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Abstract 38 

Most hydrological models simulate snowmelt using a degree day or simplified energy 39 

balance method, which usually requires a calibration of snow-related parameters using 40 

discharge data. Despite its apparent efficiency, this method leads to empirical relations 41 

which are not proven to remain valid in a changing climate. The direct application of 42 

robust physically-based snow models in hydrological modeling is difficult due to the high 43 

number of not easily available input variables this model type requires. The objective of 44 

this study is to test the robustness of a physically-based snowpack model that requires 45 

only a limited number of common meteorological parameters. The MASiN model 46 

computes the energy and mass balance of multiple layers of the snowpack using hourly 47 

air temperature, relative humidity and wind speeds, as well as daily precipitations. 48 

MASiN was tested at 23 sites across Canada and Sweden, using a unique set of 49 

parameters fixed at a single site. At each site, the snow depth simulated by MASiN was 50 
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compared against measurements. Robustness was challenged by comparing MASiN’s 51 

performance to that of three other models on three different criteria. MASiN showed the 52 

highest robustness among the tested models. With a unique set of parameters, it showed 53 

better results than the three reference models when used in similar conditions and 54 

matched their performances when reference models were calibrated at each site. The 55 

results prove non-data intensive physically based models to be promising tools for 56 

hydrological and other snow cover-related studies. 57 

 58 

1. Introduction 59 

 60 

In Nordic regions, most precipitation occurs as snow during winter. Snow accumulation 61 

for these regions represents a major portion of the watershed water storage (Ferguson, 62 

1999) . The  release of  melt water at the end of the winter period drives the hydrology of 63 

snow-covered catchments as well as downstream areas with little or no snow (Thompson 64 

et al., 2000). In snow-dominated regions, both surface runoff and groundwater flow are 65 

strongly influenced by the amount of melt water released and its temporal distribution 66 

(Dingman, 2002; Lundberg et al., 2016). In a context where Nordic regions exhibit deep 67 

vulnerability to climate change (Minder, 2010; Stone et al., 2002),  it is necessary to 68 

properly simulate the evolution of snow cover in hydrological models, to be able to 69 

anticipate changes in water resources, flood risks and ecosystems (Ferguson, 1999; 70 

Shamir and Georgakakos, 2006; Troin et al., 2016).  71 

The phenomena occurring inside a snowpack, the interaction between a snowpack and its 72 

environment, as well as general snow physics, have been extensively studied in order to 73 
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address specific snow hydrology problems (DeWalle and Rango, 2008). The current state 74 

of the art is that we can adequately, often even expertly, model snowmelt when we have 75 

the requisite input data (Sturm, 2015).  76 

Traditionally, models simulating the evolution of a snowpack can be classified into two 77 

categories: conceptual models (CO) and energy balance (EB) models, also called 78 

physically-based models (Ohara and Kavvas, 2006). EB models developed over the last 79 

decades have proven to be highly accurate in snowpack characteristics modeling 80 

(Langlois et al., 2009). Different physically-based models, such as the “point energy and 81 

mass balance model of a snow cover” (Anderson, 1976), CROCUS  (Brun et al., 1989), 82 

SNOWPACK (Bartelt and Lehning, 2002) or SNTHERM (Jordan, 1991), among others, 83 

have been developed to simulate the evolution of a snow cover for demanding 84 

applications such as avalanche prediction. 85 

Despite their recognized performances, full EB approaches are demanding in terms of 86 

data collection and computations. For many applications in hydrology, detailed methods 87 

are simply not feasible, and simpler methods are required (Bavera et al., 2014; Franz et 88 

al., 2008; Meeks et al., 2017; Morin, 2014; Raleigh et al., 2016; Tobin et al., 2013).  89 

CO models rely mainly on empirical relationships to estimate the amount of accumulated 90 

and melted snow at a given time step (Hock, 2003). They require a calibration of their 91 

parameters against measurements in order to provide good simulated values. They can be 92 

subdivided into empirical (EM), temperature index (TI) and enhanced TI (ETI) models. 93 

EM models simply compute a unique snow characteristic like the depth of the snowpack 94 

(SD) or the snow water equivalent (SWE) based on a single equation, not specifically 95 

conveying any physical meaning (e.g. Baraer et al., 2010; Scott et al., 2003). TI models 96 
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are based on simple or enhanced degree day methods, as in CEMANEIGE (Valéry, 97 

2010), HBV (Bergström, 1976) and SRM (Martinec and Rango, 1986). TI models 98 

associate linear relationships between ablation and air temperature, usually expressed in 99 

the form of positive temperature sums (Hock, 2003). ETI models are often adaptations of 100 

the traditional TI models that aim to overcome the model’s simplicity and consequent 101 

limitations (Meeks et al., 2017). Model enhancements are achieved by incorporating 102 

additional input variables into melt equations (Brubaker et al., 1996; Machguth et al., 103 

2006; Pellicciotti et al., 2005; Singh et al., 2009) and/or adding temperature-based 104 

equations for simulating processes involved in snowpack conditions (Hock, 2003; Hood 105 

and Hayashi, 2015; Mosier et al., 2016; Rutter et al., 2009; Tobin et al., 2013; Turcotte et 106 

al., 2007). The use of CO models presents two principal advantages. They usually require 107 

simple meteorological data, such as the daily precipitation and the air temperature (daily 108 

mean or daily maximum). Using CO models also makes for short and simple 109 

formulations, meaning that the model is usually not demanding in terms of computation 110 

time (Hock, 2003). Different studies have shown that, despite their simplicity, CO models 111 

are efficient in simulating SWE evolution in time (Debele et al., 2010; Troin et al., 2016; 112 

Watson and Putz, 2014; Williams and Tarboton, 1999). Despite the obvious advantages 113 

CO models propose, concerns have been expressed relating to the fact that quantities 114 

known to influence the energy balance and snowmelt processes, such as vapor pressure, 115 

wind and reflected radiation, are neglected (Tobin et al., 2013). Moreover, recourse to 116 

extensive calibration often makes CO models less robust and raises the question of their 117 

transferability in space and time (Mauser and Bach, 2009), and their ability to provide 118 

good predictions in a changing climate has been questioned (Bougamont et al., 2007; 119 
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Ludwig et al., 2009). Snow accumulation, duration of snow cover period and snowmelt 120 

processes are expected to be strongly affected by the projected global warming trend 121 

during the 21st century (Adam et al., 2009; Barnett et al., 2005; Pohl et al., 2006). 122 

Empirical relationships that are currently used in CO models are derived from calibration 123 

using past and present conditions, and may no longer be valid in the context of future 124 

climate conditions (Warscher et al., 2013). In hydrological models, key parameters, 125 

including those describing snow, are generally calibrated against discharge measurements 126 

(Saelthun et al., 1998), and calibration of snow parameters solely at the basin outlet does 127 

not necessarily lead to optimal performances (Franz and Karsten, 2013). The snow 128 

parameters are thus sensitive to equifinalities, and can lead to unreasonable snow cover 129 

evolution estimations (Finger et al., 2015; Konz et al., 2010).  Even the use of ETI 130 

models in such conditions does not necessarily improve the overall performance of 131 

hydrological models. In general, including too many parameters requiring calibration 132 

against stream discharge causes an increase in the number of undefined parameters, 133 

which can lead to over-fitting and poor predictive capabilities of the hydrological models 134 

(Magnusson et al., 2014).  135 

Recently, increasing attention has been paid to multi snowpack models and ensemble 136 

modeling approaches in the literature (Essery et al., 2013; Franz et al., 2010; Magnusson 137 

et al., 2014). These methods allow the inter-comparison of different model types and an 138 

estimation of the modeling uncertainties associated with the various sources of error in 139 

the forecasting process (Franz et al., 2010).  However, the direct applicability of such 140 

ensemble modeling approaches to hydrology appears uncertain as they increase the 141 

computational demand while still requiring difficult-to-access meteorological parameters. 142 
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To date, the datasets required to run multiple concurrent model types have limited such 143 

approaches to a restricted number of sites and to limited periods (Essery et al., 2016).  144 

Also, useful insights have been gained; snowpack model comparisons have generally 145 

failed to find clear relationships between model complexity and performance and have 146 

not succeeded in finding an overall best model (Essery, 2015).  147 

Despite all efforts and recent advances in snowpack modeling, the choice for 148 

hydrological modelers remains mainly between CO models of different complexities and 149 

data intensive EB models. Moving ahead from this dilemma requires integrating a more 150 

process-based approach into the development of snowpack models for hydrology 151 

(Mendoza et al., 2014; Sturm, 2015). After testing 1701 different model combinations, 152 

Essery et al. (2013) concluded that models including prognostic equations for changes in 153 

snow density and albedo, and that take some account of storage and refreezing of liquid 154 

water, perform better than simpler models. Meeks et al. (2017) claim that snowmelt 155 

modeling uncertainty may be reduced by the inclusion of more data that allow the use of 156 

more complex approaches such as the energy balance method. Lundberg et al. (2016) 157 

conclude a literature review on snow and frost by underlining that process-based models 158 

are more suited than CO models for different applications such as modeling rain-on-snow 159 

events or heat advection from bare soils.   160 

Introducing empirical relationships into EB models to compensate for the lack of input 161 

data availability offers the possibility of moving toward more process-based modeling in 162 

snowpack hydrology (Förster et al., 2014; Raleigh et al., 2016). While not designed for 163 

feeding common hydrological models, snowpack models proposed by Jacobi et al. (2010) 164 
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and Strasser and Marke (2010) have demonstrated that this approach might represent an 165 

interesting solution.  166 

Another method for developing more process-based snowpack models involves keeping 167 

