a)) and coarser partitions.
Consequently, the HEVC MVs located in the neighborhood
gain influences over the H.264 MVs when the QP increases,
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Fig. 6: CDF of the distance Dblock, measured in 4×4 blocks, between an HEVC block and the nearest H.264 block having a similar MV
for AMVP and merge modes using RaceHorses, BQSquare and Keiba video sequences at various QPs and tolerance levels. Two MVs are
considered similar when their Chebyshev distance is less or equal to a tolerance of t pixels.

and the HEVC MV associated with a merge mode is more
rarely collocated in the H.264 frame.

These results validate Hypothesis 2 for both modes. Indeed,
the encoded HEVC MV is not always present in the collocated
H.264 region because P (Dblock = 0) < 1, but is present in
a close neighborhood since P (Dblock = 0) < P (Dblock ≤ d)
with small values of d. However, it is important to note that the
merge mode has no direct influence on the choice of δ since the
merge mode uses MVs already present in VHEVC. Although the
increase of δ makes it possible to find a better H.264 MV for a
PU, we found experimentally that the best trade-off between
coding efficiency and computational complexity is achieved
when the δ is set to 1 (i.e., 4 pixels).

From Fig. 6, we can also observe that when the tolerance is
set to 3/4 pixels, the CDF of the AMVP modes are close to 1
for d = 0. That means the increase of δ when t = 0 generally
has the effect of finding a MV similar to an H.264 MV collo-
cated in the PU region followed by a refinement. Hence, the
data suggests that the motion propagation algorithm (without

refinement) over a neighborhood can achieve a similar MV as a
fractional-pixel motion refinement algorithm using collocated
MVs. We will show this is the case in section V.

Since the motion is predicted from previously encoded
blocks located above or to the left of the current block, the
next experiment studies the relationship between the encoded
HEVC MV and the H.264 location where this MV is found.
We define four locations: the AL, PU, BR and absent locations.
As shown in Fig. 5, the AL location is an H.264 region located
above or to the left of the PU region; the PU location is the
H.264 region collocated in the PU region; and the BR location
is an H.264 region located below or to the right of the PU
region, but absent from the AL location. These locations are
analyzed in this order to determine where HEVC MV is found
for the first time. If the HEVC MV is not found, the MV is
associated with the absent location.

From Fig. 7(b) and Fig. 7(c), we once again observe two
different trends for the merge and AMVP modes that corrobo-
rate the idea that these modes have two distinct roles. Hence,



1051-8215 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2017.2754491, IEEE
Transactions on Circuits and Systems for Video Technology

8

the PU location is largely more frequent for the AMVP mode,
as compared to the merge mode. This location represents the
emergence of a new MV in the H.264 region (i.e., an MV not
present in the AL location). The merge mode is inappropriate
to represent this discontinuity in motion. Inversely, the location
AL is more frequent in the merge mode, since this mode
propagates an HEVC MV located above or to the left of
the PU. The merge mode also includes a greater occurrence
of absent MVs from the considered H.264 MVs (i.e., only
present in VHEVC). An MV absent from the H.264 MVs may
correspond to an H.264 MV spatially located outside the H.264
extraction region, but propagated via an HEVC MV located
in the neighborhood. Alternatively, it may correspond to an
HEVC MV extracted from an HEVC reference frame.

In summary, the proposed motion propagation algorithm is
based on two hypotheses. Hypothesis 2 was validated in this
section, and Hypothesis 1 will be validated in section V. We
have shown that the relationship between the H.264 and HEVC
MVs is different for the AMVP and the merge modes. Our
experiments have shown that the best trade-off between coding
efficiency and computational complexity is achieved when the
δ is set to 1.

IV. FAST MODE DECISION FRAMEWORK BASED ON
POST-ORDER TRAVERSAL OF THE CTU STRUCTURE

As mentioned earlier, many researchers have proposed
approaches to reduce the complexity of the mode decision
process in an H.264-to-HEVC transcoding context. These
approaches reuse information extracted from H.264 to create a
subset of modes to be evaluated by the HEVC mode decision
process. In addition to these mode reduction techniques, few
approaches early terminate the mode decision process when
the current best HEVC mode is satisfactory; for instance, when
it has an RD cost under a threshold.

