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Abstract—Smart homes play a crucial role in reducing the residential sector electricity consumption and Greenhouse Gases (GHG)
emissions. In this work, we present a time series approach to predict GHG emissions to be integrated into smart home management
systems. More specifically, we used Long Short-Term Memory (LSTM), a variant of Recurrent Neural Networks. The prediction results
get mean absolute percentage error (MAPE) close to 2 % when the region under study has an energy matrix mostly based on fossil
fuels, less intermittent. For regions in which more renewable sources are present, the MAPE is around 12 %. However, in either case,
LSTM can predict the hours well with smaller emissions among the next 24 hours. Such day-ahead information brings awareness to
the users and allows the scheduling of appliances to work in the hours in which the emissions are minimal, reducing them without
significantly affecting the consumers’ behavior.
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1 INTRODUCTION

The residential sector is among the major contributors to the
increasing electricity demand and Greenhouse Gases (GHG)
emissions [1]. Only in Canada, the residential sector was
responsible for 17% of the total electricity consumption in
2015 and around 13% of the total GHG emissions (including
electricity) in this same year [2]. In this context, smart
homes play a critical role with its main objectives regarding
home automation, energy management, and environmental
emissions reduction [3]. As an example, [4] cites that smart
home automation can reduce 30% of heating energy and
carbon emissions. In a broader context, the building sector
is responsible for 30% of global CO2 emissions [5]. GeSI
reported that smart building solutions could cut 2.0Gt of
CO2e from the housing sector [6], being one of the eight
sectors that will profit the most from the different ICT-
enabled possibilities to reduce GHG emissions.

The different sources used during the day to produce
electricity and meet the region’s demand can make the
emission factor of a region (in gCO2e/Wh) vary a lot,
which represents an opportunity to decrease emissions by
managing the demand accordingly [7]. The possible adop-
tion and consequent potential to reduce emissions is more
limited if the changes largely impact consumers’ behavior,
but there are flexible loads that allow scheduling with
reduced impacts for the users. For instance, charging an
electric vehicle during the hours it is parked by selecting the
moment in which the emissions (and/or price) are minimal
[7]. Home Energy Management Systems (HEMS) may be
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used to schedule the electrical loads in a smart home to re-
duce emissions, which requires information about emission
factors in advance [7].

Information about forecasted hourly emissions is not
very commonly found yet, but some initiatives are starting
to appear, like the Carbon Intensity API [8] which provides
2-day forecast for the UK. In other places, this data is not yet
explicitly disclosed, but other information available allows
the calculation. For instance, the IESO (Independent Elec-
tricity System Operator) in Ontario (Canada) is now pro-
viding day-ahead energy generation forecast per source1,
which, in conjunction with the forecasted energy imports
from neighbors, enable the estimation of the GHG emissions
for the next day. However, not all regions are already
providing such data publicly. In France, for example, the
emission factor of the electricity produced in the country is
provided, near real-time, calculated from the energy sources
used in the generation [10], but not yet for the next day.

In order to have this day-ahead information, we need
to predict the emissions due to electricity generation in the
region where the smart home is located. Hourly emission
factors (or even in smaller granularities) have gotten in-
creased interest as a more accurate alternative to the tra-
ditional annual average emissions. In this paper, we present
a time series approach to predict the emission factors for the
next day using Long Short-Term Memory (LSTM), a variant
of Recurrent Neural Networks (RNN). We then apply this
information to reduce the emissions of loads which allow
flexible scheduling.

We validate the use of LSTM for emission factors predic-
tion using data available online for regions with different en-
ergy profiles: one profile which uses mostly fossil fuels and
nuclear sources to generate electricity, and another which
also relies partially on nuclear, but has a bigger share of
renewables to produce electricity. The second profile is more

1. “Adequacy” report at [9]
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challenging due to the intermittency of electricity generation
using renewable sources of energy. We demonstrate the
prediction applicability by presenting a use case in which
an appliance is scheduled to run on the best time of the day
from the GHG emissions point of view. We also validate
the approach inside an optimization scenario, minimizing
emissions while taking into account other aspects.

Despite the extensive literature on predicting load and
pricing, to the best of the authors’ knowledge, this is the first
work to employ time series mechanisms to predict average
GHG emissions due to electricity generation and use. In a
prior study aiming at predicting emissions [11], we have
not considered the dataset as a time series, therefore we did
not capture information from prior days that may affect the
prediction for the next day. Besides, we used an internal
database, which we changed now for open, downloaded
and organized data for replicability purposes. The contri-
bution of this work is therefore twofold: we propose a time
series approach to predict GHG emission factors for the next
24 hours in order to allow the smart scheduling of flexible
electricity loads, and we propose the use of LSTM for such
prediction, combining past data and other associated day-
ahead information.

The remainder of this paper is organized as follows.
Section 2 presents the related work, starting with smart
homes energy and emissions management, concluding with
related work on predicting electricity data. Section 3 brings
the problem formulation and Section 4 details the data
collection process. Section 5 presents the prediction model,
and Section 6 shows the prediction results, as well as a
comparison with a traditional time series approach. Section
7 describes two use cases for the emissions predicted, and
Section 8 brings the final remarks.

2 RELATED WORK

The prior publications related to this work are related to
smart home energy and emissions management and emis-
sions due to electricity usage prediction.

2.1 Smart Homes Energy and Emissions Management

Smart home energy management with optimization objec-
tives and tools to increase user awareness have been studied
for some years. As examples, there are the Energy Aware
Smart Home [12] and the SESAME-S project (SEmantic
SmArt Metering Services for Energy Efficient Houses) [13].
Such systems can also incorporate the control of generation
and storage of energy locally produced from renewables,
such as wind turbines and, most commonly, solar panels
[14]. GreenCharge [15], for instance, is an optimization ap-
proach to minimize electricity costs and peak hours demand
which does that, also considering the home energy demand,
local batteries, and electricity pricing varying throughout
the day.