EB snowpack models as simple as possible by designing them based on their intended 168 

application (Magnusson et al., 2014). EB models dedicated to avalanche forecasting, for 169 

example, describe snow grain size and type, characteristics that have not been reported as 170 

critical for hydrological applications (e.g. Essery et al., 2013).  171 

In the present study, we target non-mountainous Nordic hydrological applications in 172 

designing a process-based snowpack model named MASiN (Modèle Autonome de 173 

Simulation de la Neige). The objective is to move toward the high robustness associated 174 

with pure EB models (Hood and Hayashi, 2015) with a model applicable to sites where 175 

only simple metrological variables are available. Using a survey presented by Raleigh et 176 

al. (2016) on Automatic Weather Stations across over the western United States, we 177 

selected the air temperature, precipitation, wind speed and relative humidity as model 178 

input variables. According to the survey, 35% of the 1318 studied stations that measure 179 

SWE also provide those variables, whereas only 24% also measure incoming solar 180 

radiation.  181 

Targeting hydrological applications limits the requirement for output variables to SWE, 182 

snow depth and melt water outflow volumes. Finally, targeting non-mountainous 183 

environments allows keeping coverage processes reasonable by, for example, not 184 

accounting for slope effects. Because model robustness cannot be tested on the very 185 

limited number of sites where long SWE time series exist, the model performance was 186 

assessed by evaluating its ability to estimate the more commonly measured snow depth, 187 
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the close second most fundamental metric used to characterize the hydrological role of 188 

snow (Sturm et al., 2010).  189 

Ultimately, the MASiN model’s robustness was assessed by setting a unique set of 190 

parameters on a single site and comparing its performance to other models (1) calibrated 191 

following the same protocol and (2) specifically calibrated on each test site. 192 

 193 

2. Model presentation 194 

 195 

2.1 Overview 196 

 197 

MASiN uses the hourly air temperature, relative humidity, wind speed and daily 198 

precipitations to simulate the evolution of a snowpack at a given point using the energy 199 

and mass balance method. The following outputs are provided on an hourly time basis: 200 

SD, SWE, water outflow, evaporation, temperature and density profiles of the snowpack.  201 

The snowpack is modeled using a multi-layer approach, with layers being dynamically 202 

managed to respect a maximum number of layers and a minimum depth. Based on a 203 

sensitivity analysis, the model parameters are either set to values from the literature or 204 

adjusted at one of the study sites and then left unchanged.   205 

The following are some notations to which we will refer throughout this paper: 206 

- ∆𝑡 is the sub-time step 207 

- n is the total number of layers 208 

- The subscripts t and t+1 are used to refer to values at the beginning and at the end 209 

of a computational time step, respectively 210 
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- Layers are numbered from 1 to n from the base of the pack to the top, with 211 

superscript i being used to refer to the layer considered 212 

- T is the layer temperature 213 

- M is the amount of melted snow of the layer 214 

- SWE is the snow water equivalent of the layer 215 

- LW is the liquid water content of the layer 216 

- LWHC is the liquid water holding capacity of the layer 217 

 218 

2.2 Computation frame 219 

 220 

The main computation steps of the model are presented in Fig. 1.  221 
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 222 

Fig. 1. Simplified flowchart of MASiN running procedure. The blue boxes correspond to 223 

the start and the end of the energy and mass balance computation.  224 

 225 

At the beginning of each hour of the simulation period, the precipitation intensity and 226 

incoming shortwave radiations are computed following the procedure detailed in section 227 

2.3. If a snowpack is present, the energy and mass balance of each layer is then computed 228 

(section in-between blue boxes in Fig. 1.) using an iterative explicit forward scheme 229 

which provides a simple formulation and ease of modification. The drawback is that due 230 

to the non-linearity of energy transfers, a very short computational time step of 30 231 

seconds is necessary to ensure a good accuracy. Details concerning the calculations of the 232 
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energy and mass balance of the layers are provided in section 2.4. At the end of each 233 

hour, prospective solid precipitation is added to the snowpack, as presented in section 234 

2.5. The layers are then managed as explained in detail in section 2.6. Finally, hourly 235 

snow characteristics and profiles are computed by taking the mid-hour values of the 236 

parameters. Section 2.7 presents the parameterization process of the model.  237 

 238 

2.3 Input dataset 239 

 240 

Hourly air temperature, wind speed and relative humidity are taken directly from weather 241 

stations measurements. As hourly precipitations are seldom available, these are computed 242 

from daily measurements, as shown in section 2.3.1. The computation of incoming 243 

shortwave radiations is detailed in section 2.3.2. 244 

 245 

2.3.1 Hourly precipitation computation 246 

 247 

MASiN can use both total and separated precipitation. If separated daily precipitations 248 

are available, total rain is equally distributed over 24 hours, and total snow is distributed 249 

over as many hours as possible, provided the minimal layer height is respected. 250 

Otherwise, total snow depth is divided into as many hourly precipitations as possible, 251 

while respecting the minimal height rule, as is described later in this paper.  252 

If only the total daily precipitation is available, it is equally distributed over the 24 hours 253 

of the day. When the hourly temperature is below 1°C, precipitation is in the form of 254 
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snow, otherwise, it occurs as rain. If needed, a redistribution of snow is done over the 255 

hours for which the air temperature is below 1°C, ensuring the creation of new layers. 256 

 257 

2.3.2 Shortwave radiations computation  258 

 259 

In the MASiN model, shortwave radiations are computed according to the potential solar 260 

radiation theory proposed by Lee (1963). As atmospheric effects are not considered by 261 

the chosen formulation, parameters have been added to take into account the effect of 262 

cloud cover. A separation between direct and diffuse radiations is carried out, as some of 263 

the snow properties (e.g., albedo and absorption of solar radiation) change with the 264 

radiation type (Sergent et al., 1987). 265 

 266 

2.3.2.1 Extra-terrestrial irradiation 267 

 268 

The extra-terrestrial shortwave radiation 𝐼𝑠𝑤,𝑐𝑠 in W m-2 is computed as: 269 

 
𝐼𝑠𝑤,𝑐𝑠 =

𝐼0

𝑒2
cos𝑍 

(1) 

where 𝐼0 is the solar constant (W m-2), 𝑒 is an adjustment parameter assessing the effect 270 

of the sun-earth distance variation throughout the year, and 𝑍 is the zenith angle. The 271 

latter is expressed as a combination of three other angles, as shown in equation 2.   272 

 cos𝑍 = sin𝜃sin𝛿 + cos𝜃cos𝛿cos𝜔𝑡 (2) 

where 𝜃 is the latitude, 𝛿 is the sun declination and 𝜔𝑡 is the hour angle. The latter two 273 

depend mainly on the hour of the day and the day of the year. 274 

 275 
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2.3.2.2 Effect of cloud cover and vegetation 276 

 277 

The extra-terrestrial radiation is adjusted as a function of nebulosity and vegetation to 278 

compute the incoming shortwave radiation 𝐼𝑠𝑤 (W m-2): 279 

 𝐼𝑠𝑤 = 𝑘𝑠𝑤𝐼𝑠𝑤,𝑐𝑠(e−𝑘𝑣𝑒𝑔𝐿𝐴𝐼)  (3) 

where 𝑘𝑠𝑤 is the cloud cover factor and 𝑘𝑣𝑒𝑔 and 𝐿𝐴𝐼 represent the effect of vegetation. 280 

Nebulosity is assessed using the cloud cover Cc, which represents the fraction of the sky 281 

that is covered by clouds, with a value of 0 representing completely clear sky and a value 282 

of 1 representing overcast sky. Its value and its corresponding coefficient 𝑘𝑠𝑤 are 283 

determined using the daily air temperature range Δ𝑇. The method is derived from that 284 

proposed by Bristow and Campbell (1984). When Δ𝑇 is below the threshold Δ𝑇𝐶𝑐𝑚𝑎𝑥, the 285 

cloud cover equals 1 and 𝑘𝑠𝑤 is set to its minimal value 𝑘𝑠𝑤 𝑚𝑖𝑛. When Δ𝑇 is above the 286 

threshold Δ𝑇𝐶𝑐𝑚𝑖𝑛, the cloud cover equals 0 and 𝑘𝑠𝑤 is set to its maximal value 𝑘𝑠𝑤 𝑚𝑎𝑥. 287 

Between the thresholds, the evolution of Cc and 𝑘𝑠𝑤 is linear. As the sensitivity of the 288 

model output to the thresholds value is rather high, these two parameters are computed 289 

for each winter as follows: 290 

 
Δ𝑇𝐶𝑐𝑚𝑖𝑛 =  

∑ ∆𝑇𝑖
N1
i=1

N1
  

(4) 

where ∆𝑇 is the daily air temperature range of the N1 winter days for which the total 291 

precipitation is more than 2 mm. 292 

 
Δ𝑇𝐶𝑐𝑚𝑎𝑥 =

∑ ∆𝑇𝑖
N2
i=1

N2
  

(5) 

where N2 is the 10% of winter days with the highest daily air temperature range ∆T.  293 
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Maximal and minimal 𝑘𝑆𝑊 values are adjusted at model parameterization. The separation 294 

between direct and diffuse radiation 𝐼𝑠𝑤,𝑑𝑖𝑟 and 𝐼𝑠𝑤,𝑑𝑖𝑓 is performed as follows:  295 