All of these approaches are based on a pre-order traversal of
the CTU structure, as shown in Fig. 3(a). To reduce the number
of evaluated CUs, these approaches must successively:

1) Determine whether the current CU must be processed,
usually by exploiting extracted information from H.264,
and process it if needed.

2) Determine whether the sub-CUs must be processed, ide-
aly by exploiting extracted information from H.264 and
the HEVC information of the current CU, when this latter
has been processed.

These are two complex decisions because many combina-
tions of sub-CUs and PUs are possible, and any of them may
improve the coding efficiency of the current CU. For example,
CU #1 in Fig. 3(a) competes with several combinations of
sub-CUs and PUs. It is therefore difficult to determine if the
transcoder must process this CU, its sub-CUs, or both of them.
In addition to this problem, the pre-order traversal allows a
comparaison between a CU (the CU #2) and its sub-CUs (#3,
#4, #5 and #6) only when all their modes have been processed.
The current CU (CU #2) can’t be compared to a sub-CUs (CU
#3), since the two CUs have different sizes and are therefore
incompatible. Hence, information on the current CU is not
helpful to take a decision on a single sub-CU in a pre-order
traversal.
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(c) Distribution of H.264 locations for merge modes

Fig. 7: Motion propagation characteristics of encoded HEVC MVs:
(a) shows HEVC MVs are often propagated since the merge mode is
more frequent than the AMVP mode, (b) shows the encoded HEVC
MV is frequently collocated with the H.264 region for an AMVP
mode, (c) shows this MV is frequently located above or left of the
H.264 region for the merge mode.
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To address these issues, we opted for a post-order traversal
of the CTU structure as shown in Fig. 3(b). This traversal
reverses the previous problem and, hence, the transcoder must
successively:

1) Determine whether the sub-CUs of the current CU must
be processed, by exploiting extracted information from
H.264 and information derived by the motion propagation
algorithm, and process recursively the sub-CUs if needed.

2) Determine whether the current CU must be processed,
by exploiting information extracted from H.264 and com-
puted during the processing of sub-CUs.

For a sub-CUs combination (CUs #1, #2, #3 and #4 on
Fig. 3(b)), the transcoder must decide whether the parent CU
(CU #5) must be processed and, if that is the case, which
PU modes must be processed. This problem is simpler than
the problem related to the pre-order traversal for two reasons.
First, the current best mode is in competition with only one
mode a time (a PU mode of the parent CU). Second, the best
sub-CUs combination covers the same region as the parent
CU. Hence, information of these sub-CUs can be combined
and used to take a decision on the parent CU. For example, in
the proposed approach each promising mode computes a low-
complexity cost, denoted by JPM. The JPM of the best sub-CUs
combination are summed and compared with the JPM cost of
the parent CU to early terminate its processing if necessary.

The main algorithm of the proposed approach is shown
in Fig. 8, where Ci,j represents the jth CU at depth level
i as shown in Fig. 2. The first part (lines 3-10) of this
algorithm processes all the descendants of the current CU
recursively according to a post-order traversal. The CU-SPLIT
has the role to determine if the sub-CUs must be visited
by exploiting available information. The second part (lines
11-18) processes the PU modes of the current CU returned
by the CANDIDATE-MODES function (line 12). A PU mode
is evaluated in two steps. The first step (line 13) computes
the low-complexity cost JPM by calling the PU-PM-COST
function. If the candidate mode is promising (condition on
line 14 is satisfied), the second step computes the RD cost,
a high-complexity cost function denoted by JRD, by calling
the PU-RD-COST function. The condition on line 14 is very
effective at reducing computations in the proposed post-order
traversal because the JPM of the best sub-CUs combination can
be compared with the JPM of a PU belonging to the parent
CU.

A. Split Decision

The first step (line 4) of the CU-PROCESS function (Fig. 8)
consists in determining if the current CU must initially be split.
The split decision is taken by the CU-SPLIT function shown in
Fig. 9. This function comprises two alternative split decision
methods : a structural split decision method (lines 6-7), already
proposed in our previous work, and a novel motion-based split
decision method (lines 9-15).