The pricing information might be available through the
utilities websites or by specific protocols. The local energy
production can be predicted based on historical solar irradi-
ance in the geographic region under study. Such information
is used by [16] in conjunction with a genetic algorithm and
linear programming to schedule home appliances, while

[17] and [18] do that for electric vehicles charging. Similar
predictions can be developed for wind energy production.

The dynamic pricing schemes (“TOU,” Time of Use
period or “real-time”) as used in GreenCharge [15] for smart
home energy management has also been studied, such as in
the optimization approach in [19] or in conjunction with
a list of appliances priority (preferences) in [20] to not
significantly degrade consumer comfort.

However, fewer works to date have talked about vari-
able GHG emissions. One example is [21], which differenti-
ated electricity generation emission factors from consump-
tion factors (including imported energy from neighbors),
and evaluated the environmental performances of demand-
side management programs. Specifically for smart homes,
the Swedish Active House [22] proposes an architecture in
which the house communicates with the Utility company
via a specialized interface to receive a 24-hour forecast of
CO2 emissions. The hourly information was not available at
the time of their publication, so the authors defined a model
using historical information, assuming that the production
sources were dispatched according to their pricing (cheapest
first), and also comprising imports and exports between
adjacent regions.

Kopsakangas-Savolainen et al. [7] presented theoretical
use cases in which the daily variation of emission factors
enable GHG emissions reduction from 3 to 8% due to op-
timization of time of use without significantly affecting the
users’ behaviors. Only historical information was necessary
for the study. The day-ahead GHG emissions, based on the
sources used to produce energy, while not provided directly
by the Utility to the home energy management systems,
need to be predicted in order to be used in such smart
systems.

2.2 Emissions Due to Electricity Usage Prediction
Electricity load and pricing prediction are the subjects of
diverse prior work [23], using different techniques. Such
forecasts can be classified as short-term (1 hour to 1 week),
medium-term (one week to one year), and long-term (more
than one year) [24]. Time series models like ARMA (Au-
toregressive Moving Average) and ARIMA (Autoregressive
Integrated Moving Average) are popular approaches for
predicting load and price and can serve as benchmark mod-
els for comparing with new proposals [23]. Load and price
are commonly non-stationary, presenting high volatility and
nonlinearity [25]. Such characteristics must be tackled before
applying time series models, for instance, by differencing
the data. There is also a consensus that electricity data
suffers from multiple seasonality - per day, week, and year
[24] [26], which may be dealt with by using Fourier decom-
position, or through the inclusion of dummy variables.

As an example, Contreras et al. [27] used ARIMA for
next-day electricity prices, treating daily and weekly sea-
sonalities, assuming residuals as white noise, and accept-
ing the series as stationary after a log transformation for
stability. An option to detect and adjust possible unusual
observations (outliers) is also selected. Even with all the
adjustments, when the data is highly unstable, the model
hypotheses are not met. Hinman and Hickey [24] used an
ARMAX (Autoregressive Moving Average model with ex-
ogenous weather variables) approach to forecast electricity
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load 24 hours ahead. In this work, each hour’s load is treated
separately, as an individual time series, thus, according
to the authors, “avoiding modeling complicated intraday
patterns” which vary weekly and through the seasons.

Another possibility is to use a multivariate model. VAR
models, a generalization of the univariate autoregressive
model for forecasting a collection of variables are suitable
when all variables affect each other [28]. Raviv et al. [29]
used the VAR method to predict the daily average price
for the 24 hours of the next day, which are defined all
together in the previous day. Even being useful in several
contexts, [28] points out that VARs suffer criticism for
being “atheoretical”, meaning such model is not built on
top of an economic theory. Besides, the assumption that
every variable affects every other in the system makes the
interpretation of estimated coefficients difficult.

According to Dudek [30], one may use two approaches
for solving multi-output regression problems: (1) by decom-
posing the problem into multiple single-output problems or
(2) by adapting a model so that it directly handles multi-
output data. In (1), the relationship among the variables is
ignored, probably reducing the accuracy. But (2) is not very
popular due to the inherent complexity, despite having bet-
ter predictions. For load time series forecasting, the author
points out two approaches: conventional (comprised of re-
gression methods like ARIMA and exponential smoothing)
and unconventional (neural networks, SVM, fuzzy).

Regarding the ones classified as “unconventional,” [24]
highlights AI-based techniques, which are flexible methods
that may not demand prior experience for getting good
forecasts results. Such methods are usually said to be “black-
boxes”, which may also over fit and take a long time for
training, but there is evidence from practical applications
that suggests they may perform well. Singhal and Swarup
[26] used Artificial Neural Networks (ANNs) for pricing
forecasting, using time (day of the week, hour of the day),
historical data, and also load forecasting as inputs.

Panapakidis and Dagoumas [23] developed an electricity
pricing forecaster based on ANNs and hybrid approaches.
They argue that ANNs are suitable for problems without
constant mean and which display high volatility, like pricing
data, very normally a non-stationary time series. In their
work, they evaluated abnormal data to exclude metering
failures and also accounted for exogenous variables like the
load demand (assuming the day-ahead load is available),
the available generation, the market prices of interconnected
countries, generation from renewables, and gas prices. Dif-
ferent models were tested, including one with two serial
ANNs and a hybrid model, with clustering and one ANN
for each cluster, including neighbors’ information. The au-
thors concluded that the clustering stage did not improve
the operation, although “clustering improves the forecasting
accuracy in some subsets of the main test set.” In their
experiments, weekends presented the higher fluctuations,
with poor results on Sundays. Fridays were also difficult
to model. Clustering techniques were also used for pricing
prediction in [31] and [25].

