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Abstract Interconnected devices and mobile robotic
systems are increasingly present in many real-life sce-

narios. To be effective, these systems need to collect
large amounts of data from their environment, and
often these data need to be aggregated, shared, and

distributed. Generally, multi-robot systems share state
information and commands through a communication
channel, but this is often too limited in many con-
texts (e.g. sharing large 3D maps). This paper intro-

duces SOUL (Swarm-Oriented Upload of Large data),
a mechanism that allows members of a fully distributed
system to share large amounts of data with their peers.

We leverage a BitTorrent-like strategy to share data in
smaller chunks, or datagrams, with policies and bidding
strategies that minimize reconstruction time. We per-

formed extensive simulations to study the properties of
the system and to demonstrate its scalability. We also
report experiments on real robots with two realistic de-
ployment scenarios: searching for objects in a scene, and

replacing the whole identity of a defective robot.
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1 Introduction

A robotic swarm is an inherently parallel, distributed
system, where robots act independently and perform
numerous physical tasks at the same time. Ideally, a

robotic swarm should be greater than the sum of its
parts, and able to solve problems that no robot of the
same complexity could accomplish alone. A typical ex-

ample is search and rescue missions, where a large area
has to be covered: a single Unmanned Aerial Vehicle
(UAV) needs extended autonomy and substantial pro-
cessing capacity to analyze images of the terrain, but

distributing the task over many UAVs requires fewer
resources from each robot.

The advantages of a parallel, distributed system,

can be even more conspicuous when considering a het-
erogeneous swarm. As an example, since payload is lim-
ited on flying platforms, a swarm can be partitioned in

sub-groups with special attributes: one equipped with
cameras, one with more processing and memory re-
sources, and one without any payload, for longer flight

time and covering longer distances. However, these spe-
cialized sub-swarms generate a new challenge: to man-
age large data transfers between them.

Concretely, many multi-robot applications often re-
quire heavy processing and sensors acquisition to fulfill
their task. Mapping a region after a disaster from aerial
photography is still mostly executed on ground sta-
tions, and can use large 4k images [Lliffe (2016)]. Scan-
ning a damaged building can more easily be managed
on board, but using a state-of-the-art RGB-D sensor
and GPU-optimized algorithms [Surmann et al. (2017),
Vempati et al. (2017)]. As for victims detection, var-
ious strategies use high resolution images, ther-
mal sensors and powerful cellular antennas, to-
gether with computer-intensive learning algorithms to
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adapt to the field conditions [Aguilar et al. (2017),
Erdelj and Natalizio (2016)].

Furthermore, in critical missions such as emergency
response, swarm intelligence has the great advantage of
being able to cope with robot failures, but not without
a loss of efficiency. However, if a fault detection mecha-
nism is available, as simple as battery monitoring, each
agent can warn the others about its possibly imminent
failure and upload all of its local data and state vari-
ables to the swarm. With this last resort backup of the
failed robots’ identity and mission status, another agent
can seamlessly replace it.

To address the data sharing requirements of these
application scenarios we developed a strategy for the
Swarm-Oriented Upload of Large data (SOUL). The
main challenges of SOUL were to: 1- cope with dynamic
network topologies, 2- optimize the data fragmentation
and reconstruction, and 3- optimize the distribution of
the datagrams (chunks of the injected data).

Peer-to-peer (P2P) file sharing mechanisms are well
established in literature, with ample research to demon-

strate their robustness and scalability [Reid (2015)].
SOUL leverages some of the strategies used in P2P
networks (e.g. with the use of distributed hash tables),

but integrates concepts of swarm intelligence to be op-
timized for heterogeneous swarms with multiple tasks.

In previous works [Pinciroli et al. (2016),

St-Onge et al. (2018)], we developed strategies to
reach consensus on environmental data or swarm-
wide state variables. We showed that our mechanism
(dubbed Virtual Stigmergy, and inspired by biological

swarms) was robust to heavy packet loss, scalable,
and greatly enhanced the robustness of a fleet when
allocating a set of tasks. This mechanism, however, was

suitable only for variables or small data structures. In
this paper, we extend the Virtual Stigmergy to share,
and reach consensus on, large data blocks.

In the following, we describe the research work
that inspired us (Sec. 2), and then detail the
SOUL model (Sec. 3). From the model we derive
an implementation for the Buzz programming lan-
guage [Pinciroli and Beltrame (2016b)] (Sec. 4) and
discuss its performance in simulation (Sec. 5). Finally,
we present two realistic experiments for the use of
SOUL, executed on a swarm of wheeled robots (Sec. 6).

2 Related work

Swarm intelligence can provide both new
challenges and new strategies for file shar-
ing [Dhurandher et al. (2009)]. This section gives
a brief overview of the related research that in-
spired SOUL, either in terms of application context

(swarm tasks and backup mechanisms) or for their
implementation strategy (P2P, consensus and bidding).

P2P

HTTP is unavoidably the most popular distributed
query solution used for databases, but it still is a one-
way client-server approach that does not exploit the
number of units available in a swarm [Benet (2014)].
However, as in HTTP/1.0, SOUL manages each request
in a separate connection. More recent P2P solutions tar-
geting large files are more suitable for the distribution
of large files over a network [Reid (2015)]. The fragmen-
tation, distribution, and reconstruction of the data in-
jected in SOUL is greatly inspired from the approach of
the InterPlanetary File System (IPFS) [Benet (2014)].
In fact, distributed hash tables and torrent exchanges
are the building blocks of our system, as for many P2P
database solutions [Vu et al. (2010)]. However, as op-
posed to most web-based applications of P2P file shar-
ing mechanisms [Ganesan et al. (2004)], in a robotic
swarm we expect the up- and download times to be
equivalent, and we assume that the swarm is cooper-

ative (i.e. no agent is greedy in terms of bandwidth
usage), thus removing the need for a fair compensa-
tion [Garbacki et al. (2006)].