The structural approach creates a direct mapping between
the H.264 partitioning structure and the split decision for a
16×16 CU based on the assumption that HEVC partitioning is
rarely finer than H.264 partitioning. Hence, the H.264-DEPTH

1 procedure CU-PROCESS(Ci,j)
2 JRD[Ci,j ]← JPM[Ci,j ]←∞
3 . Recursively process the sub-CUs
4 if CU-SPLIT(Ci,j)
5 JRD[Ci,j ]← λmode ·Rsplit
6 JPM[Ci,j ]← λpred ·Rsplit
7 for k ← 0 to 3
8 CU-PROCESS(Ci+1,4j+k)
9 JRD[Ci,j ]← JRD[Ci,j ] + JRD[Ci+1,4j+k]

10 JPM[Ci,j ]← JPM[Ci,j ] + JPM[Ci+1,4j+k]

11 . Process inter PUs of CU
12 for each m in CANDIDATE-MODES(Ci,j)
13 JPM[m]← PU-PM-COST(Ci,j ,m)
14 if (JPM[m] < (JPM[Ci,j ] + T )
15 JRD[m]← PU-RD-COST(Ci,j ,m)
16 if JRD[m] < JRD[Ci,j ]
17 JRD[Ci,j ]← JRD[m]
18 JPM[Ci,j ]← JPM[m]

Fig. 8: The CU-PROCESS procedure is the main algorithm of
the proposed fast mode decision framework. The CTU traversal is
performed by passing the parameter C0,0 to this procedure.

1 function CU-SPLIT(Ci,j)
2 size← CU-SIZE(Ci,j)
3 if size = 8 . If maximal depth reached
4 return FALSE
5 if size = 16
6 . Structural split decision
7 return (H.264-DEPTH(Ci,j) = 1)
8 else
9 . Motion-based split decision

10 if H.264-HAVEINTRA(Ci,j)
11 return TRUE
12 else
13 ĴNonSplit ← CU-MIN-COST(Ci,j ,i,i,i)
14 ĴSplit ← CU-MIN-COST(Ci,j ,i+ 1,3,i)
15 return (ĴSplit < ĴNonSplit)

Fig. 9: The boolean CU-SPLIT function takes the decision whether
or not to split the CU Ci,j to evaluate sub-CUs.

function returns 1 when the smallest H.264 partition is equal
to or less than 8×8 samples. Since HEVC supports larger
partitions than H.264, this method is not applicable for a CU
greater than 16×16 pixels.

To resolve this limitation, our novel motion-based split de-
cision method exploits data created by the motion propagation
algorithm to determine if a CU must be initially split or
not. This method is applicable on 64×64 and 32×32 CUs,
except when the collocated H.264 region has at least one intra
MB. In this case, the CU is automatically split since motion
information is not accurate enough to predict the partitioning
structure and a H.264 intra region usually represents a complex
region that requires a fine partitioning structure in HEVC.

1) Motion-Based Split Decision: The motion-based split
decision method reuses the motion vector candidate list and the
pre-computed prediction errors generated by our motion prop-
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Fig. 10: Illustration of the linear relationship between the differences
of lower bounds of motion cost, ĴNonSplit − ĴSplit, and the differences
of real motion costs, JNonSplit − JSplit. To get the lower motion cost,
the CU must be split for blue observations, and non-split for red
observations. The observations are obtained from CUs of 32×32
samples.

agation, during the CTU initialization, to determine whether a
CU split has the potential to reduce the motion cost. Since
the motion predictors are partially unknown when the CU
CU-SPLIT function (Fig. 9) is called, the proposed method
approximates the real motion cost by computing two lower
bounds. One bound, denoted ĴNonSplit, is computed for the non-
split case (line 13), and the other, denoted ĴSplit, is computed
for the split option (line 14).

As shown in Fig. 10, the difference between ĴNonSplit and
ĴSplit is highly correlated with the difference between JNonSplit
and JSplit, the real motion costs. Moreover, the plots show
the difference between JNonSplit and JSplit is generally lower
than the difference between ĴNonSplit and ĴSplit, i.e., the data is
generally located under the dashed line. Based on this latter
observation, the motion-based split decision method decides
to split a CU only when ĴSplit is lower than ĴNonSplit (line
15). This condition allows to preserve the coding efficiency
and reduces the number of evaluated modes compared to the
structural method presented in our previous work.