 𝐼𝑠𝑤,𝑑𝑖𝑟 = 𝑘𝑑𝑖𝑟𝐼𝑠𝑤 

𝐼𝑠𝑤,𝑑𝑖𝑓 = (1 − 𝑘𝑑𝑖𝑟)𝐼𝑠𝑤 

(6) 

 296 

This expression is derived from the polynomial equation proposed by Linacre (1992), 297 

which is very close to linearity in the range of values we consider. The coefficient 𝑘𝑑𝑖𝑟 298 

varies linearly between a minimum value 𝑘𝑑𝑖𝑟,𝑚𝑖𝑛 when the cloud cover equals 1, and a 299 

maximum value 𝑘𝑑𝑖𝑟,𝑚𝑎𝑥 when the cloud cover equals 0. 𝑘𝑑𝑖𝑟,𝑚𝑖𝑛 and 𝑘𝑑𝑖𝑟,𝑚𝑎𝑥 are set 300 

during the parameterization phase. 301 

 302 

2.3.2.3  Net shortwave radiation 303 

 304 

Part of the incoming shortwave radiation 𝐼𝑠𝑤 is reflected as a function of the snow 305 

albedo. The shortwave radiation that penetrates the pack 𝑄𝑛𝑠𝑖 is the sum of the direct and 306 

diffuse radiation 𝑄𝑛𝑠𝑖,𝑑𝑖𝑟 and 𝑄𝑛𝑠𝑖,𝑑𝑖𝑓:  307 

 𝑄𝑛𝑠𝑖,𝑑𝑖𝑟 = 𝐼𝑠𝑤,𝑑𝑖𝑟(1 − 𝑎𝑑𝑖𝑟) 

𝑄𝑛𝑠𝑖,𝑑𝑖𝑓 = 𝐼𝑠𝑤,𝑑𝑖𝑓(1 − 𝑎𝑑𝑖𝑓)  

(7) 

 308 

where 𝑎𝑑𝑖𝑟 and 𝑎𝑑𝑖𝑓 are the albedos for direct and diffuse radiations. They are both 309 

computed using a relation adapted from U.S. Army Corps of Engineers (1956), shown in 310 

equation 8: 311 
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𝑎𝑑𝑖𝑟 = 𝑎𝑚𝑖𝑛,𝑑𝑖𝑟 (1 + e−0.1

𝐴

24) 

𝑎𝑑𝑖𝑓 = 𝑎𝑚𝑖𝑛,𝑑𝑖𝑓 (1 + e−0.1
𝐴

24) 

(8) 

 312 

where 𝑎𝑚𝑖𝑛,𝑑𝑖𝑟 and 𝑎𝑚𝑖𝑛,𝑑𝑖𝑓 are the minimum albedos for direct and diffuse radiations, 313 

and 𝐴 is the age of the top layer of the snowpack. 𝐴 is expressed as the number of hours 314 

since the layer was added to the pack. The minimum albedos 𝑎𝑚𝑖𝑛,𝑑𝑖𝑟 and 𝑎𝑚𝑖𝑛,𝑑𝑖𝑓 are set 315 

during the parameterization phase. 316 

 317 

2.4 Energy and mass balance computation 318 

 319 

The energy and mass balance function of MASiN runs as presented in Fig. 1. This 320 

calculation loop is performed at a computational time step Δ𝑡 for each hour of the 321 

simulation step. 322 

The energy exchanges between the layer i and its surroundings are first computed in 323 

order to assess the layer internal energy variation 𝑄𝑖, as shown in equation 9 (Brun et al., 324 

1989)  325 

 𝑄𝑖 = 𝑄𝑛𝑠 + 𝑄𝑛𝑙 + 𝑄ℎ + 𝑄𝑒 + 𝑄𝑤 + 𝑄𝑐  for the top layer

𝑄𝑖 = 𝑄𝑛𝑠 + 𝑄𝑤 + 𝑄𝑐 + 𝑄𝑔  for the bottom layer 

𝑄𝑖 = 𝑄𝑛𝑠 + 𝑄𝑤 + 𝑄𝑐 for the intermediate layers

 (9) 

 326 

where all terms are in W m-2. 𝑄𝑛𝑠 is the net shortwave flux, 𝑄𝑛𝑙 is the net longwave flux, 327 

𝑄ℎ and 𝑄𝑒are the sensible and latent heat fluxes, 𝑄𝑤is the energy flux due to liquid water 328 
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inputs, and 𝑄𝑐 and 𝑄𝑔are the conduction heat fluxes between the layers and between the 329 

snowpack and the ground. 330 

It is then possible to compute the temperature variation Δ𝑇𝑖 and the liquid water content 331 

variation Δ𝐿𝑊𝑖   in the layer following equation 10 (Barry et al., 1990). 332 

 
𝑄𝑖 =  𝑐𝑡

𝑖𝜌𝑡
𝑖𝐻𝑡

𝑖
Δ𝑇𝑖

Δ𝑡
+ 𝑙𝑓𝜌𝑤

Δ𝐿𝑊𝑖

Δ𝑡
 

(10) 

 333 

where 𝑐𝑡
𝑖  is the snow-specific heat (J kg-1 K-1), 𝜌𝑡

𝑖  is the snow density (kg m-3), 𝐻𝑡
𝑖 is the 334 

layer thickness (m), 𝑙𝑓 is the latent heat of fusion of water (J kg-1) and 𝜌𝑤 is the water 335 

density (kg m-3). As Δ𝑇𝑖 and  Δ𝐿𝑊𝑖   are both unknown in equation 10, it is not possible 336 

to solve for both 𝑇𝑡+1
𝑖  and 𝐿𝑊𝑡+1

𝑖 . The computational time step thus needs to be short 337 

enough to consider that temperature and phase changes do not occur simultaneously. 338 

Using a time step of thirty seconds was shown to render the error due to this 339 

computational choice acceptable. The computational choices in terms of the energy 340 

exchange terms of the right-hand side of equation 9 are provided in section 2.4.1. Once 341 

the internal energy variation of the layer is computed, its mass balance is computed, 342 

depending on whether or not melt occurs, as explained in section 2.4.2. The settling of 343 

the layer is taken into account, as presented in section 2.4.3. 344 

 345 

2.4.1 Energy exchanges terms 346 

 347 

2.4.1.1 Shortwave radiations 348 

 349 
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The fraction of incident radiation which is absorbed by a snow layer corresponds to the 350 

difference between the transmittances at its upper and lower depths (Dunkle and Bevans, 351 

1956). The total shortwave radiation absorbed by a layer of thickness 𝐻𝑡
𝑖 at a mean depth 352 

of 𝑧𝑡
𝑖 can therefore be expressed as follows (Giddings and LaChapelle, 1961) :  353 

𝑄𝑛𝑠 = 𝑄𝑛𝑠𝑖,𝑑𝑖𝑟 [e−𝛽𝑑𝑖𝑟 (𝑧𝑡
𝑖−𝐻𝑡

𝑖/2) − 𝑒−𝛽𝑑𝑖𝑟 (𝑧𝑡
𝑖+𝐻𝑡

𝑖/2)]

+ 𝑄𝑛𝑠𝑖,𝑑𝑖𝑓 [e−𝛽𝑑𝑖𝑓 (𝑧𝑡
𝑖−𝐻𝑡

𝑖/2) − 𝑒−𝛽𝑑𝑖𝑓 (𝑧𝑡
𝑖+𝐻𝑡

𝑖/2)]  

(11) 

where 𝛽𝑑𝑖𝑟 and 𝛽𝑑𝑖𝑓 are the absorption coefficients for direct and diffuse radiations, 354 

respectively. They are set during the model parameterization. 355 

 356 

2.4.1.2 Longwave radiations 357 

 358 

Longwave radiations are computed using Stefan-Boltzmann law. The snowpack is 359 

assumed to be a black body with an emissivity 𝜖 = 1. The net longwave radiative flux is: 360 

 
𝑄𝑛𝑙 = 𝜖𝑎𝜎𝑇𝑎

4 − 𝜎𝑇𝑡
𝑛4

 
(12) 

 361 

where 𝜖𝑎 is the atmospheric emissivity, 𝑇𝑎 and 𝑇𝑡
𝑛 are the air and snow surface 362 

temperatures (K), and 𝜎 is the Stefan-Boltzmann constant. The atmospheric emissivity is 363 

computed with the formula of Brutsaert (1975) modified to account for the cloud cover 364 

𝐶c (Liston and Elder, 2006; Oke, 2002): 365 

 
𝜖𝑎 = 1.72 (

𝑒𝑎

𝑇𝑎
)

1/7

∙ (1 + 0.22𝐶𝑐2) 
(13) 

 366 
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where ea is the atmospheric water vapor pressure (kPa) and Ta is the air temperature (K).  367 

ea is computed with the air’s relative humidity and temperature. 368 

2.4.1.3 Turbulent heat fluxes 369 

 370 

Sensible and latent heat fluxes 𝑄ℎ and 𝑄𝑙 are computed using the bulk aerodynamic 371 

method (Kustas et al., 1994):   372 

 𝑄ℎ = 𝜌𝑎𝑐𝑎𝐶ℎ𝑉(𝑇𝑎 − 𝑇𝑡
𝑛) (14) 

 
𝑄𝑙 = 𝑙𝑣.