Specifically for GHG emissions prediction, [32] used
Support Vector Machines (SVM) to predict marginal emis-
sion factors - more specifically, 24 SVM models correspond-
ing to each of the 24 hours. Marginal emission factors are

related to the extra generation required to supply an addi-
tional demand [33] [34]. On our case, instead of the marginal
value, the average emission factor is a more appropriate
selection, since it is assumed that the load under study
is part of existing demand. The same type of emission
factor was considered by [35] when studying the impacts of
electric vehicle charging in the electric grid. Even with the
extra demand to charge the vehicles, the authors assumed
that the additional demand would not change the hourly
characteristic emission level. In other words, the work as-
sumed that the electricity markets would have enough time
to react and adapt to this new demand from EVs.

As it may be seen, there is an interesting set of prior work
on predicting electricity load and price, but proposals to
predict average GHG emission factors are still lacking. The
ActiveHouse assumed the emissions forecast information
was available and provided by the Utility, which may not
be the case yet in many regions. To make the necessary
prediction in order to feed smart home management sys-
tems, we may leverage on time series approaches, historical
sources, and available forecasts to predict emission factors
which may then be used to schedule smart home devices.

3 PROBLEM FORMULATION

Information to compute emission factors of electricity pur-
chased from the grid can be collected in near real time as we
described in our prior work [11]. The evaluation of emission
factors from the electricity grid should take into account the
generation and the demand significant variations over time
(during the day and between the seasons of the year) [33]
[36], as well as imports and exports from neighbor intercon-
nected regions. The required information can be obtained
from some Electricity System Operators websites, like [9],
[10], [37]. When such information is not disclosed, depend-
ing on the energy sources used, it might be possible to
estimate based on historical reports and neighbors’ imports
and exports, with the side cost of increased uncertainty.

We consider that imported/exported electricity is the
average mix from the region where it comes from and it can
be obtained from the neighbors of the neighbor as well. For
instance, being r2 a neighbor region of r1, and r3 a neighbor
region of r2; r1 imports from r2 which, in turn, imports from
r3 and so on. For the sake of simplicity, we consider only one
“level” of imports, assuming they are locally consumed and
not exported to another place. Going further in the chain
would increase the calculation accuracy.

In this work, we based our problem formulation on our
prior work [11], being R = {ri, i = 1, ..., I} a set of I
interconnected regions, S = {sk, k = 1, ...,K} a set of
K sources of energy. F represents the emission factor of the
sources in each region, i.e., Fik is the emission factor of the
energy source sk in the region ri. A represents the energy
imported between regions, i.e., Ajik is the percentage of the
total energy produced from the source sk that is imported
from the region rj to the region ri. In case where j = i,
Aiik is the percentage of the local energy from the source
sk produced and used in region ri. “Produced and used”
in the region means it is necessary to exclude the electricity
exported to be used elsewhere, which is not an issue if we
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are using percentages. From the notation above, we define
the emission factor of region ri as in:

Ei =

K∑
k=1

Fik ×Aiik +

I∑
j=1,j 6=i

Fjk ×Ajik

 (1)

Multiplying an emission factor by a load is the simplest
and most common way of calculating emissions due to
electricity consumption [33]. One sample list of sources’
emission factors Fik,∀i is listed in Table 1. The values were
defined following the method used by [34], having as basis
the Ecoinvent database (version 3.1) using Simapro (version
8.1) and IMPACT2002+ (2.20) for 1 kWh of electricity. To
simplify, we have been using the same list for regions in the
middle and east coast of North America. The listed emission
factors consider the power plants construction and other
life-cycle steps, such as fuel extraction, following an LCA
(Life Cycle Assessment) approach. Refuse is considered
as zero until this moment. Similar lists can be generated
for other regions, as we did for France. An alternative to
LCA emission factors are the operational or direct emission
factors. We selected the LCA approach because it implies
that energy generated from renewables is not emissions-
free. The other approach can be used by simply changing
the sources’ emission factors.

TABLE 1
Sources’ emission factors used in this work for the middle and east

coast of North America (LCA approach)

Source gCO2/Wh
Biomass 0.166

Coal 1.157
Gas 0.634

Hydro 0.017
Nuclear 0.023

Oil 1.164
Refuse 0
Solar 0.04
Wind 0.031

4 DATA COLLECTION

We have been studying near real-time emission factors infor-
mation in different regions, as well as ways of standardizing
such collection and report with different geographic and
time granularities [38]. In this work, for replication pur-
poses, we used information downloaded from the utilities’
websites. On the one hand, the drawbacks of this approach
are the following:

• Only hourly or half-hourly averages are usually
available, which was enough for our study, but may
not be for those that demand smaller time granulari-
ties (e.g. 5 minutes);

• When downloading the data from interconnected
neighbors, the imports/exports information may not
be available in the desired temporal or regional gran-
ularity either. In this study, for instance, we used the
neighbors’ monthly or annual averages, losing some
accuracy in the results. Having a script capturing
information near real-time may give more details.

On the other hand, anyone interested in replicating this
study or applying it to their own problem may simply
obtain the same public data online, subject to fewer errors
and for as many years as the utility makes the data available.
The dataset may be obtained by following these steps:

1) Download the local energy generation per source,
obtaining Aiik, or, if available, download the local
emission factor already calculated, obtaining di-
rectly Fik ×Aiik;

2) Download the flows (imports and exports) between
the region under study and its interconnected neigh-
bors using the best granularity possible;

3) Make sure the local energy percentageAiik excludes
the exports to neighbors, since this energy was used
elsewhere;

4) Check on the neighbors’ websites or annual reports
the fuel mix composition, obtaining sk for each rj
to calculate Ajik. If possible, download their pro-
duction with the same time granularity as (1); if not
available, 2 solutions are possible: (a) use a similar
region in conjunction with an LCA database/tool to
estimate the emission factors, or (b) use the annual
average for the region;

5) Calculate the local emission factor Ei, using a table
similar to Table 1 or local sources’ emission factors.