2) Lower Bound Calculation: The lower bounds of motion
cost are computed by the recursive function CU-MIN-COST
presented in Fig. 11. The input parameters are: the CU
Ci,j , the lower and upper allowed depths, denoted l and u,
respectively, and the current depth level c. Hence, line 15 of
the CU-SPLIT function (Fig. 9) computes the lower bound of
Ci,j for the non-split case (lower bound for the current depth
level i). While, line 16 computes the lower bound for the split
case (lower bound for depth levels from (i+ 1) to u). In our
experiments, we set u to 3. This depth level corresponds to
a CU of 8×8 samples, the smallest CU size allowed by the
HEVC standard.

The first part (lines 4-12) of the CU-MIN-COST function
(Fig. 11) computes the lower bound for each inter modes
(2N×2N, N×2N and 2N×N) in the current CU and selects
the lowest one as the Jmin. The second part (lines 14-20) re-

1 function CU-MIN-COST(Ci,j , l, u, c)
2 Jmin ←∞
3 if c ≥ l
4 . Process inter PUs of CU Ci,j

5 for each mode in INTER-MODES(Ci,j)
6 J ← λpred ·mode.Rmin
7 for each partition in mode
8 (x, y)← partition.position
9 (M,N)← partition.size

10 J ← J +min(eM×N (x, y, k)|k = 1..K)

11 if J < Jmin
12 Jmin ← J

13 if c < u
14 . Recursively process the sub-CUs
15 c← c+ 1
16 J ← λpred ·mode.RSplit
17 for k ← 0 to 3
18 J ← J+ CU-MIN-COST(Ci+1,4j+k, l, u, c)
19 if J < Jmin
20 Jmin ← J

21 return Jmin

Fig. 11: The CU-MIN-COST function recursively computes a lower
bound for JPM, denoted Jmin, given a CU Ci,j , a lower depth l, an
upper depth u and the current depth c.

cursively computes the lower bounds for sub-CUs and updates
the Jmin as needed. The lower bound calculation is performed
by reusing the prediction errors pre-computed by the motion
propagation algorithm during the CTU initialization. Since the
neighboring CUs are partially or totally unknown, the lower
bound calculation assumes the motion predictors are unknown,
and the motion cost is then not considered. However, a penalty
cost is added based on the partitioning structure.

This penalty cost corresponds to an approximation of the
minimal number of bits required to encode the prediction
information. Hence, the lower bound of a PU (lines 6-12)
is computed by summing the minimization of Eq. (12) (line
10) for each partition and adding the penalty bits, denoted
mode.Rmin, multiplied by the Lagrange multiplier λpred (line
6). The lower bound for the sub-CUs is computed similarly
by summing the lower bounds of the 4 sub-CUs and adding
a penalty cost for the split.

We have experimentally determined the penalties with the
objective of preserving the coding efficiency. For a PU with
a single partition, 3 bits of penalty are used, while 8 bits
are used for a PU with two partitions. A penalty of 1 bit,
denoted mode.RSplit, is added when a CU is split, in order
to evaluate sub-CUs. Finally, the complexity of the CU-MIN-
COST function is low since the computation of Jmin reuses
the MV candidate list and the pre-computed prediction errors
created by the motion propagation algorithm during the CTU
initialization.

B. Candidate Modes Selection

The CANDIDATES-MODES function called by the CU-
PROCESS returns a list of PU modes to be evaluated by
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the current CU. The modes are returned in the following
order: inter modes, from finer to coarser partitions; merge/skip
modes, sorted in ascending order based on their JPM cost; and
intra modes, from coarser to finer partitions. All inter modes
are disabled when the collocated H.264 region only has intra
modes. Moreover, when the H.264 region has no residual,
finer partitioning than H.264 is disabled in HEVC since the
partitioning structure is already efficient in H.264. All these
rules are applied when the fast mode decision (FMD) option
is enabled (see section V).