Consensus

Consensus-based approaches have been proposed

for a number of multi-UAV coordination problems such
as resource and task allocation [Brunet et al. (2008)],
formation control [Ren et al. (2005),
Kuriki and Namerikawa (2015)], and determina-

tion of coordination variables [Wei et al. (2015)].
However, these approaches are specific and need to be
implemented again in each new swarm architecture.

The swarm-oriented programming language Buzz
allows for an easier manipulation of the consensus
strategy [Pinciroli and Beltrame (2016b)]. The work
of [Davis et al. (2016)] proposed a shared table to

reach consensus on the state of a swarm of UAVs.
Their approach uses a single list to which each robot
appends its own value, and the entries on the robots
get updated in a query-and-response fashion. However,
the approach in [Davis et al. (2016)] was not meant to
cope with large files and does not support revising the
appended values. Similarly, SOUL does not yet provide
an update mechanism for the shared data, but earlier
work made that possible for state variables, based on
the use of Lamport Clocks [St-Onge et al. (2018)].

Auction-Based Task Allocation

Auction-based allocation is a popular solution
to task allocation problems in robotic swarms,
covering centralized, decentralized, and hybrid ap-
proaches [Zhang et al. (2009)]. Our solution is decen-
tralized, but as described in [Zhang et al. (2009)], it
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uses opportunistic centralization to locally manage each

auction related to a new data blob injected in the

network. Market-based bidding has found its use in

software-agent research, with sophisticated algorithms

for winner determination [Sandholm et al. (2000)].

Computer scientists working in the area generally re-

fer to an auctioneer looking to sell the available tasks

at the highest price, with various definition of cost,

sometimes including a measure of the tasks’ util-

ity [Vig and Adams (2006)]. SOUL reverses the prob-

lem: it is no longer a mean to maximize the auction-

eer revenue, but rather to find the lowest-priced sub-

contractor for each available job (e.g. to store a data-

grams). The cost submitted by subcontractors consider

a set of their available resources, as consideredin the

work of [Lee (2018)] for a typical buyer strategy.

Hierarchical tasks for swarms

While most works focus on homogeneous groups of

robots, SOUL targets heterogeneous swarms, with the

goal of using the full capabilities of each robot. How-

ever, as bids often includes a resource vector in their

computation [Lee (2018)], they are already well-fitted

for heterogeneous scenarios. Somewhat along the path

of cost computation in the bidding mechanism, one can

use decision networks to attribute the tasks following

each robot utility calculation [Sen and Adams (2013)].

We consider three hierarchical types of task: 1- the

global swarm task, 2- the sub-swarm tasks, and 3- the

individual tasks. For instance, in a search and rescue

mission, the overall mission is the task assignment to

the swarm, and one sub-swarm maybe be assigned an

exploration task, within which some individuals are

tasked to take pictures of particular hotspots. This view

is oriented top-down, as opposed to the classical swarm

robotics task implementation [Bayindir (2016)].

Backup and Update

[Brown and Sreenan (2013)] state that distributed

systems are complex to update safely while in opera-

tion, partly because when a failure is detected, a unit

must have access to a backup image to resume. The re-

source constraints of swarm robotics, and also those of

Wireless Sensor Networks (WSN), render the availabil-

ity of large backups difficult to implement.

In [Kamra et al. (2006)], the authors proposed a

mechanism to maximize data recovery in WSNs de-

ployed in hazardous environments with high probability

of failure: they propose methods to combine data col-

lected by neighboring nodes with the node’s data using

a set of logical operations, and to store them in the place

of the nodes data. This allows the retrieval of data from

failing nodes. However, this approach was not meant for

large data blobs. Nevertheless, a similar system could

be applied within SOUL to increase data persistence.

Large data sharing mechanisms are also mandatory

for software updates during missions, in continuous in-

tegration. Indeed, to optimize the software integration

workflow, “hidden commits” is a common strategy that

generates large patches to be transferred over the net-

work, which can be a serious issue for continuous inte-

gration mechanisms [Laukkanen et al. (2017)]. In fact,

this work was partly inspired from the need of large

data transfers within an update system proposed in

one of our previous works [Varadharajan et al. (2018)].

Where we propose a systematic approach to perform

Over-The-Air updates for robotic swarms during a mis-

sion. This work paves the way to extending the update

system, by providing a solution to both hidden commits

and backups.

3 SOUL model

The Swarm-Oriented Upload of Large data (SOUL)

mechanism is a collection of discrete policies and bid-

ding algorithms that adapt to the swarm’s network

topology. Each time a robot shares a file, referred to as

a blob, this file is split into series of smaller chunks of

data spread throughout the swarm. The problem con-

sists of attributing each datagram to the right member

of the swarm, or:

Given a number of blobs {B1,B2,...,Bk}, a team

of robots {R1,R2,...,Rn}, a function C(Bi, Rj)

that specifies the cost of storing datagrams of

blob Bi on robot Rj , find the assignment that

minimizes the amount of time consumed tj to

reconstruct a blob from a given robot j over the

swarm.

3.1 General definition

While blobs can be continuously injected in the swarm

network, each robot r ∈ {R1, R2, ..., Rn} has lim-

ited storage sr. Fig. 1 illustrates a possible distribu-

tion of three consecutive blobs with a representation

of the robots’ storage limit. The rectangular storage

box above the robots indicates their storage occupancy,

with colors and labels indicating where each blob is al-

located. At a given time step t1, R1 injects a blob tuple

〈2,blob〉 in the network. This blob gets allocated to R1

(a(2, b12)) and R3 (a(2, b32) at the following time step

t2, and their storage gets occupied accordingly. A simi-

lar effect happens during the injection of blob 3 and 4,

initiated by R3 and R1 respectively.

