
Received ; Revised ; Accepted

DOI: xxx/xxxx

FULL ARTICLE

An automatic diagnostic system of coronary artery lesions in
Kawasaki Disease using IV-OCT imaging

Atefeh Abdolmanafi*1,4 | Farida Cheriet1,4 | Luc Duong2,4 | Ragui Ibrahim3 | Nagib Dahdah4

1Department of Computer Engineering,
École Polytechnique de Montréal,
Montréal, Canada

2Department of Software and IT
Engineering, École de technologie
supérieure, Montréal, Canada

3Division of Cardiology, Hôpital Pierre
Boucher, Longueuil, Canada

4Division of Pediatric Cardiology, Centre
Hospitalier Universitaire Sainte-Justine,
Montréal, Canada

Correspondence
*Atefeh Abdolmanafi, Department of
Computer Engineering, École Polytechnique
deMontréal, Montréal, QCH3T 1J4, Canada,
Email: Atefeh.Abdolmanafi@polymtl.ca

IV-OCT is a light based imaging modality with high resolution, which employs
near-infrared light to provide tomographic intracoronary images. Morbidity caused
by CHD is a substantial cause of ACS and sudden cardiac death. The most com-
mon intracoronay complications caused by CAD are intimal hyperplasia, calcifi-
cation, fibrosis, neovascularization, and macrophage accumulation, which require
efficient prevention strategies. OCT can provide discriminative information of the
intracoronary tissues, which can be used to train a robust fully automatic tissue
characterization model based on deep learning. In this study, we aimed to design a
diagnosticmodel of coronary artery lesions. Particularly, we trained a RandomForest
using CNN features to distinguish between normal and diseased arterial wall struc-
ture. Then, based on the arterial wall structure, fully convolutional network (FCN)
is designed to extract the tissue layers in normal cases, and pathological tissues
regardless of lesion type in pathological cases. Then, the type of the lesions can be
characterized with high precision using our previous model. The results demonstrate
the robustness of the model with the approximate overall accuracy up to 90%.
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1 INTRODUCTION

Coronary artery disease leads to progression of pathological
formations in arterial wall layers, which may be followed by
acute coronary syndrome. Considering the significant role of
coronary arteries in functionality of cardiac tissues by control-
ling the blood flow to myocardium, coronary artery disease
is recognized as the main cause of myocardial infarction and
sudden death. The early mechanism, which leads to acute
myocardial infarction is the formation of intracoronary patho-
logical tissues and vulnerable coronary plaque rupture. This
requires a high resolution imaging modality to be identified [1].

0Abbreviations: IV-OCT, Intravascular Optical Coherence Tomography;
CHD, Coronary Heart Disease; ACS, Acute Coronary Syndrome; CAD, Coronary
Artery Disease; ROI, Region of Interest; FCN, Fully Convolutional Network; CNN,
Convolutional Neural Network; MR, Magnetic Resonance; CT, Computerized
tomography

Catheter based imaging modalities demonstrate higher reso-
lution to visualize intracoronary structural information than
non-invasive imaging techniques such asMR and CT. Intravas-
cular ultrasound is widely used in cardiology to evaluate
coronary artery tissue layers and pathological formations, but
the low pullback speed and limited axial resolution of IVUS
(100-150 �m) restricted its application to evaluate various
cases with intimal hyperplasia, and pathological formations.
Intracoronary OCT is recognized as a feasible and safe imag-
ing technique with higher resolution of 10-15 �m than IVUS
imaging, which can provide detailed structural tissue informa-
tion [2]. IV-OCT is a catheter based invasive imaging modality,
which employs a bandwidth in the near-infrared spectrumwith
central wavelength of approximately 1300 nm. Using such
wavelength results in the tissue penetration of 1-3mm.A single
fiber-optic in OCT is responsible to emit the light and record

This is the peer reviewed version of the following article: Abdolmanafi, A, Cheriet, F, Duong, L, Ibrahim, R, Dahdah, N. An automatic diagnostic system of coronary artery lesions in Kawasaki disease using 
intravascular optical coherence tomography imaging. J. Biophotonics. 2020; 13:e201900112, which has been published in final form at https://doi.org/10.1002/jbio.201900112. This article may be used for non-
commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. This article may not be enhanced, enriched or otherwise transformed into a derivative work, without 
express permission from Wiley or by statutory rights under applicable legislation. Copyright notices must not be removed, obscured or modified. The article must be linked to Wiley’s version of record on Wiley 
Online Library and any embedding, framing or otherwise making available the article or pages thereof by third parties from platforms, services and websites other than Wiley Online Library must be prohibited.