0.622 𝜌𝑎

𝑃𝑎
𝐶ℎ𝑉(𝑒𝑎 − 𝑒𝑡

𝑛) (15) 

 373 

where 𝜌𝑎 is the air density (kg m-3), 𝑐𝑎 is air-specific heat (J kg-1K-1), 𝑉 is the wind 374 

velocity (m s-1), 𝑇𝑎 and 𝑇𝑡
𝑛 are the air and snow surface temperature (K), 𝑙𝑣 is the water 375 

latent heat of vaporization or sublimation (J kg-1), 𝑃𝑎 is the atmospheric pressure (kPa) 376 

and 𝑒𝑎 is the water vapor pressure in the air (kPa).  The saturation vapor pressure 𝑒𝑡
𝑛 377 

(kPa) is calculated at the snow surface temperature. The bulk coefficient 𝐶ℎ is adapted 378 

from the bulk coefficient in neutral atmospheric conditions 𝐶ℎ𝑛 depending on the 379 

atmospheric stability conditions as follows:  380 

 𝐶ℎ = 𝐶ℎ𝑛(1 − 16 𝑅𝑖)0.75 𝑖𝑓 𝑅𝑖 ≤ 0

𝐶ℎ =
𝐶ℎ𝑛

1 + 𝑘𝑡𝑢𝑟
𝑅𝑖

0.2

𝑖𝑓 0 < 𝑅𝑖 ≤ 0.2

𝐶ℎ =
𝐶ℎ𝑛

1 + 𝑘𝑡𝑢𝑟
𝑖𝑓 0.2 < 𝑅𝑖

 (16) 

 381 

where 𝑅𝑖 is the bulk Richardson number and 𝑘𝑡𝑢𝑟 is a coefficient detailed below. 𝐶ℎ𝑛 is 382 

computed as:  383 
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𝐶ℎ𝑛 = 𝑘2(ln (

𝑧𝑎

𝑧0
))−2 (17) 

 384 

where 𝑘 is the Von Karmin constant, 𝑧𝑎 is the measurement height of air temperature and 385 

wind speed (m) and 𝑧0 is the snow surface roughness whose value typically ranges 386 

between 5. 10−4 and 5. 10−3 meters (Dingman, 2002). The value for 𝑧0 is set during the 387 

model parameterization. 388 

The bulk Richardson number 𝑅𝑖 (American Meteorological Society, 2012) is used to 389 

assess the atmospheric stability conditions:  390 

 
𝑅𝑖 =

2𝑔𝑧𝑎(𝑇𝑎 − 𝑇𝑡
𝑛)

(𝑇𝑎 + 𝑇𝑡
𝑛)𝑉2

 (18) 

 391 

where 𝑔 is gravity acceleration (m s-2). For values of 𝑅𝑖 above 0.2, it is generally 392 

assumed that the turbulent heat fluxes no longer exist because of the atmospheric stability 393 

conditions. Brun et al. (1989) showed that this assumption tends to heavily underestimate 394 

the heat balance of the snowpack as heat conduction and vapor diffusion between the air 395 

and the snowpack surface still occur. The parameter 𝑘𝑡𝑢𝑟 was therefore introduced in 396 

order to account for the heat exchanges between the air and the snowpack surface when 397 

the atmospheric conditions are stable. 𝑘𝑡𝑢𝑟 is set during the model parameterization. 398 

 399 

2.4.1.4 Liquid water input 400 

 401 

Liquid water inputs are caused by percolation from the upper layer or by rain, in the case 402 

of the top layer. Liquid water inputs can result in sensible heat flux if the water and snow 403 
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temperatures are different and in latent heat flux if a phase change occurs. Percolating 404 

water is supposed to be at 0°C, while rain water temperature equals the air temperature. If 405 

the water temperature is above 0°C, it will first cool down to 0°C, and thus release 406 

sensible heat:  407 

 𝑄𝑤,𝑠 = c𝑤𝜌𝑤𝑇𝑟𝑅 (19) 

 408 

where c𝑤 is the water-specific heat (J kg-1 K-1), 𝜌𝑤 is the water density (kg m-3), 𝑇𝑟 is the 409 

water temperature (K), and 𝑅 is the water input intensity (m s-1). If the snow temperature 410 

is below 0°C, liquid water can partially or completely freeze, thus releasing latent heat up 411 

to a value of: 412 

 𝑄𝑤,𝑙 = 𝑙𝑓𝜌𝑤𝑅 (20) 

 413 

where 𝑙𝑓 is in J kg-1. 414 

 415 

2.4.1.5 Conduction fluxes 416 

 417 

The conduction flux 𝑄𝑐 between a layer i and the adjacent layers i-1 and i+1 can be 418 

described using the Fourier conduction formula  (DeWalle and Rango, 2008), as shown 419 

in equation 21: 420 

 
𝑄𝑐 =

𝑇𝑡
𝑖−1 − 𝑇𝑡

𝑖

𝐻𝑡
𝑖−1

2𝑘𝑡
𝑖−1 +

𝐻𝑡
𝑖

2𝑘𝑡
𝑖 

+
𝑇𝑡

𝑖+1 − 𝑇𝑡
𝑖

𝐻𝑡
𝑖+1

2𝑘𝑡
𝑖+1 +

𝐻𝑡
𝑖

2𝑘𝑡
𝑖

 (21) 

 421 
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where 𝑇, 𝐻 and 𝑘 are the temperature, height and thermal conductivity of each layer, 422 

respectively. The thermal conductivity of snow is computed using the formula proposed 423 

by Yen (1981): 424 

 
𝑘𝑡

𝑖 = 𝑘𝑔 (
𝜌𝑡

𝑖

𝜌𝑔
)

1.88

 (22) 

 425 

where the subscript 𝑔 refers to ice and 𝑘 and 𝜌 are thermal conductivity (W m-1 K-1) and 426 

density (kg m-3), respectively. 427 

Since applying the Fourier conduction formula to the conduction heat flux between the 428 

base of the snowpack and the ground would require having access to soil thermal 429 

characteristics data and because variations in soil thermal properties during the winter are 430 

generally low in comparison to the other terms of the energy budget (Gray and Male, 431 

1981), a decision was made to consider heat exchange at the ground/snow interface as a 432 

constant flux toward the snowpack:  433 

 𝑄𝑔 =  𝑄𝑔𝑟𝑜𝑢𝑛𝑑→𝑝𝑎𝑐𝑘 (23) 

 434 

where 𝑄𝑔𝑟𝑜𝑢𝑛𝑑→𝑝𝑎𝑐𝑘 is a positive value that is set during model parameterization. 435 

 436 

2.4.2 Mass balance of the layer 437 

 438 

Once the internal energy variation of the layer is obtained, equation 10 is used to compute 439 

the new temperature of the layer 𝑇𝑡+1
𝑖  without considering any phase changes. 𝑇𝑡+1

𝑖  can 440 

thus be expressed as follows: 441 
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𝑇𝑡+1

𝑖 =  
𝑄𝑖∆𝑡

𝑐𝑡
𝑖𝜌𝑡

𝑖𝐻𝑡
𝑖

+ 𝑇𝑡
𝑖   (24) 

 442 

The heat capacity of snow 𝑐𝑡
𝑖 is computed as the weighted sum of the heat capacity of ice, 443 

water and air (Armstrong and Brun, 2008): 444 

 
𝑐𝑡

𝑖 =
1

𝜌𝑡
𝑖𝐻𝑡

𝑖
(𝜌𝑔𝐻𝑔𝑐𝑔 + 𝜌𝑤𝐻𝑤𝑐𝑤 + 𝜌𝑎𝐻𝑎𝑐𝑎) (25) 

 445 

where the subscripts 𝑔, 𝑤 and 𝑎 represent ice, water and air, respectively, and 𝐻, 𝜌 and 𝑐 446 

are the equivalent height, density and specific heat of each component, respectively. The 447 

equivalent heights are:  448 

                   𝐻𝑔 =  𝑆𝑊𝐸𝑡
𝑖 −  𝐿𝑊𝑡

𝑖

 𝐻𝑤 =  𝐿𝑊𝑡
𝑖

               𝐻𝑎 =  𝐻𝑡
𝑖 −  𝑆𝑊𝐸𝑡

𝑖

 (26) 

 449 

 450 

The specific heat of ice is adjusted, depending on the temperature of the layer (Dorsey, 451 

1968):  452 

 𝑐𝑔 = 7.8 𝑇𝑡
𝑖  + 𝑐𝑔,0 (27) 

 453 

where 𝑐𝑔,0 is the ice-specific heat at 0°C, and equals 2115 J kg-1 K-1.  454 

The different situations which can occur at this point, depending on 𝑇𝑡
𝑖 and 𝑇𝑡+1

𝑖  values, 455 

are detailed below. If either 𝑇𝑡
𝑖 or 𝑇𝑡+1

𝑖  is different from 0°C, no melt occurs. Melt is 456 

considered as occurring only when both 𝑇𝑡
𝑖 and 𝑇𝑡+1

𝑖   are equal to 0°C. In this case, ∆𝑇𝑖 =457 
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0 and equation 10 is used to compute the new liquid water content of the layer 𝐿𝑊𝑡+1
𝑖  as 458 

follows: 459 

 
𝐿𝑊𝑡+1

𝑖 =  
𝑄𝑖∆𝑡

𝑙𝑓𝜌𝑤
+ 𝐿𝑊𝑡

𝑖  (28) 