Definition 1 Given a set of robots R =

{R1, R2, ..., Rn} with sr = sl ∀r ∈ R and a set
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Fig. 1: Illustration of three consecutive blob sharing

with a network of three robots.

of blobs B = {B1, B2, ..., Bk}, a function f : B → R
exists such that

min
∑
b∈B

Cr
b (S, db), ∀r ∈ R, (1)

where Cb
r(S, db) is the cost of reconstructing blob b

on robot r knowing the resource state vector S =

{s1, s2, ..., sn} of all the robots in the network. The

resource state of a robot is a generic vector that in-

cludes all characterstics relevant to the auction, such

as battery level and storage space. db = {d1, d2, ..., dl}
is the set of blob b datagrams, all of the same size, and

|db| = Ncb is the number of datagrams of blob b.

This general description implies that the distribution of

the datagrams should minimize the reconstruction cost

(time taken to reconstruct) on all robots. Two factors

influence this cost: the level of dispersion of the blob,

and the proximity of the robots holding the datagrams

(in terms of network topology). It is worth noting that

this allocation mechanism considers that all members

have identical priority access to each injected blob.

3.2 Heterogeneous Swarms

A heterogeneous group of robots is defined by the di-

versity of each of its members’ abilities. While iden-

tical units are useful for redundancy and scale, the

wide range of required sensing modalities to deploy

an omnipotent robot makes it cumbersome and ex-

pensive. In a swarm, sub-groups or sub-swarms can

have different specializations and still be managed as a

whole in a distributed fashion, as widely demonstrated

in nature’s insect swarms [Kelley and Ouellette (2013)]

and robot swarms with Swarm-Oriented program-

ming [Pinciroli and Beltrame (2016b)]. For SOUL, one

can think of a set of robots providing inputs, i.e. in-

jecting the blobs, a set of robots with more processing

power and memory to parse and process the data, and

a generic set of robots maintaining the connectivity of

the whole swarm. Consider these three sets of robots:

capturers C , processors P, and networkers N , such

that P ∪ C ∪ N = R and |R| = n, with these sets in

hand definition 1 can be reformulated as:

Definition 2 Given three sets of robots P =

{p1, p2, ..., pu}, C = {c1, c2, ..., cv} and N =

{n1, n2, ..., nw} with sr = sl, ∀r ∈ N ∪P and a set of

blobs B = {B1, B2, ..., Bk} injected from any ci ∈ C ,

there exists some f : B → N ∪P such that

min
∑
b∈B

Cp
b (S, db), ∀p ∈P (2)

where Cp
b (S, db) is the cost of reconstructing a blob b

on robot p, subject to the allocation function∑
r∈N ∪P

a(b, Ar) ≥ 1, ∀b ∈ B, (3)

where Ar is the blob list of robot r, i.e. a list of all blobs

allocated to robot r. The inequality of Eq. 3 indicates

that a blob can be allocated to more than one robot in

the swarm. Any such allocation mechanism generates

a distribution of the blobs on the set of r ∈ N ∪P
robots that minimize the reconstruction on the proces-

sors. From the point-of-view of robot r, the vector of

blob b datagrams it holds is qrb , subject to:∑
r∈N ∪P

|qrb | = Ncb , ∀b ∈ B, (4)

with Ncb , the number of datagrams for blob b, and∑
b∈B

|qrb | ≤ srl , ∀r ∈ N ∪P. (5)

The first constraint, Eq. 4, means that the sum of all the

datagrams for a given blob b distributed on processors

and networkers is exactly the number of datagrams of

this blob. In order words, all the datagrams must be

allocated, and a datagram can be allocated to only one

robot. For the sake of simplicity, despite the fact that

the datagrams could be replicated, we assume resource-

constrained robots and we do not consider this level of

redundancy in this work. The second constraint, Eq. 5,

sets the maximum size of datagrams vector held by a

robot as its storage capacity.

The objective of SOUL is to minimize the cost of recon-

structing (Eq. 2) a blob b for all robots p ∈P, with S

and db the storage vector of all robots and the datagram

vector of blob b, respectively.
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Fig. 2: The four processes and twelve message types involved in the SOUL mechanism.

3.3 Reconstruction cost

The function to be minimized (Eq. 2) is used in a decen-

tralized auction-based algorithm to allocate each blob

to the best (i.e. lowest cost) candidate. The proposed

solution consists of an auctioneer, which determines

how to distribute a blob’s datagrams in the network

to minimize the cost of reconstruction at robot p ∈P.

Each robot can bid on the blob with its resource state

vector sr together with a vector of its proximity to the

processors xr. The auctioneer takes the bids from all the

robots and computes the reconstruction cost. One can

define this process as a market auction soliciting from

a set of subcontractors to achieve the lowest price.

Definition 3 Given an auctioneer with a set of data-

grams generated from a new blob b, db = {d1, d2, ..., dk},
which require to be allocated for storage, and a group

of subcontractors submitting service proposals, E =

{e1, e2, ..., en}: A proposal is a triplet ej = 〈bj , sj , xj〉,
where bj ∈ B is the blob, sj the resource state and xj ,

the proximity of processors, together representing the

subcontractor’s price, pj .

Definition 4 Given that the price pj ≥ 0 ∀j ∈
{1, 2, ..., n}. The winner determination problem is to la-

bel the proposals as winning (aj = 1) or losing (aj = 0)

so as to minimize the auctioneer’s expense under the

constraint that each item can be allocated to at most

one subcontractor:

min
∑

r∈N ∪P

erb(sr, xr), with b ∈ B (6)

subject to constraints of Eq. 4 and 5.

The cost expressed in Eq. 6 is a computation of re-

construction time that heavily depends on the network

topology and the sub-swarms configuration. The SOUL

mechanism to cope with this is detailed in the following

section.