2 Atefeh Abdolmanafi ET AL

the back-scattering of light from the arterial wall by simul-
taneous rotation, and pullback along the arterial wall. OCT
works based on interferometry principal to measure the back-
scattered signal since the direct measurements are impossible
due to the high speed of light. OCT is significantly used in car-
diology for diagnostic assessment of coronary atherosclerosis.
As a limitation, light is strongly attenuated by blood as a result
of light absorption by hemoglobin, and scattering by the red
blood cells. Therefore, blood clearance is required during the
imaging process [3,4].

1.1 Significance of the coronary artery lesion
classification
Normal coronary artery has a three-layered structure. The out-
ermost arterial wall, adventitia, is responsible to protect the
arterial wall from over stretching and serves the mechanical
connections with surrounding tissues. Adventitia is recognized
as a signal rich pattern in OCT images. Media is the second
arterial wall layer, which is composed of smooth muscle cells,
elastic lamina, and collagen. Media is the most significant
mechanical layer, which is visualized as a signal poor pattern
in OCT images. Intima is the innermost arterial wall layer in
direct contact with blood flow. Intima is composed of endothe-
lial cells and it is recognized as a signal rich pattern in OCT
images [5]. Coronary arteries are responsible to deliver blood
to the cardiac muscle, which supplies the required amount
of oxygen and nutrients to the heart muscle. Therefore, coro-
nary artery disease can be followed by serious implications.
This can lead to myocardial infarction and sudden death. In
95% of patients with symptomatic coronary artery disease
and intracoronary pathology, there is a risk of atherosclero-
sis. In the remaining 5% of the patients, there is a huge risk
of inflammatory, degenerative or congenital diseases, which
are serious cardiac complications [5,6]. Therefore, evaluation of
intracoronary tissues in acute phase of the disease is important
to prevent myocardial infarction. Manual segmentation of the
tissues in coronary artery images is tedious, time-consuming,
and particularly error-prone from one observer to another
and interpretation of the OCT images are highly challenging,
even for a trained expert. Fully automatic method based on
recentmachine learning techniques, particularly deep learning,
would have significant impact on efficient clinical diagnosis of
coronary artery disease as a robust indicator of progression of
pathological formations.
In this study, the experiments were performed on OCT pull-

backs obtained from patients with Kawasaki Disease (KD).
KD is an inflammatory disease, which leads to inflammation
in the walls of medium-sized arteries throughout the body.
Although a high dose of Intravenous Immune Globulin (IVIG)
infusion reduces the risk of coronary artery complications,

about 5% of treated children, and 15% to 25% of untreated chil-
dren suffer a risk of experiencing coronary artery aneurysms
or ectasia. Intimal thickening, media disappearance, lamellar
calcification, fibrosis, macrophage, and neovascularization are
the most distinguished pathological features of late coronary
artery lesions in Kawasaki disease. In severe cases, they can
lead to myocardial infarction and sudden death.

1.2 Related works
Optical coefficient approaches are used for intracoronary tis-
sue characterization in some studies [7–12]. Atherosclerotic
plaque characterization is performed using attenuation and
back-scattering coefficient from intracoronary OCT images
by Schmitt et al, [8]. Three different plaque types (fibrosis,
lipid, and calcification) are recognized by considering their
attenuation coefficients in the work of Xu et al, [9]. Soest et
al. classified the plaque into two groups with high and low
attenuation coefficients [10]. This method was not robust to
measure the back-scattering coefficient in the cases with the
lack of intensity calibration. A tissue characterization model
based on quantification of the attenuation coefficients at dif-
ferent penetration depths of intracoronary OCT images is
proposed by Veermeer et al, [11]. However, the multi-scattered
signal was not considered in this study. In addition, the results
for uniform-layered phantom does not show a good consis-
tency [11]. Evaluation of attenuation coefficient, back-scattering
coefficient, and pixel-wise intensity in intracoronary OCT
images is used to characterize various tissues in the work of
Liu et al, [12]. Moreover, various machine learning approaches
are used for intracoronary tissue characterization [13–15]. Ughi
et al. proposed a model to characterize atherosclerotic plaques
using Random Forest as the classifier. Combination of texture
features and attenuation coefficients are used for plaque clas-
sification in intracoronary OCT images [13]. Athanasion et al,
proposed a tissue characterization model using Random For-
est as the classifier to discriminate between calcification, lipid,
and fibrous plaques [14]. A-line modeling method for plaque
characterization is proposed by Rico et al, [15]. However, in the
study of Rico et al, the effect of bloodwas not considered. Also,
A-line analysis cannot be generalized to all challenging cases
since it is intensity based.
Although optical properties of tissues and texture features