 460 

 The difference between 𝐿𝑊𝑡+1
𝑖  and 𝐿𝑊𝑡

𝑖 represents the water equivalent of melted snow 461 

or refrozen water 𝑀𝑡
𝑖. If 𝑀𝑡

𝑖 has a negative value, it means that a certain amount of liquid 462 

water has frozen and released latent heat, thus maintaining the temperature of the layer at 463 

0°C. If 𝑀𝑡
𝑖 is greater than the water equivalent of the layer, it means that the layer melts 464 

completely. Otherwise, the new liquid water content 𝐿𝑊𝑡+1
𝑖  is compared to the water 465 

holding capacity of the layer 𝐿𝑊𝐻𝐶𝑡
𝑖. The latter represents the maximum amount of 466 

liquid water that can be retained against gravity, and is expressed as a percentage of the 467 

volume of void of the layer, as shown in equation 29: 468 

 𝐿𝑊𝐻𝐶𝑡
𝑖 = 𝑘𝐿𝑊𝐻𝐶  (𝐻𝑡

𝑖 − (𝑆𝑊𝐸𝑡
𝑖 − 𝐿𝑊𝑡

𝑖)
𝜌𝑤

𝜌𝑔
) (29) 

 469 

where 𝑘𝐿𝑊𝐻𝐶 is a percentage between 5 and 10% and the rest of the right-hand side of the 470 

equation is the volume of void, where 𝜌𝑔 is the density of ice. The value of 𝑘𝐿𝑊𝐻𝐶 is set 471 

during the parameterization step. 472 

 If 𝐿𝑊𝑡+1
𝑖  is greater than 𝐿𝑊𝐻𝐶𝑡

𝑖, 𝐿𝑊𝑡+1
𝑖  is set to 𝐿𝑊𝐻𝐶𝑡

𝑖 and excess liquid water is 473 

integrally transmitted to the layer below, provided it can accept further liquid water 474 

inputs. The new height of the layer after melt has occurred, 𝐻𝑡′
𝑖  is computed following 475 

equation 30:   476 
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 𝐻𝑡′
𝑖 =  𝐻𝑡

𝑖 − 𝑀𝑡
𝑖

𝜌𝑤

𝜌𝑡
𝑖
 (30) 

 477 

2.4.3 Settling 478 

 479 

 Settling is assessed in terms of height decrease. The final height of the layer 𝐻𝑡+1
𝑖  is 480 

computed from 𝐻𝑡′
𝑖  following equation 31, which was built by combining different 481 

existing formulations: 482 

 

𝐻𝑡+1
𝑖 = 𝐻𝑡′

𝑖  
1 −

𝜎

𝜂𝑡
𝑖 ∆𝑡

1 + 𝐾𝑑e0.04 𝑇𝑡
𝑖−0.05 max(𝜌𝑡

𝑖−𝜌𝑠,𝑚𝑒𝑡𝑎,𝑚𝑎𝑥,0)∆𝑡
 

(31) 

 483 

The numerator represents the effects of the weight of the upper layers as computed by 484 

Navarre (1975). 𝜎 is the weight of the overlying layers (Pa) and 𝜂𝑡
𝑖  is the viscosity of the 485 

layer (Pa s). The viscosity is computed following the equation of Gubler (1994): 486 

 
𝜂𝑡

𝑖 = 1.86 10−6 ∙ e
0.02 𝜌𝑡

𝑖+
1800

𝑇𝑡
𝑖

 
(32) 

where 𝜌𝑡
𝑖   and 𝑇𝑡

𝑖 are the snow density and temperature. 487 

The pressure sustained by the layer 𝑖 in an 𝑛 layers pack is: 488 

 
𝜎𝑡

𝑖 =
𝑔

1000
∑ (𝑆𝑊𝐸𝑡

𝑗
 𝜌𝑤)

𝑛

𝑗=𝑖+1

 (33) 

 489 

The denominator of equation 31 represents the effects of destructive metamorphism, and 490 

is adapted from Anderson (1976). Destructive metamorphism occurs when the layer is 491 

young, and is assumed to be negligible when the density reaches the threshold 492 
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𝜌𝑠,𝑚𝑒𝑡𝑎,𝑚𝑎𝑥. The coefficient 𝐾𝑑 represents the hourly settling rate when 𝑇𝑠 = 0°C and 493 

𝜌𝑡
𝑖 <  𝜌𝑠,𝑚𝑒𝑡𝑎,𝑚𝑎𝑥. The values for  𝐾𝑑 and 𝜌𝑠,𝑚𝑒𝑡𝑎,𝑚𝑎𝑥 are set during model 494 

parameterization. The new density of the layer is then computed:  495 

 496 

 𝜌𝑡+1
𝑖 = 𝑆𝑊𝐸𝑡+1

𝑖
𝜌𝑤

𝐻𝑡+1
𝑖

 (34) 

where 𝜌𝑤 is the water density. 497 

 498 

2.5 New snow handling 499 

 500 

At the end of each hour, prospective snow precipitation is added to the snowpack. New 501 

snow characteristics are computed as follows. The snow temperature is set to the air 502 

temperature. New snow density 𝜌𝑠 is computed depending on the air temperature 503 

(Anderson, 1976):  504 

 𝜌𝑠 = 𝜌𝑛𝑠 if 𝑇𝑎 < 𝑇𝜌𝑛𝑠

𝜌𝑠 = 𝜌𝑛𝑠 + 1.7(𝑇𝑎 − 𝑇𝜌𝑛𝑠
)1,5 else

 (35) 

 505 

where 𝜌𝑛𝑠 is the density of new snow if the air temperature 𝑇𝑎 is below the threshold 506 

𝑇𝜌𝑛𝑠
. The values for 𝜌𝑛𝑠 and 𝑇𝜌𝑛𝑠

 are set during model parameterization. The total height 507 

of added snow 𝐻𝑎𝑠 is computed from the water equivalent of the precipitation using 508 

equation 34. The number of new layers added to the snowpack is the integer part of  
𝐻𝑎𝑠

𝐻𝑚𝑖𝑛
, 509 

where 𝐻𝑚𝑖𝑛 is the minimum height of a layer, set to 1 cm. We consider that new snow 510 

does not contain any liquid water when it is added to the pack. 511 
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 512 

2.6 Layers management 513 

 514 

In order to keep the number of layers reasonably low computer-wise, while still matching 515 

the real layering of the snowpack, MASiN layers are managed dynamically at the end of 516 

each hour. Two thickness thresholds are set for that purpose, a minimum and a 517 

maximum. The minimum thickness is set to 1 cm for all the layers in order to ensure the 518 

stability of the iterative scheme. If the layer is too thin, energy exchanges can be 519 

misestimated. That can also be the case if a layer is too thick; a maximum thickness was 520 

thus set, with a value of 2 cm for the top fifteen layers, and 4 cm for the rest of the pack. 521 

As most energy exchanges occur at or near the pack surface, it is necessary to have a 522 

finer spatial discretization than in the rest of the pack. When a layer reaches the minimum 523 

thickness, it is merged with the thinnest adjacent layer. If the newly created layer exceeds 524 

the maximum thickness, it is separated into two layers with similar properties. The 525 

maximum number of layers is set to 70 to keep the computation time moderate. After 526 

new layers are added to the pack, a test is conducted to check if the maximum number of 527 

layers has been reached. If it has been exceeded, adjacent layers are combined according 528 

to the following rules: no combination of layers which have an age difference of more 529 

than 2 days is allowed, and no new layer having a thickness exceeding the maximum 530 

thickness will be created. If no combination is possible using these rules, the age 531 

threshold is increased by one day, and the combination test is run until the number of 532 

layers is below the maximum value. 533 

 534 
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2.7  Parameterization of the model 535 

 536 

The parameterization was performed for one study site only, and the parameters were left 537 

unchanged for the rest of the study. A two-step protocol was followed. First, a sensitivity 538 

analysis was performed to assess the influence of the 18 model parameters on the model 539 

output. Parameters with little or no influence were set to values based on the literature, 540 

while the remaining parameters were adjusted by calibration at the parameterization site.  541 

Parameterization was performed for the Dorval site (45.47°, -73.74°) near Montreal, 542 

Quebec, Canada. Dorval was selected based on the quality of the dataset it offers and 543 

because of its central position among the different sites where MASiN is tested in this 544 

study. The sensitivity analysis was performed over a ten-year period and calibration was 545 

done on the first five years of this period. 546 

The normalized root mean square error was used for the sensitivity analysis to compare 547 

the height modeled with a value of the parameter and the height modeled with a 548 

literature-based value of the parameter. For each parameter, ten values spreading between 549 

two bounds selected based on published values, were tested. The effect of each parameter 550 

was assessed separately.   551 

Sensitivity analysis outputs showed that the conduction heat flux between the ground and 552 

the snowpack 𝑄𝑔𝑟𝑜𝑢𝑛𝑑→𝑝𝑎𝑐𝑘 is the parameter with the most influence on the modeled 553 

snow depth. The solar radiation absorption coefficients 𝛽𝑑𝑖𝑟 and 𝛽𝑑𝑖𝑓 , as well as the 554 

minimum and maximum fraction of direct solar radiations  𝑘𝑑𝑖𝑟,𝑚𝑖𝑛 and  𝑘𝑑𝑖𝑟,𝑚𝑎𝑥, have a 555 

very limited influence, and were therefore set to values from the literature. The minimal 556 

albedo for direct radiations 𝑎𝑑𝑖𝑟,𝑚𝑖𝑛 will not be adjusted either, as its influence is 557 
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minimal. The daily temperature range threshold Δ𝑇𝐶𝑐𝑚𝑖𝑛 is less influential than Δ𝑇𝐶𝑐𝑚𝑎𝑥, 558 

but a decision was made to compute both of them, as explained in section 2.3.2.2.  559 