In this work, we consider hourly average emission fac-
tors, from the entire generation mix, which assumes that the
load is distributed among all operating power plants [33].
This is a simplification since the imports are not coming
from the whole neighbor, but probably from a set of closer
plants. The same applies for the energy being generated and
consumed in the region. The average mix approach is still
commonly used [39], and we are assuming the temporally
differentiated case in order to account for hourly and sea-
sonal variations (therefore, the average is about the energy
sources, not about time). As mentioned before, the emission
factors can also be marginal, but we are assuming the load
under study is part of an existing demand and, therefore,
the average emission factor is an appropriate selection.

For this work we used data from the following regions:
PJM (USA) [37], Ontario (Canada) [9], and France [10]. These
regions have different profiles: PJM relies on gas, coal, and
nuclear sources, while Ontario and France, despite also
relying on nuclear sources, have a bigger share of renewable
sources and, therefore, present higher variability of emission
factor. For Ontario and France, we obtained complete data
for the years of 2015 to 2017. For PJM, we obtained complete
data starting in 20th May 2015 until the end of 2017 - older
data is available, but all sources were reported as “Others”
at the time of this study. Whenever missing data issues
arose, which did not frequently happen in the data sets
obtained, in order to account for all the relationships of a
day, we copied all information from the same day from the
prior week.

Another issue, which may happen as well for other
regions, is that for France we were not able to find imports
information divided by neighbor. The utility does report
the contractual imports, but not the physical flows split. To
simplify, we used the European Union average emission fac-
tor reported at [40]. To conclude, whenever we encountered
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“Multiple Fuels” or “Others” among the electricity sources,
we searched the utility reports to check how to “split” the
amount, aiming at gaining more accuracy. Similarly, if the
Utility provides a detailed list (e.g., breaking down “Hydro”
in “run-of-river” and “reservoir”) we profit on the details
and match the items with the list of fuels provided by
Ecoinvent.

Table 2 summarizes some important information that
characterizes the datasets. The emission factors are rounded
to two decimal points - despite using the complete figures
for the prediction and analysis, the final value to be reported
to the user has to be rounded due to the inherent uncer-
tainties of the LCA process. Figure 1 presents the average
emission factors for all regions divided by seasons for the
time frames downloaded. Note that the Y axes of the graphs
have different scales, which means the emission factor of
PJM is much higher than in Ontario and France.

We made a preliminary analysis of each dataset to check
the correlation with past data and found that up to four
weeks before we still have significant correlation. Using the
past weeks as the input for the prediction also helps to
account for cold or warm weather that might be happening.
Figure 2 illustrates the analysis done for Ontario as an
example. It is also possible to note the daily and weekly
seasonalities.

Fig. 2. Autocorrelation Function (ACF) over Ontario hourly data for the
period 2015-2017

5 PREDICTION MODEL

The problem of emission factors prediction was addressed
using LASSO (Least Absolute Shrinkage and Selection Oper-
ator) regression analysis in our prior work [11]. In this first
study, we have divided the emission factors by hour and
season, and have not considered the dataset as a time series.
In this paper, we evolved our prediction tool by using a time
series approach through Long Short-Term Memory (LSTM).

LSTM is a variant of Recurrent Neural Networks (RNN)
introduced by [41]. The main principle of LSTM is its ability
to manage its own memory. In contrast with RNN simple
neuron, the cell state is not necessarily updated at each time
t. In the LSTM cell, there are three gates. These gates decide if
the cell needs to forget the past information learned, to hold
the new incoming data, and to control the cell output. This
particularity helps LSTM networks to perform well for long-
term dependency contexts, reducing the vanishing and ex-

ploding problems encountered with RNN back-propagation
algorithm. With gates in cells, important data are kept as
long as they are not cleared by them, and irrelevant data are
ignored by the cells. This persistence in memory cells make
LSTM a good option for the emission factors prediction
which takes a time series of 672 steps.
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Fig. 3. LSTM Cell.

The LSTM cell shown in Figure 3 represents three layer
gates to control flows of information in the network. The
input gate, represented by Equation 22, controls the access of
input data. The forget gate, considered the most important
one and represented by Equation 3, is used to decide if the
memory cells need to forget the past information learned
in order to keep only the new input information. Finally,
the output gate, represented by Equation 4 decides if the
information inside cells need to be output or not to the next
network layer.

it = σ(Wi · [ht−1,xt] + bi) (2)
ft = σ(Wf · [ht−1,xt] + bf ) (3)
ot = σ(Wo · [ht−1,xt] + bo) (4)

Wi,f,o are the weight matrices and bi,f,o the bias vectors
for the input, forget and output gates respectively. xt is the
input vector of the cell and ht−1 the cell hidden state vector
at t − 1. The brackets in equations 2, 3, 4 and 7 represent
the concatenation of ht−1 and xt. σ is the sigmoid function
represented by Equation 5.

σ(x) =
1

1 + e−x
(5)

ct is the current cells state updated in function of their
own previous values ct−1 and the new input information
c̃t represented by the Equations 6 and 7. The ◦ denotes the
element-wise product.

ct = ft ◦ ct−1 + it ◦ c̃t (6)
c̃t = tanh(Wc · [ht−1,xt] + bc) (7)

2. LSTM equations have been inspired from
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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TABLE 2
Emission factors (gCO2e/Wh) metrics for the different regions

ON PJM France
season Avg. Min. Max. Avg. Min. Max. Avg. Min. Max.
spring 0.05 0.03 0.18 0.54 0.40 0.67 0.06 0.02 0.16

summer 0.08 0.02 0.21 0.60 0.43 0.78 0.06 0.03 0.14
autumn 0.06 0.03 0.21 0.54 0.39 0.68 0.12 0.03 0.25
winter 0.07 0.03 0.19 0.55 0.34 0.70 0.10 0.04 0.21
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Fig. 1. Average emission factors (gCO2e/Wh) during the day divided by season

Finally, the output of the cells ht, Equation 8, is con-
trolled by the output gate vector ot to determine if the value
ct needs to be transmitted to the next layer. The tanh is used
to limit the range value between -1 and 1.

ht = ot ◦ tanh(ct) (8)

All equations listed before represent one layer of mul-
tiple LSTM cells. All of these equations are differentiable
allowing to use any gradient descent algorithm to train the
neural network model using LSTM cells as neurons. LSTM
systems have been achieving good performance in different
time series problems, e.g., speech recognition, language
modeling, visual recognition, and description [42], [43], [44],
[45].