When the ultra fast mode decision (UFMD) method is
activated, more modes are removed by applying the following
rules:

• Intra modes are disabled when the collocated H.264
region has no intra MB, as proposed by other authors
[10], [23].

• The AMP modes are disabled since they are time-
consuming and have little influence on the coding effi-
ciency, as observed by other authors [9], [10], [12].

The use of the UFMD method is only recommended when
an extra speed-up, in addition to the one obtained by the
other proposed approaches is desired, since it comes with an
additional RD cost penalty.

C. Early Termination of the RD Cost Calculation

The motion propagation algorithm presented in section III
selects, at a low computational cost, the MVs for a PU mode.
However, the processing of such mode is still a complex task
in the HM because the full RD cost calculation requires the
performance of highly complex operations, such as recursive
transforms and entropy coding [24]. For an intra CU, an
important part of the complexity is also due to the RD
cost computation. However, the rough mode decision (RMD)
method implemented in the HM reduces this complexity
by selecting a subset of prediction candidate modes to be
evaluated by the full RD cost calculation. The selection of
the subset modes is based on a low complexity cost defined
as:

JPM = (SATDluma) + λpred ·Rpred (16)

where SATD is the sum of absolute Hadamard transformed
coefficients of the prediction error, λpred is equal to

√
λmode

and Rpred is the number of bits needed to encode prediction
information.

This method reduces the complexity of the RD cost com-
putation for an intra mode. However, this reduction is limited
since information on other modes is ignored. Moreover, the
JPM cost is unexploited by inter modes. To resolve these
issues, the proposed mode decision process divides the mode
processing into two parts: the PU-PM-COST (line 13 in Fig. 8)
and the PU-RD-COST (line 15 in in Fig. 8). The first part
computes the low complexity cost, JPM, and the second, the
high-complexity RD cost, JRD, only for a subset of candidates.

For an inter mode, the JPM corresponding to the cost
returned by the motion propagation algorithm and for an intra
mode, is the best JPM computed by the RMD method. The
PU-RD-COST function is only computed when the following
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Fig. 12: Impact of threshold T on the total RD cost increase and the
ratio of evaluated modes for the Racehorses sequences encoded with
a QP set to 22.

criterion is true (otherwise, the mode evaluation is early
terminated):

JCurrent
PM < (JBest

PM + T ),where T ≥ 0 (17)

where JCurrent
PM is the low complexity cost of the currently

processed mode and JBest
PM , is the low complexity cost of

the best mode so far. The threshold T controls the trade-off
between the coding efficiency and computational complexity
of the transcoder. For our experiments, it is empirically set to
3×λpred. Fig. 12 shows how the threshold T influences: 1) the
ratio between the number of modes for which the JRD cost
is evaluated and the total number of modes 2) the increase of
the total RD cost error when a mode is not tested but has a
better JRD cost. We can see that the best compromise is when
T ≈ 0.

The early termination criterion can only be applied when the
compared modes have the same size. In the pre-order traversal,
the usage of this criterion is limited since it is impossible
to compare a CU with a sub-CU. However, the proposed
post-order traversal allows this criterion to be applied on the
combination of 4 sub-CUs (the JPM obtained by the recursive
process of Fig. 8) and the current PU candidate (the JPM
computed on line 13 of Fig. 8).

Finally, the mode evaluation is also early terminated when
an inter PU comprises two partitions having the same MV.
This condition assumes that a coarser PU, with only one
partition, will encode the same MV at a lower cost during
the mode decision process.

V. EXPERIMENTAL RESULTS

In our experiments, the input stream is generated by the
H.264 JM Reference Software 18.2 using the Baseline profile
and the fast full search motion estimation algorithm. The pro-
posed transcoding approach is compared to a CPDT approach.
Both transcoders are based on the HEVC HM Reference Soft-
ware 12.1, and use a low delay P setting. The CPDT transcoder
employs the TZS search, a fast search motion estimation
algorithm. We evaluate two reference frame structures: an non-
hierarchical IPPP structure with one reference frame, denoted
IPPP1; and an non-hierarchical IPPP structure with 4 (short-
term) reference frames, denoted IPPP4. The H.264 sequences
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are generated to have the same number of reference frames as
the one used by the transcoding simulations.