4 SOUL implementation

The SOUL mechanism consists of four processes:

Bid Generation Process (BGP), Blob Update Pro-

cess (BUP), Lists Update Process (LUP), and Blob

Request Process (BRP), as illustrated in Fig. 2. Every

member of the swarm runs the exact same algorithms

and has an identical implementation of these four pro-

cesses. When a robot wishes to share a blob within its

swarm, the robot acts as the auctioneer for that blob

and broadcasts a blob-advertising message. A robot r

with available storage space responds with a bid value

qrb (sr, xr), with sr and xr their available storage space

and their proximity to a processor, respectively. The

auctioneer collects all the bids and sends the allocation

request to the robots selected to store the blob’s data-

grams. A robot receiving such a message reserves the

required space for the incoming blob’s datagrams and, if

the required size is not above its available space, sends

an acceptance reply. Otherwise, the robot refuses the

allocation request with a rejection reply. When receiv-

ing an acceptance reply, the auctioneer transfers the

current datagram in the queue of the datagram vec-

tor db. If the auctioneer receives a rejection reply, it

tries an allocation request to the next robot in a sorted

list of bids. For every allocation accepted, before the

blob’s datagrams are transferred to another robot, the

auctioneer adds the allocation to the locations list as

a tuple 〈id,number of datagrams〉 and broadcasts this

entry to all the robots in the swarm. If a robot needs

to reconstruct a blob, it looks up the shared locations

list and requests the corresponding datagrams from the

robots holding them.

If the auctioneer robot does not receive enough

bids to allocate all the datagrams within the bid al-

location interval, it assumes either the communica-

tion is broken, or there is no available storage space.

The first case with broken communication link can

be ruled out using a connectivity maintenance con-

troller [Ghedini et al. (2016)], so that we can assume
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the existence of at least a communication path to ev-

ery robot in the swarm. We tackle the second case by

removing a blob with a certain set of policies from the

robot network. The policies use local information such

as the age of the blob and the priority of the blob to

remove a blob. In this work, the policies we use are,

the blob with lowest priority and highest age gets re-

moved at first. The auctioneer robot creates a sorted list

of blob indexes with the help of the above policies. In

our approach we remove blobs once the robots hit their

storage limits, but we could also write them to a file

and re-inject them into the network when the available

storage passes a given threshold.

4.1 SOUL Processes

4.1.1 Bid Generation Process

Algorithm 1 shows the pseudo code of the BGP. When

a new blob is injected by a robot ri, this latter exe-

cutes the procedure on line 1. Robot ri at first creates

an MD5 hash with the content of the blob, which is

used as the unique internal identifier for the blob as

well as during the reconstruction to verify the integrity

of the blob. Then, the blob is split into Ncq identically-

sized datagrams and inserted into the datagram vector

db. Following this, the new blob is advertised to other

robots and a new auction is created and added to the

auction list. The procedure on line 6 is initiated when

an advertise blob message is received. The robot j that

receives the message checks its current available stor-

age sj and sends a bid triplet to the auctioneer. The

procedure on line 11 collects all new bids in a bidlist

when executed on the auctioneer robot.

Line 14 shows the datagram allocation procedure,

that is the only periodic procedure executed in the

BGP. When the auction list is not empty, the robot

looks for any entry that has reached a timeout, and

sorts the bidders list in ascending order of cost, such

that it minimizes the reconstruction cost by solving the

Eq. 2. The datagrams of the blob b are allocated to

the robots in the sorted bidders list. The procedures on

line 29 and 32 show, respectively, the behavior when

a blob allocation is accepted, or rejected by a robot.

When an allocation is accepted, the BGP requests the

BUP to allocate sj datagrams to robot j. Whenever an

allocation is rejected, the datagrams are allocated to

the next robot in the sorted list. If there are no more

robots to be allocated in the list, one of the blobs is

removed using SOUL policies as described in sec. 4.1.1

and the blob is allocated to the robots that were holding

the now-removed blob. The procedure on line 43 is ini-

tiated when a robot requires a blob before the auction

Algorithm 1 The Bid Generation Process (BGP)

pseudo code

1: procedure putblob(k, b) . New blob b with key k
2: (db, hk)← SplitHashBlob(bk)
3: AdvertiseBlob(bk, hk)
4: 〈Auctionlist〉 ← NewAuction(bk, hk)
5: end procedure
6: procedure advertisedblob(bk, hk)
7: if sj > 0 then . If storage space is not full
8: SendBid(bj , sj , xj) . Bid for the blob
9: end if

10: end procedure
11: procedure bidreception(bj , sj , xj)
12: 〈Bidlistk〉 ← (bj , sj , xj) . Insert to bid list k
13: end procedure
14: procedure datagramallocation(Auctionlist, Bidlist)
15: for each A ∈ Auctionlist do
16: if A.T ime ≥ T imeOut then
17: Bidlistk ← SortBid(Bidlistk) . Using Eq. 2
18: ik ← 0
19: while Datagramstoallocate 6= 0 do
20: ri ← Bidlistk[ik].ri
21: ri ← aloc(ri, sj) . Allocate sj size to ri
22: ik ← ik + 1
23: end while
24: else
25: A.T ime← A.T ime + 1
26: end if
27: end for
28: end procedure
29: procedure allocationaccept(bj , sj)
30: allocatedatagram(sj , j)
31: end procedure
32: procedure allocationreject(bj , sj)
33: if ik < |Bidlistk| then
34: ri ← Bidlistk[ik].ri
35: ri ← a(ri, Bk

ri
)