5.1 Dataset Organization

To create the dataset for the LSTM network experiment, we
choose to use the last 28 days before the day to predict
with a period of 1 hour, ∆t = 1 hour. This 4-week range
was defined based on a preliminary analysis of the datasets,
as well as based on some tests with different time ranges
during the definition of the prediction model. The RNN
architecture used is many-to-many, i.e., for each input xt
we get an output yt.

The time series data is then defined X =
[x−672, ..., xt, ..., x24] where t = 0 is the last known
hour. xt is the input vector given to the network at each
time t. x−672 is then the input vector 28 days before and x0
is the input vector just before the 24 hours to predict. The
predicted values model output Y = [y−672, ..., yt, ..., y24]
represents the emission factor predicted for all time t. In
our case, we only need the future part of the output is
Ypred = [y1, ..., y24].

The result when using only the past emission factors as
input feature in the model was not at the level of what we
were expecting for the datasets with a bigger share of re-
newables. This might be explained due to the intermittency
of such energy sources. In Section 6 we detail more this

observation. To improve the emission factor prediction, we
decided to leverage on other forecast data provided by the
utilities. This day-ahead information can comprise the fore-
casted demand in the region, generation from renewables
(divided by source or aggregated), and generation from
non-renewable sources.

Figure 4 shows the actual structure of the dataset used
for the experiment for Ontario as an example. For each time
t, the network receives an input vector xt = [e, d, s, w,m]
of dimension 5 corresponding to: emission factor, demand,
solar production, wind production and the mask value,
respectively. The maskm helps the model to differentiate the
known past from the unknown future information. When
m = 1, all features are past information considered known.
When m = 0 the model understands that the value e = 0
should not be taken into consideration and the model needs
to predict it from memory and forecast data at this step.
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Fig. 4. Dataset structure for the experiment with demand, wind and solar
source from IESO.

The process to predict the next 24 hours is to feed the
model with the input vector from time t = −671 to t = 24.
The outputs y1 to y24 are the prediction of the emission
factor for the next 24 hours.

The training and the experiment were performed using
Keras version 2.0.7 with Tensorflow backend engine version
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1.2.1 in Python 2.7. The computer OS is Ubuntu 16.04 with
a processor i7-4790 and 16 GB of RAM.

The model used is a three-layer RNN: the first layer
consists of 22 LSTM cells, the second layer consists of 16
LSTM cells and the output layer consists of 1 linear neuron
as shown in Figure 5. Different model architectures have
been tested during the research e.g. number of layers and
numbers of cells per layer. To create more features, we tried
to add a convolution layer before LSTM. We also tested the
model with dropout and random noise in data to reduce
overfitting, but the results did not improve for any of these
configurations. The final model hyperparameters have been
found using grid search technique.

e d s w m Input layer (vector size =5)

... 1st LSTM layer (22 cells)

... 2nd LSTM layer (16 cells)

Output layer (1 neuron)

Output

x
t

h1
t

h2
t

y
t

h3
t

Fig. 5. Dataset structure for the experiment with demand, wind and solar
forecasts from Ontario.

The gradient descent optimizer used during the training
is the Root Mean Square Propagation (RMSProp). The learn-
ing rate adjustment follows the Equation 9 proposed by [46].
The partial warm restart, consisting of restarting the learn-
ing rate to the initial value, improves the performance and
the convergence rate during the training in our experiment.
By doing that, in some circumstances, the gradient descent
algorithm will reach a new lower local minimum faster if
available in the range.

ηt = ηmin +
1

2
(ηimax − ηimin)(1 + cos(

Tcur
Ti

π)) (9)

ηimin and ηimax are the minimum and the maximum
learning rates for the ith run. Tcur represents the current
epoch since the last restart. Ti is the number of epochs of
the next restart. For this paper, we tested multiple sets of
parameters and selected ηmin = 0.0002 and ηmax = 0.01.
The ηmin,max are constant for all runs, but Ti doubles each
run with T0 = 10. The parameters of Equation 9 have been
found by grid search in preliminary experiments.

The experiment follows the Algorithm 1. For the cross-
validation, we used Scikit’s cross val score over the entire
dataset, usingKFoldwith 10 folds. For each run, we trained
the model over 639 epochs. This value comes from the
Equation 9, where the new sequence i = 7 starts at the 640th
epoch. Furthermore, after the 6th sequence, the validation
performance stops increasing.

6 RESULTS AND DISCUSSION

For the evaluation of different datasets, we used the Mean
Absolute Percentage Error (MAPE), a commonly used met-

Data: (X, y)
1. Split the data (X,Y) into 10 equal sized folds.
2. Select the first fold as test dataset and all others

to train the RNN model
- 9 folds to train RNN model
- 1 fold to test the trained model

3. Mix the 9 folds and select 20% for the validation
dataset and 80% for the training dataset

4. Train and validate the RNN network over 639
epochs

5. Predict the output values (emission factors) of
the test data

6. Perform cross-validation step 2 to 5 by changing
the test fold and evaluate the average score over
all data

7. Compare the results with other algorithms

Algorithm 1: Predicting the emission factor for the 24
next hours in a given region.

ric for electricity load forecasting [29] as well in time se-
ries prediction in general. This metric evaluates the er-
ror between the real and predicted values and is scale-
independent. Equation 10 describes MAPE.