We ran the simulations on the recommended classes B to
D sequences from the common test conditions [25]. The test
sequences were fully encoded and transcoded with a QP set
to 22, 27, 32 and 37. The impact on the coding efficiency was
measured by using the Bjøntegaard Delta-Rate (BD-Rate) [26].
The computational complexity reduction was measured as the
speed-up between the HEVC encoding time of the proposed
transcoder and the CPDT transcoder. The H.264 decoding time
was not considered, but it would have had little impact on the
results.

Table II summarizes the performances of the proposed ap-
proach relative to the CDPT transcoder. Three configurations
of the proposed transcoder are compared: i) the proposed
transcoder with only the motion propagation enabled, denoted
MP; ii) the complete transcoder with the FMD method en-
abled, denoted MP+FMD; and iii) the complete transcoder
with the UFMD method enabled, denoted MP+UFMD.

A. Comparison of the Transcoding Configurations

As shown in Table II, the proposed motion propagation al-
gorithm (motion propagation (MP) only) reduces the encoding
time and tends to preserve or improve the coding efficiency, es-
pecially when one reference frame is used. The impact on the
BD-Rate demonstrates that the proposed motion propagation
algorithm is precise enough to replace a motion refinement
algorithm in the proposed transcoding context. Indeed, in
many cases, the motion propagation algorithm outperforms the
HM, executing a full re-encoding, as shown by the negative
BD-Rates. These slight coding efficiency improvements are
caused by different factors, such as the chroma components
considered in the motion cost function and the higher number
of quarter-pel positions evaluated by the proposed algorithm.
Results also show that the speed-up increases significantly
when a higher number of reference frames is used at the cost
of a slight increase of BD-Rate.

When the MP+FMD configuration is used, the speed-up
increases dramatically and the coding efficiency is still rea-
sonable. The MP+UFMD increases more the speed-ups, but
at at the cost of a greater impact on the coding efficiency.
Usage of this latter configuration is only recommended when
the execution time is crucial.

B. Comparison With Related Transcoding Works

The proposed transcoder with the novel motion-based split
decision method outperforms related transcoding works in
terms of speed-up, and has a low impact on the coding effi-
ciency. For the IPPP1 reference frame structure, the MP+FMD
simulations achieves an average speed-up of 8.5x and average
BD-Rate of 2.63%. In contrast, the fast transcoder based on
content modeling and early termination (CM+ET) proposed by
[5] Peixoto et al. achieve an average speed-up of 3.83x and
an average BD-Rate of 7.56% [5] for similar test conditions.
Table III presents a comparison between our MP+FMD ap-
proach, our previous approach [15] and the CM-ET approach
[5] for four sequences. Results show our MP+FMD approach

TABLE II: Performances of the proposed transcoder compared to a
CPDT transcoder. Three transcoding configurations and two refrence
frame structures are evaluated

Reference frame structure

IPPP1 IPPP4

Sequence Method Speed-Up BD-Rate Speed-Up BD-Rate

BasketballDrive
1920×1080

(Class B)

MP 1.48 -0.23 2.71 -0.38
MP+FMD 6.42 4.36 11.63 2.99
MP+UFMD 6.90 7.29 12.28 8.07

BQTerrace
1920×1080

(Class B)

MP 1.45 -0.96 2.11 -0.44
MP+FMD 9.62 1.44 12.65 6.20
MP+UFMD 11.15 1.93 15.54 6.68

Cactus
1920×1080

(Class B)

MP 1.40 0.54 2.23 0.85
MP+FMD 8.26 4.64 12.25 5.62
MP+UFMD 9.36 7.85 14.32 8.24

Kimono
1920×1080

(Class B)

MP 1.39 0.96 2.44 1.26
MP+FMD 6.79 5.86 11.08 5.93
MP+UFMD 7.76 6.27 12.97 5.93

ParkScene
1920×1080

(Class B)

MP 1.44 0.70 2.18 1.74
MP+FMD 8.90 2.56 11.97 3.75
MP+UFMD 10.46 3.87 14.91 4.95

BasketballDrill
832×480
(Class C)