36: ik ← ik + 1
37: else
38: BR← FindBlobToRemove . Using Policies
39: ri ← BR.ri
40: ri ← aloc(ri, sj)
41: end if
42: end procedure
43: procedure auctineerblobrequest(bk, ri)
44: if AuctionComplete then
45: for each j ∈ Locationslist do
46: RequestDatagrams(j, sj , ri) . Request to ri
47: end for
48: else
49: TerminateAuction(k)
50: SendDatagram(db, ri) . Send datagram vector
51: end if
52: end procedure

is complete. In other words, a robot receives a blob as

soon as possible when required, irrespective of the state

of the robots in the network.
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4.1.2 Blob Update Process

BUP’s procedures aims at managing the blob alloca-

tion, and datagram transmission and reception as illus-

trated in Algorithm 2. The procedure on line 1 trans-

fers the next available sj datagrams from the datagram

vector to robot j (that has accepted the allocation) by

updating the locations list and the available list (more

on these lists can be found in sec. 4.1.4). A robot receiv-

ing a datagram db[a] inserts it into the datagram vector

db and updates its available list as shown in line 8, if

the available list contains all the datagrams of the blob,

then the state of the blob is set to be “ready”. On re-

ception of a datagram request, the robot checks for the

availability of the requested number of datagrams and

sends the datagrams to the requesting robot ri.

Algorithm 2 BUPs pseudo code

1: procedure allocatedatagram(sj , j)
2: j ← a(j, db[i] : db[i+ sj ]). Transfer sj datagrams to j
3: i← i + sj . Store datagram index
4: RemoveDatagrams(db[i] : db[i + sj ])
5: UpdateAvailableList(db)
6: UpdateLocationsList(j, sj)
7: end procedure
8: procedure receivedatagram(db[a])
9: 〈db〉 ← db[a] . Insert db[a] datagram into db

10: UpdateAvailableList(db)
11: if AvailableListComplete then
12: BlobState← Ready
13: end if
14: end procedure
15: procedure requesteddatagram(sj , ri)
16: if |db| == sj then
17: SendDatagram(db, ri)
18: end if
19: end procedure

4.1.3 Blob Request Process

When a robot wants to reconstruct a blob, the robot ex-

ecutes the getblob function as in Algorithm 3. At first,

the robot checks whether all the datagrams of the blob

are locally available by querying the state of the blob.

If the state is “ready”, then the blob is reconstructed

from the datagram vector and then verified using the

blob’s hash. When not all the datagrams of the blob are

available, this means that the auction is not complete

or the locations list is not up-to-date. In both cases the

robot requests the auctioneer for the blob, and the auc-

tioneer, depending on its current state, either sends or

requests the blob to be sent by the robots in the lo-

cations list. When the complete blob is available, the

robot reconstructs it and makes it available.

Algorithm 3 BRPs pseudo code

1: procedure getblob(k)
2: if BlobState == ready then
3: bk ← ReconstructBlob(db)
4: bk ← V erifyHash(bk, hk)
5: return bk
6: else
7: if LocationsListComplete then
8: for each j ∈ Locationslist do
9: RequestDatagrams(j, sj , ri)

10: end for
11: else
12: AuctineerBlobRequest(bk, ri)
13: end if
14: return 0
15: end if
16: end procedure

4.1.4 List Update Process

Each robot in the network maintains two lists (the avail-

able list and the locations list) and a state for every

known blob. The available list contains the index of all

available datagrams of the blob and the locations list

contains an entry for each robot holding the datagrams

of the blob. Every entry of the locations list contains

the robot ID and the size of datagrams placed at that

robot. The LUP maintains and updates the lists and

the state whenever a new change occurs. The local lists

act as a quick lookup for the availability of datagrams

and their locations.

4.2 Buzz and SOUL

Buzz is a domain specific programming language for
robotic swarms executed on a custom virtual machine.

The Buzz Virtual Machine(BVM) is the core of Buzz

that executes a byte code compiled from a Buzz script.

Buzz provides a range of programming primitives tai-

lored for robotic swarms: for more details on that we re-

fer the reader to [Pinciroli and Beltrame (2016a)]. The

SOUL implementation is integrated into the BVM as a

programming primitive, making it available for exten-

sion and use by the research community.

In [Pinciroli et al. (2016)], the authors introduced

an alternative use of the concept virtual stigmergy, a

shared (key,value) pair among the robots in a swarm.

Taking inspiration fromn [Pinciroli et al. (2016)], we

designed SOUL as a shared (key,blob) within Buzz.

Interestingly, the interface of SOUL is identical to that

of the virtual stigmergy, but its internals substantially

vary (with auction and allocation process). SOUL offers

typical get/set routines to manage the blob tuple with

a unique key and a set of function to inquiry the charac-

teristics of blob (size, status, potential sink, etc.). When
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Fig. 3: Scalability analysis with 10, 100 and 1000 robots.

the auction is completed, a function (getblobseqdone)

allows any robot to be aware of it.

5 Simulation Experiments

Simulation experiments aim at studying the perfor-

mance of the SOUL model presented in the previ-

ous sections over diverse conditions. Simulations were

performed with a physics-based multi-robot simulator,

ARGoS3 [Pinciroli et al. (2012)].

Performance metrics

The performance measure used during the simula-

tions was the time take for allocating the datagrams

of a blob to the robots in the network, i.e. the conver-

gence time of SOUL. The reconstruction time of a blob

by any given robot could be computed as the communi-

cation delay between the robots holding the datagrams

and the robot requiring it. It is desirable to minimize

the convergence time to avoid delays in reconstructing

a blob when required. During simulations, we used the

number of control steps as a measure of convergence

time, with each control step being 100 ms.