MAPE =
1

n

n∑
t=1

∣∣∣∣∣yat − yftyat

∣∣∣∣∣ (10)

n is the total number of forecasted values, yat and yft are
the actual and predicted emission factors of the t-th hour,
respectively.

We also used Pearson’s Correlation in order to check
how much the real values for the day are correlated to the
predicted values. To reduce GHG emissions by scheduling
smart appliances, the predicted minimum hour has to cor-
respond to the real minimum hour. We are then interested
in positive correlations - when the real values increase, so
do the predicted values. Equation 11 describes how the
Pearson’s correlation coefficient is calculated [47].

rpearson =

∑
(yat −mya)(yft −myf )√∑
(yat −mya)2(yft −myf )2

(11)

yat and yft are the actual and predicted emission factor
values of the t-th hour, respectively. mya and myf are the
mean of actual and predicted emission factor values.

As mentioned in Section 5, the results using just the
historical emission factors as inputs were improved using
additional day-ahead information provided by the utility
(forecasted demand, generation from renewable, or gen-
eration from non-renewables). The additional information
can be whichever is available for download, which varies
depending on the region under study. The results improved
significantly, with the MAPE reducing around 50% for On-
tario and 30% for France. For PJM, the results also improved,
but the original numbers were already good, since the
region mostly used non-renewable energy, and, therefore,
presents less intermittency in the dataset. Table 3 lists the
metrics for all studied regions, as well as divided by season.
For MAPE, a lower result indicates a better result. For
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Pearson’s Correlation, 1 indicates a perfect correlation be-
tween real and predicted values and -1 indicates an inverse
correlation.

6.1 Comparison with a time series approach
For validation, we compared the results of LSTM with
TBATS [48] (Trigonometric, Box-Cox transform, ARMA er-
rors, Trend, and Seasonal components), a state space model,
convenient for multiple seasonal time series [28]. Despite
supporting only univariate time series, it is an automated
algorithm which allows for automatic box-cox transforma-
tion and ARMA errors [28].

The TBATS parameters are ω (Box-Cox parameter, with
the value 1 meaning no Box-Cox transformation), φ (damp-
ing parameter for de-trending), (p, q) (ARMA parameters),
and the pairs (mx, kx) for the seasonal periods and the cor-
responding Fourier terms to fit this cycle. [28] gives the fol-
lowing example TBATS(0.999, {2, 2}, 1, {< 52.18, 8 >}),
meaning a 0.999 box-cox transformation (essentially doing
nothing), ARMA (2,2) errors, a damping parameter of 1
(doing nothing) and a set of 8 Fourier pairs with period
m = 52.18.

Following the usual out-of-sample approach and us-
ing the function tbats of R-programming language, we
observed the results described on Table 4. For PJM, with
mostly programmable energy sources, the results are close
to the real values, but when more renewables are present,
the prediction gets worse. For some days we also noticed
some seasonality changes, and in other cases, the prediction
either did not converge or got constant results for all hours
of the day. LSTM did not present such issues for the studied
cases, being more generalizable and easier to use for our
purposes.

6.2 Comparison with a supervised learning approach
To confirm the effectiveness of the proposed solution, we
also compared the results of LSTM with a supervised learn-
ing model, SVR (Support Vector Regression) first identified
by [49] following a time series to supervised approach. We
selected SVR based on the related work [32], which dealt
with marginal emissions. For that, we performed feature
engineering by converting the univariate dataset of emis-
sion factor values so that the lagged observations up to
28 days (times 24 hours) in the past are features (X) and
the current observation is the output (y). We then run 24
models corresponding to the next 24 hours to be predicted.
In order to benefit from other forecasted values provided
by the operators, as we did for LSTM, we also tried adding
to the features vector the predicted values for the demand,
wind, and solar production for the next hour, but the results
did not improve significantly.

For the experiments, we used the python language pack-
age scikit learn [50]. A polynomial kernel with degree 2
was used and, by performing grid search, we selected C
(the penalty parameter of the error term) as 0.001 and ε (a
margin of tolerance) as 0.1. For the other parameters, the
default values were used. We also differentiated the series
for stationarity.

The results are described on Table 5. As for the other
experiments, PJM has the results closest to the real values,

however when more renewables are present, as is the case
for Ontario and France regions, the predictions got worse.
Despite running faster during the training phase, using this
approach demanded some further evaluation on the time
series and did not obtain better results than LSTM.

TABLE 3
LSTM results for the different regions

ON PJM France
season MAPE rpearson MAPE rpearson MAPE rpearson

ALL 12.44 0.52 2.10 0.90 11.30 0.50
spring 11.83 0.32 2.19 0.91 13.42 0.53

summer 12.39 0.71 1.87 0.96 12.49 0.55
autumn 13.00 0.54 2.14 0.88 9.76 0.50
winter 12.61 0.51 2.28 0.83 9.14 0.49

TABLE 4
TBATS results for the different regions

ON PJM France
season MAPE rpearson MAPE rpearson MAPE rpearson

ALL 19.07 0.40 3.15 0.85 14.70 0.46
spring 14.70 0.23 3.41 0.86 17.68 0.51

summer 20.70 0.63 2.60 0.95 16.77 0.44
autumn 22.48 0.41 3.34 0.83 11.69 0.43
winter 18.45 0.32 3.47 0.72 12.11 0.46

TABLE 5
SVR results for the different regions

ON PJM France
season MAPE rpearson MAPE rpearson MAPE rpearson

ALL 20.24 0.38 3.09 0.85 15.00 0.49
spring 15.46 0.25 3.28 0.86 17.22 0.54

summer 22.95 0.58 2.74 0.95 16.71 0.51
autumn 22.90 0.36 3.06 0.84 13.79 0.39
winter 19.65 0.30 3.46 0.72 11.71 0.50

6.3 Discussions

As expected, some seasons or days are better than others.
Figure 6 brings some examples for the different datasets. For
the PJM dataset, a region mostly powered by fossil fuels,
therefore more controllable, the emission factors are more
dependent on the demand itself. The results are good both
through using LSTM and the other approaches, with LSTM
being more robust, without the convergence problems that
sometimes happen to TBATS and without any additional
required analysis on stationarity. We also tested for internal
purposes this fossil fuels assumption on a dataset from the
province of Alberta (Canada). The results obtained were
similar to the PJM region, but not finally retained in our
works, due to the small amount of data available at the time
of this study.