All the other parameters were adjusted using the SCEUA algorithm (Duan et al., 1993a) 560 

with the Nash Sutcliffe coefficient (Nash and Sutcliffe, 1970) used as the objective 561 

function. A single calibration sequence was performed, which gave a value of 0.79 for 562 

the Nash Sutcliffe coefficient. The final parameterization is presented in Table 1. 563 

 564 

Table 1 Final parameterization of the model.  565 

Parameter (unit) Value Source 

𝜌𝑠,𝑚𝑒𝑡𝑎,𝑚𝑎𝑥 (kg m-3) 200 Adjusted to Dorval conditions 

𝑎𝑑𝑖𝑟,𝑚𝑖𝑛 0.45 Anderson (1976) 

𝑎𝑑𝑖𝑓,𝑚𝑖𝑛 0.35 Anderson (1976) 

𝜌𝑛𝑠 (kg m-3) 80 Adjusted to Dorval conditions 

𝑘𝐿𝑊𝐻𝐶 (%) 8 Adjusted to Dorval conditions 

𝐾𝑑 (h-1) 0.01 Adjusted to Dorval conditions 

𝛽𝑑𝑖𝑟 (cm-1) 0.4 Armstrong and Brun (2008) 

𝛽𝑑𝑖𝑓 (cm-1) 4 Armstrong and Brun (2008) 

𝑄𝑔𝑟𝑜𝑢𝑛𝑑→𝑝𝑎𝑐𝑘 (W m-2) 10 Adjusted to Dorval conditions 

𝑇𝜌𝑛𝑠
 (°C) -15 Adjusted to Dorval conditions 

Δ𝑇𝐶𝑐𝑚𝑖𝑛 (°C) Equation 4 Adjusted to Dorval conditions 

Δ𝑇𝐶𝑐𝑚𝑎𝑥 (°C) Equation 5 Adjusted to Dorval conditions 

𝑘𝑆𝑊𝑚𝑖𝑛 0.2 Adjusted to Dorval conditions 

𝑘𝑆𝑊𝑚𝑎𝑥 0.75 Adjusted to Dorval conditions 

𝑘𝑑𝑖𝑟,𝑚𝑖𝑛 0.35 Linacre (1992) 

𝑘𝑑𝑖𝑟,𝑚𝑎𝑥 0.85 Linacre (1992) 

𝑧0 (m) 0.0015 Adjusted to Dorval conditions 

𝑘𝑡𝑢𝑟 4 Adjusted to Dorval conditions 

 566 

3. Study site, comparative models and performance assessment criteria 567 

 568 

3.1. Study sites 569 
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 570 

 Twenty-three sites across Canada and Sweden were chosen to assess the ability of 571 

MASiN to simulate the evolution of the snow cover in various environments. The sites 572 

were selected in order to represent different climate zones. They were sorted into 5 573 

groups based on geographical criteria, as shown in Fig. 2.    574 

 575 

 576 

Fig. 2. Locations of the 23 sites in Canada (a) and Sweden (b). Groups 1 to 4 are 577 

highlighted on the map and group 5 consists of the nine remaining sites.  578 

 579 

Group 1 is comprised of five sites in Quebec and two in Ontario. Group 2 is composed of 580 

three sites on the Canadian East coast that have similar latitudes as the parameterization 581 

site, but are subject to strong oceanic influence. Group 3 is made up of two sites in 582 

southern Manitoba and Saskatchewan, which represent typical continental climate, at a 583 

latitude comparable to that of Dorval. Group 4 is comprised of the two Swedish sites with 584 
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the lowest latitudes, representing more temperate climate. Group 5 includes the nine high 585 

latitude sites, which are characterized by latitudes greater than 53° in Canada and greater 586 

than 60° in Sweden. Those sites were chosen to account for continental climate at high 587 

latitudes in Canada, some with possible oceanic influences, and conditions close to sub-588 

polar climate in Sweden. All the sites are located in plain terrain.  589 

For each station, data have been selected based on the availability of all needed 590 

measurements and on the quality of the time series data. Required measurements are the 591 

air temperature, relative humidity, wind speed and direction at an hourly time step as well 592 

as precipitations and SD at a daily time step. Winters (here defined as the 1-10 to 31-05 593 

period) with more than 35 gaps in one or several measurements or with gaps that were 594 

not possible to correct or replace based on other measurements, have been rejected from 595 

the analysis. Table 2 presents the results of data selection. Days with corrected values 596 

represent on average 1.1% of the winter days used in the analysis. 597 

 598 

  599 

Table 2. Description of the time series data. The “# of rejected winters” corresponds to 600 

the number of winters between the start and the end years that have been removed from 601 

the time series for quality reasons. “Corrections (%)” represents the percentage of winter 602 

days with at least one corrected parameter.  603 

Station 
Start 

year 

End 

year 

# of 

rejected 

winters 

Corrections 

(%) 

Dorval 2003 2014 0 5.1 

St-Jovite 1994 2008 1 1.3 

Beauceville 1997 2015 0 2.5 

Geraldton 1983 2014 0 0.2 
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Amqui 1995 2014 4 8.2 

Timmins 1989 2009 2 0 

Thelford Mines 2006 2015 0 0.8 

Sydney 1984 2014 2 0.5 

Moncton 1993 2012 1 0 

Gander 1981 2011 2 0 

Brandon 1993 2012 0 0.5 

Weyburn 1994 2008 1 0.5 

Uppsala 1986 2003 2 0 

Ljungby 1995 2015 0 0 

Hamosand 1992 2015 0 0.3 

La Ronge 1982 2012 2 1.3 

Island Lake 1986 2014 1 0 

Churchill 1978 1998 1 0.1 

Stony Rapids 1987 2009 1 0.6 

Norsjö 1997 2015 1 3.5 

Malmberget 1997 2015 1 0 

Wabush 1982 2012 1 0.4 

Cartwright 1984 2014 1 0.3 

 604 

 605 

Differences in seasonal evolution of the snow cover between the groups were verified 606 

using two indicators: the annual maximum uninterrupted snowpack presence, calculated 607 

as the maximum number of days during which snow is continuously present on the 608 

ground each year, and the annual maximum snow depth. These two indicators were 609 

computed over periods ranging from nine to thirty-one years, depending on data 610 

availability at each site. Results are presented in Fig. 3. 611 
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 612 

 613 

Fig. 3. (a) Maximum uninterrupted snowpack presence and (b) maximum annual snow 614 

depth at each site. Groups are identified by the same color code as in Fig. 2. The red line 615 

indicates the median value; left and right edges of the boxes indicate the 25th and 75th 616 

percentiles, respectively; left and right whiskers define the non-outlier range. Outliers are 617 

plotted as red crosses.   618 

 619 

Despite their relative proximity, sites from Group 1 present a wide range of snow cover 620 

evolution, with some sites like Dorval presenting low maximal snow depth and short 621 

continuous snowpack presence, and others, such as Thetford Mines, showing significant 622 

snow accumulation and duration. Inter-annual variability of the two criteria is also 623 

inconsistent between the sites. Sites from Group 2 are characterized by significant 624 

variations of both maximum annual snow depth and maximum uninterrupted snowpack 625 
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presence over the years. Sites from Group 3 have similar maximal snow depth 626 

distribution, but Weyburn exhibits huge variability of continuous snowpack presence. 627 

Group 4 is composed of the two sites having the lowest maximum annual snow depth and 628 

maximum uninterrupted snowpack presence, and represent typical mid-northern Europe 629 

conditions, as expected.  Sites in Group 5 have a varying maximal snow depth variability 630 

and continuous snow cover presence, but on average, they are the sites with the 631 

maximum uninterrupted snow presence. Harnosand is the exception, with distribution of 632 

both criteria closer to that of Weyburn. Fig. 3 confirms that the sites selected for the study 633 

expose MASiN to a wide range of conditions and seasonal snowpack characteristics. 634 

 635 

3.2. Comparative models 636 

 637 

MASiN was compared with three snow models: two empirical (named Model C and 638 

Model D for the purpose of this study), and one mixed degree day/energy balance model 639 

named Hydrotel. These three models run at a daily time step. The two empirical snow 640 

models both have proven abilities to reproduce snow height with good accuracy once 641 

calibrated for a given site.  642 

Model C (Farbrot and Hanssen-Bauer, 2009) requires daily total precipitation 𝑃𝑡𝑜𝑡 and 643 

daily mean temperature 𝑇𝑎𝑣 to compute snow height 𝑆𝑛 with five calibrated parameters 644 

(a, b, c, d and e), as shown in equation 36: 645 

 𝑆𝑛 = 𝑆𝑛−1 + 𝑏𝑇𝑎𝑣 𝑖𝑓 (𝑇𝑎𝑣 − 𝑎) > 0

𝑆𝑛 = 𝑆𝑛−1 + 𝑐𝑃𝑡𝑜𝑡 + 𝑑𝑇𝑎𝑣 + 𝑒 𝑖𝑓 (𝑇𝑎𝑣 − 𝑎) ≤ 0
 (36) 