Communication model

We use a wireless device that creates a Mobile ad

hoc network (MANET) [Barange and Sapkal (2016)]

between the robots. A communication model that simu-

lates the peer-to-peer communication was built within

the simulator for the experimental evaluation. As in

any MANET, the model provides both broadcast to

neighbors within range, and uni-cast to any given robot

in the network. Uni-cast messages within this model

are sent to their destination by computing the short-

est path. The messages within the SOUL model use

broadcast in most cases, and unicast in a conserva-

tive manner, mostly when handling large datagrams,

to minimize contention bandwidth use. We assume any

given message between the robots in the network can be

dropped with a certain probability, also known as the

packet drop probability (or rate). Since the communi-

cation model is based on TCP/IP, we assume to have

guaranteed delivery of messages and the effect of packet

drop within the model was simulated as the delay in-

curred due to transmission errors. The communication

model can be expressed as a weighted adjacency graph,

for a network of n robots with an adjacency matrix

A = [βij ] ∈ IRn×n with βij the packet drop probabil-

ity [Davis et al. (2016)]. The entries in the adjacency

matrix evolve over time depending on the topology of

the network and the packet drop rates.

Experimental setting

We use two different topological configurations:

cluster and scale-free. The former places the robots

in a compact cluster with a uniform distribution

U(−L/2, L/2), with L being the boundary of the

arena. The latter, supposedly one of the most

common topologies to naturally emerge from a

swarm, distributes the robots in small clusters con-

nected by hubs using Barabási-Albert preferential at-

tachment algorithm [Barabási and Albert (1999)]. For

details on these topologies, we refer the reader

to [Pinciroli et al. (2016)] from where these topologies

were adapted. During simulation, we use a packet drop

probability P ∈ {0, 0.25, 0.5, 0.75}. Each robot has a

storage limit (srl ) of 1000 datagrams, and the injected

blobs (sized 1.02Kb) were 1022 datagrams each.
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5.1 Scalability analysis

We studied the dependence of convergence time on two

different topologies and the number of robots N ∈
{10, 100, 1000} with set of simulation experiments. In

particular, we assessed SOUL’s scalability using static

robots (fixed topology) and setting the percentage of

capturer robots C ∈ {10, 20, 30, 40} varying the num-

ber of robots N over different trials. The percentage of

processors P was set to 10 percent, and all the other

robots without a role were tagged as networkers N .

For instance, with 〈N = 100,C = 40〉, 40 robots were

capturers injecting blob simultaneously, 10 robots were

processors, and 50 were networkers. The role assign-

ment was performed in such a way as to obtain random

roles for robots over different trials. Each experimental

setting was repeated 35 times with random placement

and roles.

Results

Fig. 3 reports the results of our scalability experi-

ment. In both cluster (fig. 3a) and scale-free (fig. 3b)

topologies, the convergence time increases with the per-

centage of capturers, as more robots were simultane-

ously injecting blobs. Both the topologies incurred a

similar change in performance for variations in the per-

centage of capturers and number of robots. In partic-

ular, with N = 10 both topologies consumed around

100 control steps to converge, whereas with N = 100 a

steady increase in convergence time is observed with the

increase in percentage of capturers. With N = 1000, the

convergence time incurred large variations in scale-free

topology, which could be explained by the change in

sparse communication paths for the scale-free topology
over different trials. Whereas in cluster topology, the

variations in convergence time with N = 1000 is less in

comparison with scale-free, which could be explained

by the dense communication path allowing persistent

data transfer over different trials. From the experimen-

tal evaluation results, we conclude that SOUL scales for

upto 1000 robot with both the topological distributions.

Fig. 4 plots the datagram distribution on the

robots during one of the experimental trial with 〈N =

100,C = 10%〉. During this trial, the blobs were con-

tinuously injected one after the other until the network

dropped the first injected blob. The 100-robot network

lost the first blob when injecting the 98th blob: the

swarm was able to buffer 97 blobs, saturating the avail-

able storage space. The distribution of datagrams can

be grouped into three classes that correspond to the

three sloped distributions in Fig. 4 from left to right:

the first group are the processor robots where the first

10 blobs were placed for fast reconstruction; the sec-

ond group corresponds to the robots that are neighbors
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Fig. 4: Datagram distribution in a 100 robot network,

as a result of continuous injection of blobs

of processor robots, which obtain the following blobs;

the final group contains all the other robots having the

lowest priority in the network. From this distribution

classes, one could observe the effect of Eq. 2 minimiz-

ing the cost of reconstruction. It is worth noting that

the allocation always starts from the highest robot ID

because during the allocation using Eq. 2, robots break

ties using robot IDs.

5.2 Dynamic Analysis
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Fig. 5: Packet drop rate’s influence on the time (con-

trol steps) required to allocate datagrams for various

density of moving robots.

We performed a set of experiments to study the

influence of change in topology on convergence time.

During these experiments the robots had a simple

controller executing the diffusion algorithm presented

in [Howard et al. (2002)] to produce random motion
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(b) Cluster topology.

Fig. 6: Average bandwidth consumption: left with SOUL, right as a result of one-to-one transmission.

spanning the arena. Blobs were injected continuously

one after the other until the swarm dropped the first

injected blob. The time taken for the loss of first in-

jected blob is reported in fig. 5. The simulation arena

during the motion experiments had four obstacles to

stimulate changes in topology. To study the influence

of the velocity of change in topology during these

experiments, we considered different densities D ∈
{5(lose distribution),10(medium distribution),20(tight

distribution)} and maximum speeds for the robots

M ∈ {5, 20}. The density of the robots was changed

by moving the boundaries of the simulation arena as

in [Pinciroli et al. (2016)]. In this set of experiments, N

was set to 100 robots.

Fig. 5 reports the time steps required to remove the

first blob with static robots (top) , moving at M = 5

(middle), and moving at M = 20 (bottom). The static

robot case is analogous to the cluster topology reported

in Sec. 5.1. In all cases, the swarm took similart time

to lose a blob and to inject 97 blobs. With packet drop

probability of up to 0.5, the network’s performance de-

graded slowly, taking less than 6000 control steps to

lose a blob. For P = 0.75 the time to lose a blob quickly

increased to over 6000 control steps. The static topol-

ogy reported large variability in convergence time with

respect to the dynamic topology, probably due to the

fixed communication link for a given trial. From this

experimental evaluation, we conclude that the change

in topology has minimal impact on the SOUL model.