MP 1.39 -0.66 2.30 0.08
MP+FMD 8.36 3.34 13.66 5.26
MP+UFMD 10.21 6.33 15.86 8.25

BQMall
832×480
(Class C)

MP 1.38 -0.34 2.14 0.16
MP+FMD 9.11 2.89 13.40 4.17
MP+UFMD 11.27 5.55 16.18 6.39

PartyScene
832×480
(Class C)

MP 1.34 -0.15 1.95 0.44
MP+FMD 8.83 2.00 12.06 3.11
MP+UFMD 10.91 3.27 14.27 4.41

RaceHorses
832×480
(Class C)

MP 1.38 -0.99 2.34 -0.46
MP+FMD 7.41 1.00 12.57 1.72
MP+UFMD 9.12 2.94 14.52 3.53

BasketballPass
416×240
(Class D)

MP 1.35 0.09 2.00 0.08
MP+FMD 8.44 2.33 10.49 2.77
MP+UFMD 9.38 4.96 12.22 5.12

BQSquare
416×240
(Class D)

MP 1.35 0.17 1.77 1.01
MP+FMD 10.80 0.78 11.10 2.39
MP+UFMD 13.03 1.60 14.22 3.69

BlowingBubbles
416×240
(Class D)

MP 1.35 0.38 1.83 1.48
MP+FMD 9.11 2.17 10.01 3.94
MP+UFMD 10.49 3.89 12.09 5.45

RaceHorses
416×240
(Class D)

MP 1.33 -0.87 2.02 -0.25
MP+FMD 8.48 0.87 10.17 1.75
MP+UFMD 9.25 3.18 12.14 3.84

Average
MP 1.39 -0.10 2.16 0.45
MP+FMD 8.50 2.63 11.77 3.82
MP+UFMD 9.92 4.53 13.80 5.91

increases the speed-up with a low impact on the coding effi-
ciency compared to our previous work. Moreover, we achieve
better results than the CM-ET for all compared sequences.

For an IPPP4 reference frame structure, the MP+FMD
simulations achieve an average speed-up of 11.77x and average
BD-Rate of 3.82%. In comparison, the fast transcoder based
on region feature analysis (RFA) proposed by Jiang et al.
achieves an average speed-up of 2.0x for an average BD-Rate
of 1.73% [4] for similar test conditions. Several sequences are
compared in Table IV.

Shen et al. proposed a parallel transcoder with SIMD
acceleration that achieves a speed-up of up to 70x [10].
However, the speed-up decreases between 2 and 10x when
the SIMD acceleration and parallel processing are disabled,
and the coding efficiency is largely affected (the authors didn’t
measure the average BD-Rate).



1051-8215 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2017.2754491, IEEE
Transactions on Circuits and Systems for Video Technology

13

TABLE III: Comparisons of the proposed transcoder, our previous
work [15], and the CM+ET approach [5], for a low delay P setting
with one reference on 416×240 (Class B) sequences

Proposed MP+FMD Previous work [15] CM-ET [5]

Sequence Speed-Up BD-Rate Speed-up BD-Rate Speed-Up BD-Rate

Kimono1 6.79 5.86 6.20 5.73 3.88 4.54
ParkScene 8.90 0.88 7.27 1.57 4.55 6.39
Cactus 8.26 4.64 6.66 3.50 4.51 8.95
BasketballDrive 6.42 4.36 5.80 4.44 3.70 6.57

Average 7.59 3.96 6.49 3.81 4.16 6.61

TABLE IV: Comparisons of the proposed transcoder and the RFA
approach [4], for a low delay P setting with 4 reference frames

Proposed MP+FMD RFA [4]

Resolution Sequence Speed-Up BD-Rate Speed-up BD-Rate

1920×1080
(Class B)

Kimono1 11.08 5.93 2.00 0.01
ParkScene 11.97 3.75 1.91 0.58
Cactus 12.25 5.62 1.90 0.05
BasketballDrive 11.63 2.99 1.99 0.03

832×480
(Class B)