As expected, more intermittency meant more difficult in
predicting. Figure 7 shows the emission factor curve with
a margin of 12.44% representing the average MAPE for the
region of Ontario. For this graph, July 17 of 2015 is depicted.
For this region, we achieved better results comparing LSTM
with the other approaches, but, recently, the province started
releasing their own 24-hour forecast per source. This dataset,
called “Accuracy Report”, in conjunction with the predicted
imports, can give a more accurate result than using our tool.
This report is updated several times per day, so, for the
applications discussed in the next Section, we suggest the
user to get the information which is closest to midnight for
the next day.
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Fig. 6. Graphs comparing the LSTM predicted and true values: (a) (b) (c) represent good approximations, while (d) (e) (f) represent the opposite
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Fig. 7. Graph showing emission factor with a MAPE of 12.44% on July
17, 2015

However, even with this nice dataset now disclosed,
other regions do not have such information available yet,
which proves the utility of our tool. France, for instance,
already reports carbon emissions (not using LCA emission
factors for the sources, but this is another discussion), but
there is no day-ahead data. One difficulty encountered in
the process for this region was that the information about
imports is reported as a total, not being divided by neighbor
(divided by neighbor are just the commercial agreements,
not the actual, physical flows). Therefore, we needed to
assume an average emission factor for the imports. Since
France is, most of the time, a net exporter, that may be
not a big issue for this use case. However, it might be
for other regions or even in the moments when France is
importing from a region with much higher emission factor,
like Germany [21]. Regarding the results, LSTM was also

better than the other approaches and, as mentioned, SVR
demanded an additional analysis on stationarity and TBATS
was not always able to predict the emission factors. For this
reason, we argue that LSTM might be more generalizable.
Another aspect that could explain the better results obtained
by LSTM neural network is its robustness when modeling
non-linear time series data when compared to the other lin-
ear predictor since emission factor generated by electricity
production is generally a non-linear function.

In general, the task of predicting emission factors is not
easy. The data is, of course, related to the demand and
pricing dynamics in the regions, but it is not totally corre-
lated, demanding its own predictors. Emission factor fore-
casts usually present worse results on Fridays and during
weekends, probably due to reduced users’ routines during
these days. Another aspect to point out is the difficulty the
algorithm might have when the weather drastically changes
from one day to the other. In the example of Ontario on
August 25, 2017, and France on April 27, 2015, shown in
the Figure 7 d) and f), the temperature dropped by 6 ◦C
compared with the prior day. The demand also decreased
following the temperature. We suppose air conditioning
(AC) might be playing a role in the demand decrease. For
the case of Ontario, the province might be using natural
gas as a source to meet this energy peaks during these
afternoons. Since August 25, 2017, was a cooler day, the
demand for the afternoon was lower than previous days,
and probably the extra energy generation using natural
gas was not necessary. The same happened for the French
example, but with coal. The emission factor prediction based
on the previous days was, therefore, higher than the real
values. The emission factor prediction might be improved
with additional sources, like weather forecasts, which are
somehow already inside the day-ahead information we
used, but maybe using more ”explicitly” might yield better
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results. It would be interesting to figure out a way to account
for such outliers days.

7 SCHEDULING THE SMART HOME DEVICES

The proposed day-ahead GHG emissions predicted was
applied to two case studies: one in which the best time
of the day is used to decide when to start a dishwasher,
and other inside an optimization problem, in conjunction
with other variables to decide the optimal time to charge
an electric vehicle (EV). Note that both loads are flexible
and can be programmed to start when convenient, without
significantly affecting users’ behavior. Both use cases are
currently running in our smart home prototype, controlled
by a Raspberry Pi 3 running OpenHab, an open source home
automation software. In a real environment, our approach
could be readily applied using, for instance, a smart plug.
In the near future, smart appliances can also incorporate
such functionality.

7.1 Using the predicted best time of the day
In this first use case, we assume the user programs the
dishwasher to work during the hours he/she is out of home
on the next day, for instance, from 8 a.m. to 5 p.m. Without
this, the user could just turn on the dishwasher as soon as
it is loaded, after dinner for example. In order to illustrate
the advantage of programming to work on the hour with
minimum emissions, we bring the example of Ontario on
September 23rd, 2017. The predicted best hour for the period
between 8 a.m. and 5 p.m. was 8 a.m. The emission factor for
8 a.m. during this day was 0.11gCO2/Wh, and the emission
factor right after dinner time 0.14gCO2/Wh.

The difference between these values vary during the
year, and can be even more significant. It is also impor-
tant to note that, for the locations studied, the hours with
minimum emissions are usually during the first morning
hours, but that might not always be the case and/or the
user might want to schedule the appliance to work during
the day hours, and the minimum can take place at another
moment, like exemplified in Figure 8. Note also that the total
electricity consumed does not change.