5.3 Bandwidth consumption

Fig. 6a and 6b report the average bandwidth con-

sumed by scale-free and cluster topologies respectively,

in comparison with unicasting the blobs from a sin-

gle robot. In this experimental trial, the blobs were

injected from one of the robots in the network with

〈N = 100,C = 10,P = 10, and the maximum usable

bandwidth was set to 700 bytes per second. This set of

experiments measure the average bandwidth consumed

until the first blob is lost, i.e. to inject 97 blobs. With

a scale-free topology, the average bandwidth consumed

by all the robots with SOUL is less than 100 bytes per

second and with unicast the average bandwidth was

over 100 bytes per second, with some robots using the
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Fig. 7: Schematic representation of the two experiments conducted on the Khepera robots: SOUL backup to the

left and YOLO Search, to the right.

maximum available bandwidth on average, and the ma-

jority of the robots consuming zero bandwidth. A simi-

lar effect happens with the cluster topology. SOUL low-

ered the average bandwidth consumed and evenly dis-

tributed the bandwidth requirements over the network.

6 Experiments

SOUL was studied under two realistic experi-

mental scenarios with a swarm of 10 Khepera
IV [Soares et al. (2016)] robots. Our experimental plat-

form consists of an Optitrack system (an IR camera

based tracking system), a centralized wifi-based soft-

ware communication hub and a swarm of 10 Khepera

robots. SOUL implementation requires situated com-

munication [Støy (2001)], a common concept of swarms

providing each inter-robot message with the relative

distance and bearing of the sender. Situated communi-

cation is emulated by transmitting all the robots mes-

sages to each other swarm member through the hub,

named Blabbermouth. Blabbermouth also computes

the relative position from the tracking system and ap-

pend it to each message. A laptop was running Blabber-

mouth dealing with situated communication and peer-

to-peer network path using TCP/IP over wifi. This con-

figuration by default generates a fully connected net-

work topology, but the transmission range can easily

be limited in software using each robot’s position.

In order to test and demonstrate the range of ap-

plication SOUL can be fit for, we designed two exper-

iments: one to backup a failing robot (SOUL backup)

and the second to manage large data transfer in an het-

erogeneous mission (YOLO Search). Fig. 7 illustrates

both of the experimental scenarios: SOUL backup on

the left and YOLO Search on the right.

6.1 SOUL backup

For this first experimental scenario, the robots were

performing a cordon around an object of interest.
Patrol and cordon exercices are frequent in emer-

gency response and swarms are well fitted for the

task [McDonald et al. (2017)]. Maintaining the surveil-

lance perimeter around a sensible structure is challeng-

ing in terms of robot autonomy. As depicted in fig. 7,

when one of the robot predicts an incoming failure

(e.g. low battery), it serializes its current state and in-

jects it into the swarm with SOUL. The robot identity

is then available to be picked by any other member

of the swarm. More then just the state of its current

task, this backup includes the unique robot id, all of

its global variables and the key data structures of its

BVM. In [Pinciroli and Beltrame (2016b)], the authors

state that describing the dynamics of a swarm through

a finite state machine allows the developers to focus

on the swarm behavior design rather than the individ-

ual robot behavior. Copying the key data structures of

this finite state machine is what allows this back-up

and resume mechanism with a new robot. In the exper-

iment, a standby robot waiting aside the formation is
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asked to replace the failing one and obtains its backup

from SOUL. It can then resume the mission and be per-

ceived by the swarm as the fallen member seamlessly.

The chronology of the process is illustrated in fig. 9 with

regards to the datagrams stored in the swarm.

Fig. 8: Nine wheeled robots patrolling around a box.

The LED patterns show their unique ID.
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Fig. 9: Storage usage throughout one trial for the soul

experiment.

As shown in fig. 8, the cordon is created with nine

Khepera IV robots (numbered R1 to R9) in order to

surround a box. A stationary robot (R10) waits aside

the playground, as a replacement unit. Each robot blinks

with a LED pattern indicating their unique ID and a

frequency increasing with the mission time. When R6,

the failing robot, observes a critical level of its bat-

tery, it triggers its identity backup (ID, states and BVM

structure) and injects it as a serialized data blob into

SOUL. As the auctioneer, robot R6 completes the data-

grams allocation and distribution (known through op-

eration getblobseqdone()) and then leaves the mission.

When a robot leaves the swarm, all the other robots

hold their position to allow the replacement robot to

easily reach the swarm. While this is not mandatory it

allowed us to get visual confirmation that the backup

blob was successfully distributed. Robot R10 gets the

blob datagrams and rebuild it using SOUL. It then sets

its current state with blob’s content, seamlessly taking

R6’s place in the swarm. Once robot R10 resumes the

mission of R6, it joins the formation and start to pa-

trol. This experiment was repeated ten times to confirm

a consistent behavior.

In the supplementary video material, an excerpt

from one of these SOUL backup experiments is pre-

sented. The LED patterns and their frequency show

that the replacement robot takes the same ID (LED

pattern) as its predecessor and starts at the same mis-

sion state (LED frequency). The LED are controlled by

the behavioral Buzz script.

Results

For all the experiment trials, the robots were able

to successfully backup their identity and resume the

mission consistently. Fig. 9 reports the number of data-

grams on each robots on one such trial. When R6 was

close to fail it created a backup blob of five datagrams at

1.1s. The datagrams of this blob was then allocated to

robot R2, R3 and R4, which were the closest to the re-

placement robot R10. R10 obtained all the datagrams

from these three robots at 4s, and, after reconstruc-

tion, removed the blob, allowing all the other robots

to remove their datagrams of this blob. Considering all

trials, it took in average 2.3s to create, inject and dis-

tribute the blob with SOUL. Its full removal took in

average 3.2s. The backup blob was always distributed

over three robots, since the storage limit (srl ) was set

as 2 datagrams for all robots in this experiment.