 646 
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Model D (Baraer et al., 2010) requires daily solid precipitation 𝑃𝑠 and daily maximum 647 

temperature 𝑇𝑚𝑎𝑥 to compute snow height 𝑆𝑛 with three calibrated parameters (a, b and 648 

c), as shown in equation 37:  649 

 𝑆𝑛 = 𝑆𝑛−1 + 𝑏𝑃𝑠 − 𝑎(max(𝑇𝑚𝑎𝑥, 0))𝑐 (37) 

 650 

Hydrotel is a widely used hydrological model whose performances have been assessed at 651 

several sites across Quebec. Its snow module was chosen for its ability to simulate snow 652 

height as well as other variables relevant for hydrological purposes. It requires daily 653 

minimum and maximum temperatures and total or separated daily precipitation. It is 654 

much closer to MASiN in terms of complexity, and is thus expected to provide similar 655 

performances. It relies on a mixed degree day/energy balance method to compute the 656 

snow height evolution, which means that most of the components of the energy balance 657 

are computed using a form of degree day equation. It uses five calibrated parameters. 658 

Further information can be found in Turcotte et al. (2007).  659 

The three reference models were first used in similar conditions as MASiN. They were 660 

calibrated against snow height measurements at the Dorval site and applied to the 22 661 

other sites using a unique set of parameters. In order to further challenge MASiN’s 662 

robustness, the three reference models were then calibrated at each site with the first half 663 

of the data and validated on the entire dataset. The calibration was conducted using the 664 

SCEUA algorithm (Duan et al., 1993b) following the recommendations of Arsenault et 665 

al. (2014), by selecting the best set of parameters out of ten calibration sequences per site, 666 

using random initial search parameters. The Nash Sutcliffe coefficient was used as the 667 
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objective function. Its values on the calibration periods range between 0.67 and 0.96, 668 

with a mean value of approximately 0.82 for the models taken together. 669 

 670 

3.3. Performance assessment and comparison criteria 671 

 672 

Three criteria were used in order to have both an insight on the raw performance of each 673 

model and a more detailed vision of the ability of each to provide simulations that are 674 

accurate time-wise. In terms of hydrology, and especially in reservoir management, being 675 

able to time the moment when water is released is crucial. 676 

The Nash-Sutcliffe coefficient gives a general overview of the agreement between the 677 

simulated and measured snow depths. One value is computed for each model at each site.  678 

The “wrongly simulated state” represents the number of times the simulated snowpack is 679 

erroneously present or absent. It is expressed as a percentage of the number of days of 680 

presence of the real snowpack. It denotes the ability of the model to correctly simulate 681 

events of complete melt during the winter or events of small snow accumulation at the 682 

beginning or the end of the season. One value is computed for each model at each site. 683 

The best value that can be obtained for this criterion is 0%. 684 

The “melt offset” characterizes the ability of the models to predict the time of spring 685 

snowpack vanishing. It is corresponds to the mean of the absolute yearly difference in the 686 

number of days between the disappearance of the simulated and observed snowpacks. 687 

The disappearance date is assumed to be the time when the observed pack has lost 95% 688 

of its maximum height. The value aimed for this criterion is 0 days. All three criteria are 689 

calculated on daily basis.  690 
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 691 

4. Results and discussion 692 

 693 

4.1. Model calibration and validation at the Dorval site 694 

All models were calibrated on the winters of years 2003 to 2008 and validated on the 695 

winters of years 2009 to 2014 at the Dorval site. Calibration provided good Nash-696 

Sutcliffe coefficients for all the models. Model D and Hydrotel exhibited the best 697 

calibration results followed by MASiN and Model C. As expected, results from 698 

validation are inferior to the ones obtained during calibration for all models. Model C 699 

shows the lowest Nash-Sutcliffe coefficient during validation and MASiN displays the 700 

highest. Hydrotel and Model D show comparable results in validation.  701 

 702 

Table 3. Nash-Sutcliffe coefficients resulting from the models’ calibration and validation 703 

at the Dorval site. 704 

Model Calibration Validation 

MASiN 0.79 0.76 

Hydrotel 0.84 0.70 

Model D 0.86 0.71 

Model C 0.80 0.56 

 705 

Fig. 4. Provides an example of simulation results for three winters in the validation 706 

period. The winter 2013-2014 corresponds to the best simulation results for the MASiN 707 

model and, at the same time, is characterized by numerous fluctuations of the SD. The 708 

other two years are also displayed to get a sense of the variability in skill from one winter 709 

to the next. For the 2013-2014 year, MASiN differentiates itself from reference models 710 
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by being able to reproduce multiple fluctuations in a successful way. None of the models 711 

predict the exact day of snowpack vanishing. For the other years, it can be seen that there 712 

are some snow events that are less successfully modeled by MASiN, although that is also 713 

the case with the other tested snow models. 714 

 715 

 716 

Fig. 4. Observed and simulated snow depth at Dorval for winters a) 2011-2012, b) 717 

2012-2013 and c) 2013-2014. 718 

 719 
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4.2. Multisite general performances 720 

 721 

The model performances were first assessed using MASiN and the three reference 722 

models in similar conditions: one calibration performed at Dorval followed by 723 

applications to 22 other sites keeping the set of parameters intact. Fig. 5 shows simulation 724 

results using the entire datasets for each site.  725 

 726 

 727 

 728 

Fig. 5. Assessment criteria for the four models used in similar conditions at the 23 sites. 729 

(a) Nash Sutcliffe coefficient (b) Melt offset (c) Wrongly simulated state. Vertical black 730 

lines indicate MASiN’s median value. Wrongly simulated state and melt offset axes are 731 

reversed to facilitate interpretations. 732 

With the exception of one outliner at 0.38 in Fig 5a, MASiN provides consistent and 733 

reasonably high Nash Sutcliffe coefficients at the different sites. With a median Nash 734 

Sutcliffe coefficient of 0.74, MASiN shows an overall higher performance than other 735 

models used in similar conditions. Model D (0.57) Model C and Hydrotel (0.46) present 736 

both inferior medians and wider distributions. The difference between MASiN and the 737 
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other models is less contrasted regarding the wrongly simulated state. Hydrotel, Model D 738 

and MASiN have comparable medians (around 13%) and distributions. Model C shows 739 

lower performances with a median over 20% and a wider distribution.   740 

MASiN’s results for the melt offset criteria are very contrasting from the reference 741 

models. MASiN’s median reaches 3.9 days on 23 sites while Hydrotel, Model D and 742 

Model C reach 5.2, 7.7 and 10.2 respectively.  As is the case for the Nash Sutcliffe 743 

coefficient, MASiN has the tightest melt offset distribution of the four models.  744 

Overall, MASiN shows comparable (wrongly simulated state) to substantially higher 745 

(Nash Sutcliffe and melt offset criteria) performances than those of the reference models. 746 

MASiN demonstrated a high level of robustness by reproducing SD with a consistent 747 

accuracy over the 23 study sites. The situation is different for the reference models that 748 

all show clear limitations in performing at different sites with a unique set of parameters. 749 

Among the reference models, Model C is the one showing the worse robustness, followed 750 

by Hydrotel and Model D. 751 

 752 

4.3. Multisite detailed performance 753 

 754 

In order to identify MASiN’s strengths and weaknesses in the context of a multisite 755 

application, the model’s results are compared here to reference models calibrated at each 756 

study site. Analyzing the performance of MASiN for each group of sites in such 757 

conditions is required to assess if the model accuracy is site-group related. Results for 758 

each site are presented in Fig. 6.  759 
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 760 

 761 

Fig. 6. Results for the five groups of study sites. MASiN, used with a unique set of 762 

parameters, is here compared with reference models calibrated at each site. The left panel 763 

(a) shows the Nash Sutcliffe coefficient, the center panel (b) presents the wrongly 764 

simulated state and the right panel (c) shows the melt offset. Wrongly simulated state and 765 

melt offset axes are reversed to facilitate interpretation. 766 

Group 1 767 

With respect to the Nash Sutcliffe coefficient, MASiN shows the best performance at five 768 

out of seven sites. At the remaining two sites, the performance is still very good, with 769 

NSE values close to 0.8. MASiN has the best performance at four out of seven sites in 770 
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terms of the wrongly simulated state, with only one poor value at St-Jovite. MASiN 771 

shows the best performances for the melt offset at five out of seven sites. The 772 

performance at St-Jovite is also poor for this criterion. Overall MASiN can be seen as the 773 

best performer for this group which hosts the parameterization site.   774 

Group 2 775 

MASiN has the best performance in terms of the Nash Sutcliffe coefficient, with values 776 

above 0.8 at the Sydney and Moncton sites, and a value of 0.63 at the Gander site, where 777 

the four models show their worst performance. Model D and Hydrotel are quite close to 778 

MASiN at each site. The performance of Model C is substantially inferior. Regarding the 779 

wrongly simulated state, Model D, Hydrotel and MASiN exhibit comparable 780 

performances with values ranging from 13% to 28%. The performance of Model C is 781 

here again substantially inferior for this criterion. Each model experiences its worst 782 

performance in Sydney, where the annual maximum snow depth and the continuous snow 783 

cover presence are the smallest of the three sites (see Fig. 3.). The situation for the melt 784 

offset shows comparable performances for Model C, Model D and Hydrotel. MASiN 785 

shows better performances at two of the three sites, and a comparable performance at the 786 