Considering a usual power profile for a dishwasher3, as
presented in Figure 9, the difference between running the

3. We obtained a power profile from the Tracebase
https://www.tracebase.org/. The used file is the following:
“dev B7E6FA 2011.11.27.csv”
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Fig. 8. Emission factors during February 10th, 2015 in Ontario

Fig. 9. Dishwasher cycle emissions at 8 a.m. (min. emission factor) and
at 7 p.m. (assuming the user would turn on the dishwasher right after
dinner time) in Sep. 23rd, 2017

dishwasher in the minimum GHG emissions time compared
to the peak emissions time on the date and location used as
reference can be close to 30g of CO2e per day.

7.2 Using the best time of the day information in an
optimization problem
In this second use case, we replicated and extended the
GreenCharge proposal from [51] [15] in order to determine
the best time to charge an EV using an optimization ap-
proach. In this case, we are considering not only (i) the best
time of the day from the GHG emissions point of view, but
also (ii) the predicted home energy demand during the day;
(iii) the local energy generation from a solar panel and (iv)
the storage of the local energy production in a home battery.
Our objective is to minimize the GHG emissions over the
day by deciding when the EV will be charged. The original
objective function [51] is represented in Equation 12.

Minimize

T∑
i=1

(pi + si − di) ∗ I ∗ ci (12)

where i represents the periods of the day of length I up
to T periods (24); pi is the power consumed from the grid
in interval i, si is the power charged to the home battery
from the grid; diis the power discharged from the home
battery; and ci is the cost of buying electricity from the
grid. On our example, we consider ci represents the GHG
emissions, not price. We also incorporated the EV charging
extra demand and the determination of the hours to perform
the charging using a binary variable xi ∈ {0, 1}∀i ∈ H ,
where H represents the allowed hours to charge given the
time the EV is parked and when it will be used again. While
GreenCharge [51] has a linear programming formulation,
this extension became a Mixed Integer Linear Programming
(MILP) due to the variable used to determine the hour the
charging will occur.

For the item (i) above, we selected the province of
Ontario and its predicted emission factors for September
23rd, 2017. To represent the predicted home energy demand
(item ii), we used data from the Smart* Data Set, also from
UMass Amherst, as the GreenCharge [52] [53]. For our use
case, we selected the Home B, Meter 1. We took the data
from September 23rd, 2016 and calculated the average use
for each hour. We assume the same demand curve happened

https://www.tracebase.org/
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on this same day of 2017. The EV charging extra demand
was calculated by using Tesla’s website information and
assuming 70 km a day of driving demand, which means 2
hours charging using the NEMA 14-50 (max. 7.7 kWh) [54].

For the energy locally produced by renewables (item iii),
we used data from NREL’s PVWatts Calculator [55] [56],
which estimates the energy production of grid-connected
photovoltaic (PV) energy systems. To consider a city in the
province of Ontario and, at the same time, consider a place
with a close insulation factor as Amherst (for which we have
a sample home energy demand), we selected the city of
London, ON with the default parameters in this calculator.
For the home battery (item iv), since we are replicating [51],
and the selected dataset has the same annual average energy
demand of 1 kWh, we used the same values as used in [51].

Figure 10 shows the results of this experiment. In this
figure, we present as lines the electricity consumed from the
grid to charge the home battery and the electricity generated
from the renewable source (in this case, the solar panels)
charged to the battery. We also present as bars the electricity
the house draws from the grid and from the home battery
to meet the usual and the additional demand from the
EV charging. Note that the EV is being charged when the
emission factors are the smallest, between 2 a.m. and 3 a.m.
In this same period, the home battery is also being charged,
in order to minimize the total emissions. The battery is also
charged using solar energy production during the day and
is supposed to start and finish the day discharged. Charging
at the selected time of the day, at 7.7kWh would mean
770gCO2e emitted against 1232gCO2e if the charging starts
as soon as the vehicle arrives home in the evening.

8 CONCLUSION AND FUTURE WORK DIRECTIONS

In this work, we presented a method to predict day-ahead
GHG emissions using LSTM. Compared with other tradi-
tional approaches, the method achieved better results and
proved to be easier to use and more generalizable. We
applied the information predicted in two use cases: one
simple, in which we used the predicted emission factors
to run a dishwasher in the time of the day with minimum
emissions, and one more complex scenario which extended
the work from [15], to charge an EV. In both use cases
we were able to demonstrate GHG emissions reduction in

Fig. 10. Optimization result example: the best time to charge an EV

examples that would not significantly change consumers’
behavior.

Many newer appliances already have a timer as func-
tionality, allowing the end user to choose the best moment
to start [7]. With the upcoming technologies to control
appliances remotely, as well as smart grids, more advanced
techniques and integration scenarios will be possible. The
optimization example showed can also help to handle,
at least for some time, the extra load expected from the
increasing demand, like for charging EVs. The prediction
of GHG emissions can also be used to provide information
for different applications in buildings or cloud computing
infrastructures. Pricing information may also be associated
in the optimization formulation, bringing more value to the
customers.

Due to the complexity of the electricity market, as
pointed out by [39] for pricing data, the forecast over GHG
emissions data might not be able to always produce accurate
forecasts. Another limitation is related to the uncertainties
and the precision of the emission factors, inherent to LCA
analysis. Another important point to consider is the future
effect of using such information on the best hours to sched-
ule loads: if the usage spreads, the demand may flatten, and
the variable energy generation will flatten as well. Which
might be good from the point of view of the utility, with the
reduction of peaks, may also reduce the incentives for per-
forming this kind of prediction and scheduling. Approaches
considering whole buildings or communities might help
with this issue.

During the experiments, we also noticed that the days
had different profiles - some had a very low profile, with
small emission factors throughout the day, while others
have higher emissions factors and/or present high variabil-
ity during the day. It is possible that a clustering technique
could give hints to the predictor and improve the results.

Moreover, one issue noticed during our studies is about
finding data. Some regions disclose all information, some
regions have just real-time data available, others do not
have data about the exchanges with neighbors and others do
not disclose information at all. We believe that, considering
the increasing demand, applications, and standardization
efforts, more datasets will be made available.
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