6.2 YOLO Search

The second experimental scenario represents a search

mission executed by a swarm of wheeled robots. As

shown in fig. 7, we arranged four targets, spread around

the robots playground. The goal was to take picture and

detect a key object in it at each location. However, no

robot had both the camera and the processing power

required. The swarm was heterogeneous: following their

on-board hardware, the robots were assigned different

roles. A single robot had a working camera, R4, and was

attributed the capturer role. A single robot had a pow-

erful processing GPU required to analyze the data, R10,

and was attributed the processor role. All the other

robots were the networkers, moving around randomly

to create dynamic network topology. Indeed, the com-

munication range of the robots was limited to be 1.1m,

in order to test the behavior with dynamic topology.

The processor was also moving randomly while waiting
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Fig. 10: Evolution of the blob distribution over the swarm on the second trial of the YOLO Search experiment.

for images to process using a GPU-optimized algorithm

software: YOLO [Redmon et al. (2016)],a popular deep

learning object detection system with state-of-the-art

accuracy. The capturer was moving to pre-defined tar-

get positions searching for objects of interest and took

a picture at each location.
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Fig. 11: Storage usage throughout the second trial for

the YOLO Search experiment.

Ten Khepera IV robots were used: one capturer, one

processor and eight networkers. The arena was 2m×2m

with four target locations, as illustrated in fig. 10. Each

location had a different object, selected from the train-

ing set of YOLO3. The processor had a Nvidia TX1

board to process the images. All robots were initially

placed on the boundaries of the arena. The capturer

moved from target to target, each time injecting a blob

with SOUL. The processor and the networkers moved

randomly in the arena. All robots were equipped with a

collision avoidance mechanism, reacting to near obsta-

cles with an incremental steering velocity. This experi-

ment was also repeated ten times, each time generating

different trajectories and completion time due to the

random motions and the reactive collision avoidance.

The storage limit on all networkers was set to 200

datagrams while the images produced were around 500

datagrams. The capturer, R4, injected blobs into the

swarm, as soon as it captured an image of the target.

The processor, R10, waited for a blob to be available in

the stigmergy whenever it was not processing an image

already. As soon as the processor was done with an im-

age, it removed it from the stigmergy. All the network-

ers can be used to store the blobs while the processor

was busy with a previous one. When the processor was

done processing a blob, the datagrams of this blob was

removed from all networkers too.

In the supplementary video material, an excerpt

from one of these YOLO Search experiments is pre-

sented.

Results

For each trial, the images were successfully cap-

tured, injected, reconstructed and processed from all

four target locations. Fig. 11 shows the datagrams dis-

tribution over the whole swarm for one experiment. At

the first target, R4 injects the first image blob. Since

R10 is initially free it gets the image immediately, by-

passing all the auction and the blob distribution dis-

cussed in sec. 4.1.1. For all the other three targets, the

creation of a blob happens with R10 busy, it thus re-

quires the datagrams to be allocated to networkers.

Fig. 10 shows the top view of the experimental arena

with the four targets (rectangles) and the ten robots

(circles). Each robot has four numbers above it, cor-

responding to the datagrams they hold of blob 1 to

4 (left to right). The capturer and processor are illus-

trated with dashed lines. Each snapshot corresponds

to the moment a blob is injected in the swarm. Both

fig. 11 and 10 represent the same trial. We can observe

that the second datagram is attributed to robot R7 and

R9, while the third is stored on robots R6, R7 and R8

and the last on R5, R7 and R9. In average, over the

ten trials, 40 blobs were created, from which 21 were

sent from the capturer to the processor directly. Over

the remaining 19 that had to be distributed on the net-
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workers (processor busy), the average time to allocate

the datagrams is 2.7s (min:2.3, max:7.4s) and the aver-

age time to distribute them following their allocation is

12.9s (min: 8s, max: 18.3s). These variations are influ-

enced by the network topology only. The supplementary

material (Yolo.gif) contains an animation illustrating

the robot trajectories and blob placements during this

experimental trial.

7 Conclusions

This paper introduced a new mechanism to share large

data in a swarms of robots called SOUL: Swarm-

Oriented Upload of Large files. SOUL can be applied to

a wide range of applications that needs to share large

data in a fully distributed system. We described po-

tential applications together with the background work

on consensus and peer-to-peer mechanism that led to

this implementation. SOUL uses an auction-based algo-

rithm to distribute large data files on multiple robots

around potential receivers. The data are split into data-

grams leveraging a torrent-like mechanism. Numerous

simulations demonstrated scalability and robustness to

failures with different swarm size, packet drop rate, net-

work topologies and heterogeneous configurations. We

demonstrated the potential of SOUL under two realistic

experimental scenarios with a swarm of ten Khepera IV

robots: one to backup a failing robot (SOUL backup)

and the second to manage large data transfer in an het-

erogeneous area covering mission (YOLO Search). Both

shown SOUL has consistent performance, demonstrat-

ing its potential in reality.

SOUL now needs a mechanism to provide version-

ing, redundancy, a reallocation strategy, and security

protocols. Once the datagrams of a blob is allocated its

metadata can be extended to include a Git-like track

of the changes. Robots movement will change the net-

work topology and the auction attributing the data-

grams should be run in cycle to maintain the cost of re-

construction minimal. As for security, future work will

implement stream cipher based encryption of datasets

to enhance the protection of the data.

SOUL is born from the challenges we faced with the

deployment of heterogeneous swarms for emergency re-

sponse scenarios. This solution is among the essential

building blocks of a robust and flexible software solu-

tion for field deployment of robotic swarms in critical

scenarios.
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