Sydney site. As for group 1, MASiN seems to show the overall best performance in 787 

Group 2. 788 

Group 3 789 

MASiN shows the best performance for the wrongly simulated state and the melt offset at 790 

each site, and has the best Nash Sutcliffe coefficient at Weyburn. The MASiN Nash 791 

Sutcliffe coefficient for Brandon can be still considered good (0.68), but it is lower than 792 

for the three other models, which exhibit good performances for that criterion. MASiN 793 
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could also be considered among the best models for this group, keeping in mind that it 794 

was not calibrated at each site contrarily to the other models.  795 

Group 4 796 

Results for Group 4 are more contrasted than for the first three groups. MASiN shows the 797 

best performance for only one criterion at one site, and the value is still poor (Uppsala, 798 

wrongly simulated state of 33%). Nash Sutcliffe values at Uppsala are poor for all 799 

models, whereas there are some very good performances at Ljungby. The wrongly 800 

simulated state is very poor for all the models at each site. Melt offset values are 801 

satisfactory overall; at least two models perform better than MASiN at each site.  802 

Group 5 803 

MASiN has the worst performance at seven out of nine sites in terms of the Nash 804 

Sutcliffe coefficient, with values ranging between 0.64 and 0.74, and Cartwright being 805 

the exception with a very low value of 0.38. MASiN is or is close to being the best model 806 

at the two remaining sites. The performances of the four models in terms of the wrongly 807 

simulated state are very close at each site. Performances in terms of the melt offset vary 808 

from one site to another. Overall MASiN clearly shows the poorest performance for 809 

Group 5. 810 

 811 

MASiN shows very good overall performances at sites from Groups 1, 2 and 3, and 812 

despite a few counter-performances, it can be rated the best model for these groups. For 813 

Groups 4 and 5, MASiN exhibits poorer overall performances and less dominance over 814 

the comparison models, showing limits in the model robustness.  815 

 816 
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4.4. Discussion 817 

A detailed analysis of the results shows that MASiN’s performance varies from one 818 

group of sites to another.  819 

Of the ten best performances of MASiN with respect to the Nash Sutcliffe coefficient, 820 

nine are seen at sites in Groups 1 and 2. At all of these sites, the wrongly simulated state 821 

is close to or below 20% (with only one exception) and the maximum melt offset is 6 822 

days. Sites in Groups 1 and 2 are the closest sites to Dorval, where the parameterization 823 

of MASiN was performed. At sites in Group 2, the comparison models exhibit poorer 824 

overall performances than for Group 1. Sites in Group 2 are characterized by great inter-825 

annual variability of both continuous snowpack presence and maximum snow depth (see 826 

Fig. 3). Because of calibration, reference models may have difficulty showing consistent 827 

performances when winter conditions vary, thus possibly explaining why only MASiN 828 

shows stronger performances at Group 2 sites. 829 

MASiN can be seen as the best model at sites in Group 3 despite not performing as well 830 

as for Groups 1 and 2. Sites from Group 3 are located further from Dorval and the 831 

difference in climatic conditions can explain the performance decrease seen with them. 832 

However, results from Groups 1, 2 and 3 tend to show that the physical basis of MASiN 833 

allows strong transferability in both space and time. 834 

Performances for Group 4 are variable. The main similarity in performance between the 835 

models is seen with the wrongly simulated state, which is very poor at the two sites. The 836 

specificity of Group 4 lies in very short continuous snowpack presence and low snow 837 

accumulation. At the sites in that group, several accumulation and melt periods occur 838 

during a single winter season. Poor wrongly simulated state performance indicates that all 839 
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models have trouble representing these repeated appearances and disappearances of the 840 

snowpack. However, as the snow height at these sites is relatively low, differences 841 

between measured and simulated snow depth remain small, even when the presence is 842 

wrongly simulated, causing the Nash Sutcliffe coefficient to remain relatively high.   843 

At sites in Group 5, MASiN shows performances comparable to those in Group 1 in 844 

terms of the wrongly simulated state and melt offset. The two main differences with 845 

Group 1 are that (1) the other models show very strong overall performances for the three 846 

criteria, and (2) Nash Sutcliffe coefficients for MASiN are smaller. Except for 847 

Harnosand, sites in Group 5 are characterized by a long continuous winter presence and a 848 

relatively low inter-annual variability of both maximum snow depth and continuous snow 849 

presence. These conditions can be favorable to calibration efficiency, thus possibly 850 

explaining the strong performances of the reference models at these sites. This hypothesis 851 

does not however apply to Churchill, where the poor Nash Sutcliffe performances of all 852 

models remain unexplained. Besides the good performances of the comparison models, 853 

MASiN shows a weaker Nash Sutcliffe performance for Group 5 sites than for the other 854 

groups. After comparing the measured snow depth with the MASiN simulated snow 855 

depth, it appears that at the sites in Group 5, the snow depth is heavily underestimated by 856 

MASiN because of both misestimated new snow density and overestimated densification. 857 

This results in depth differences of up to 50%. The overestimation of density also makes 858 

for a faster ripening of the snowpack as conduction fluxes, absorbed shortwave 859 

radiations, and liquid water transmission are overestimated.  860 

Sites in Group 5 represent very specific climatic conditions that are different from those 861 

around the parameterization site, thus making the used parameters less suited to the 862 
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characteristics of that group. This shows that despite the seeming robustness of MASiN, 863 

there are still limits to the areal extent validity of its utilization under the conditions 864 

imposed by the present study. However, the results so far do not allow a differentiation 865 

between parameterization and design limits. For instance, some of the equations chosen 866 

during MASiN’s design were developed and validated at specific sites. Their tuning 867 

capacity through the adjustment of their parameters is therefore limited to a certain range 868 

of validity. New snow density, for example, is computed with a relationship based on 869 

measurements from Alta, Utah (Anderson, 1976), where climatic conditions may differ 870 

from those of Group 5 sites.  871 

 872 

5. Conclusion 873 

 874 

The non-data intensive physically based model MASiN computes the energy and mass 875 

balance of multiple layers of the snowpack using hourly air temperature, relative 876 

humidity and wind speeds, as well as daily precipitations. The model targets high 877 

robustness and limited calibration requirements for multisite applications. In order to 878 

assess MASiN’s robustness a unique parameterization phase was conducted at one site 879 

(Dorval) and parameters were kept unchanged for different study sites. MASiN’s 880 

performance was then compared to those of three reference snow models at 23 point 881 

locations across Canada and Sweden. Site selection was carried out such as to obtain a 882 

good representation of the diversity of climatic zones and snow cover evolution that can 883 

be found in non-mountainous environments. Using three assessment criteria allowed us to 884 
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more specifically analyze the strengths and weaknesses of MASiN as compared to the 885 

other models. 886 

The overall results show that MASiN is substantially more robust than the three reference 887 

models, being able to provide comparatively robust snow depth simulation performance 888 

even when compared to models that were calibrated at each study site. Aside from 889 

performances at two sites, the Nash Sutcliffe coefficients obtained for MASiN showed 890 

satisfactory values ranging from 0.63 to 0.89. MASiN also showed the ability to correctly 891 

simulate the absence and presence of the snowpack and to rightly evaluate the melt peak 892 

occurrence.  893 

At specific sites characterized either by high latitude or significant snow accumulation, 894 

MASiN had difficulty achieving the same performance as at other sites, the simulated 895 

snow depth being systematically underestimated. The issue of the areal extent validity of 896 

a single site parameterization and/or of the use of some equations with geographic-897 

specific applicability is tackled here as climatic conditions for Group 5 are very different 898 

from those of other sites.  899 

The parameters set at Dorval provided very good simulation results for the sites in 900 

Groups 1, 2 and 3. MASiN exhibited particularly encouraging performances between 901 

Sydney and Geraldton in an area covering around 2000 km of longitude and 500 km of 902 

latitude. MASiN also proved capable of providing robust simulation results over time 903 

even at sites where conditions were highly variable from one winter to another. 904 

Comparing MASiN to two empirical models dedicated to snow depth simulation and a 905 

proven mixed degree/day energy-balance snow module from a hydrological model 906 

showed the potential of simplified physical snowpack models requiring no or just a few 907 
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calibrations. However, further evaluations of MASiN’s performance should be conducted 908 

to complete those presented in the present paper. Among others, MASiN’s performance 909 

should be compared to that of complex EB models that are recognized as the reference in 910 

snow cover modeling and MASiN internal variables such as solar radiation should be 911 

compared with physical measurements. Further improvements of MASiN performances 912 

and its applicability to hydrological modeling may also require further developments: 913 

- Introduction of different equations for the calculation of snow density and 914 

settling.  915 

- Adaptation of MASiN to mountainous environment specificities by adding snow 916 

redistribution and coupled slope-orientation effect modules into the model.  917 

- Testing of further MASiN adaptation for hydrological studies by performing 918 

direct comparisons of model outputs with SWE or outflow measurements.  919 

- Integration of MASiN into distributed hydrological models in order to check the 920 

overall impact on discharge simulation performances.  921 

Overall, this study shows that non-data intensive physically based models such as 922 

MASiN can be robust snow models, whose application may be highly beneficial, 923 

especially when multi-site calibration is impossible, either because data are lacking or 924 

because there are too many uncertainties in terms of calibration validity.  925 
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