RaceHorses 12.57 1.72 2.01 0.65
BQMall 13.40 4.17 1.93 0.91
PartyScene 12.06 3.11 1.82 3.45
BasketballDrill 13.66 5.26 1.98 0.03

416×240
(Class B)

RaceHorses 10.17 1.75 2.02 2.79
BQSquare 11.10 2.39 1.78 4.55
BlowingBubbles 10.01 3.94 1.71 4.38
BasketballPass 10.47 2.77 1.99 1.87

Average 11.70 3.62 1.92 1.61

As several related works, the proposed approach doesn’t
support video transcoding scnenarios with B-frames. An ex-
ample of an approach supporting B-frames have been proposed
by Peixoto et al [27]. The authors claim a speed-up between
1.97 and 2.91, and a BD-Rate between 1.57% and 9.83%.

C. Comparison With Fast Mode Decision Approaches

We compared the results of our MP+FMD approach with
two fast encoding approaches employed in a transcoding
context: the fast HM (FHM) and an efficient mode decision
schema (EMDS) proposed by Vanne et al. [28]. The FHM is
the HM 12.1 configured to use the adaptative motion search
range (ASR) and three fast mode decision algorithms already
present in the HM: the early CU (ECU) [29], the early skip
detection (ESD) [30] and the coded block flag fast mode
(CFM) [31]. The EMDS is a fast mode decision approach
that uses some heuristics to determines which symmetric
motion partitions (SMPs) and AMPs must be evaluated. The
authors present several schemas offering different trade-offs
between speed-up and coding efficiency. For our simulation,
we implemtend in the HM 12.1 the scheme identified as S28

by the authors. This schema favors speed-up over coding
efficiency. Finaly, we have combined the FHM and EMDS
in an approach called FHM+EMDS.

Results for IPPP1 and IPPP4 reference frame structures are
presented respectively in Table V and Table VI. Compared to
the FHM-EMDS, the MP+FMD is about 3 to 5x faster and
acheives better BD-Rate for several sequences. Compared to
the FHM and EMDS, our method is about 4 to 8x faster with
a reasonnable BD-Rate. So, the performance of our approach

are especially interresting for a real-time transcoding context,
where the encoding speed is more important than the BD-Rate.

VI. CONCLUSION

In this paper, we proposed a fast H.264-to-HEVC transcod-
ing approach combining a motion propagation algorithm and
a fast mode decision framework. The motion propagation
algorithm requires no motion refinement, eliminates motion
estimation computational redundancy, and has a very low
complexity at the PU level. The mode decision framework is
based on a post-order traversal of the CTU. It includes some
candidate mode reduction techniques and a criterion to early
terminate the RD cost computation. Finally, the structural split
decision developed in our previous work was advantageously
replaced by a motion-based split decision method.

Our experiments show that the proposed transcoder is much
faster than related works, and achieves a coding efficiency
similar to a CPDT transcoder. Moreover, our novel split
decision method outperforms our previous method.

In our future research, we intend to adapt the proposed
transcoder to other coding applications, such as multi-rate
HEVC video coding. Furthermore, we intend to improve the
transcoding performance of intra modes by replacing the RMD
method with a faster method, such as the method proposed by
Jamali et al. [32]. Finally, we plan to improve the proposed
approach by supporting B-frames.
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decision schemes for hevc inter prediction,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 24, no. 9, pp. 1579–
1593, 2014.

[29] K Choi, S.H. Park, and E.S Jang, “Coding tree pruning based CU early
termination,” JCTVC-F092, Torino, Italy, 2011.

[30] J Yang, J Kim, K Won, H Lee, and B Jeon, “Early SKIP detection for
HEVC,” JCTVC-G543, Geneva, Switzerland, 2011.

[31] R.H Gweon and Y.L Lee, “Early termination of cu encoding to reduce
hevc complexity,” JCTVC-F045, Torino, Italy, 2011.

[32] M. Jamali, S. Coulombe, and F. Caron, “Fast HEVC intra mode
decision based on edge detection and SATD costs classification,” in
Data Compression Conference (DCC), 2015, April 2015, pp. 43–52.

Jean-François Franche received the B.Eng. degree
in IT engineering, the M.Sc. degree, and the Ph.D.
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