can provide a fair description of tissues, but considering the
challenges of the OCT images, detailed tissue information
is required for better representation and evaluation of vari-
ous arterial wall tissues. Other than this limitation, none of
the mentioned studies limited to few lesion types, and there
is no complete tissue characterization system proposed in
these studies, which can start by evaluating the arterial wall
structure, and analyze all the tissues and lesions in details.
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Recently, deep learning was widely used in the field of
medical imaging for various applications [16–19]. Convolutional
Neural Networks (CNNs) are recognized as the robust neural
network architectures for classification tasks, where their out-
put deep feature is a feature vector per imagewith an associated
single class label predicted by the network. Since training a
network from scratch requires a lot of data and considering the
limited available data in the field of medical image analysis,
it is efficient to use pre-trained networks by fine-tuning and
transfer learning. Therefore, using the same architecture of the
pre-trained network, the weights at each layer are initialized
by the weights of the pre-trained network to start the iterative
weight update by layer-wised fine-tuning to find the optimal
parameters for the new application [20]. A CNN based plaque
characterization method is proposed by He et al, [21], which the
results do not show a good precision of the method to be used
by clinicians. In another study, the performance of a CNN and
an artificial neural network (ANN) is compared to character-
ize calcification, and lipid versus other tissues [22]. However,
all the pathological tissues and normal cases were not consid-
ered in this study. In these studies, pre-processing to remove
the catheter was performed using Otsu’s threshold in the work
of He et al. Also, extraction of the region of interests was per-
formed using OCT A-lines, which is mostly intensity based.
These approaches are not reliable to be generalized to all the
cases, specifically challenging cases considering the artifacts
of the imaging system, noise, and challenging cases in terms
of disease complexity. Also, the results show the low precision
of the method to characterize the lesions.
Considering the strength of CNN features to describe vari-

ous intracoronary tissues, in our previous studies, we designed
a tissue characterization model to discriminate between arte-
rial wall tissue layers, intima and media, as well as patho-
logical formations, specifically calcification, neovasculariza-
tion, fibrosis, and macrophage accumulation. The final tissue
characterization model was designed using CNNs as feature
extractors from each tissue to train Random Forest (RF) as a
classifier. Majority voting approach was used for final classi-
fication decision. The model is highly precise to characterize
various intracoronary tissues [23,24]. In our previous studies,
the main contribution was to find the features and classifier,
which are reliable for intracoronary tissue characterization
usingOCT images. Therefore, the performance of various clas-
sifiers were assessed to design our model. In our previous
study, pre-processing to remove the surrounding arterial wall
tissues was performed on each frame of the OCT pullbacks by
applying active contour and connected component approaches.
In our previous studies, the OCT pullbacks with normal and
diseased arterial wall structures were determined by expert
cardiologist. We did not discriminate between the normal and

diseased arterial wall structures automatically. To character-
ize the lesion types, the lesions were extracted manually using
the ground-truth. Then, the type of lesions were character-
ized using our proposed model. In this study, we consider all
the limitations of our previous studies since we aimed for a
fully automatic and complete diagnostic system to analyze the
coronary artery tissues.

1.3 General limitations of the related works
1. A complete intracoronary tissue characterization model can
be useful for clinicians for early detection of pathological tis-
sues. To our knowledge, as themain limitation of all the current
studies, there is no complete framework, which starts by eval-
uating the arterial wall structure to distinguish between normal
and diseased arterial wall structure. Also, all the proposed
tissue characterizationmodels focused on characterizing a lim-
ited number or specific coronary artery lesions. There is no
tissue characterization model, which can automatically detect
all coronary artery tissue layers, and pathological lesions.
2. Pre-processing steps are additional computational steps,

which applied in all the proposed methods in related works to
prepare the images for classification task. Also, designing a
pre-processing approach, which can be generalized to all the
cases is very challenging.
3. In all the existing studies, the region of interests (lesions)

were extracted either manually or during pre-processing steps
in order to train the classification model. To have a fully
automatic tissue characterization model, this step should be
automatic as well.
4. Patch-based classification using CNNs has some limita-

tions: 1. The network should be run for each patch separately,
which results in redundant feature extraction process due to
the overlapping patches. 2. The patch size selection is chal-
lenging since using small patches, the network considers a
small context because of applying max-pooling. Using large
patches may require more max-pooling steps, this can reduce
the localization accuracy. 3. Considering the huge computa-
tional time, the pre-processing steps are required to remove the
unnecessary tissues and reduce the processing time, which is
an additional step.
Designing an automatic tissue characterization system for

intracoronary OCT images is a challenging task considering
the limited available coronary OCT data, artifacts of the sys-
tem, residual blood, and very small size of the artery. In
addition, we have to consider a solution, which is precise with
low computational burden to be useful for clinicians.

1.4 Contributions
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As the main contribution, in this study for the first-time,
a deep learning-based computer aided diagnostic model
providing clinicians with an operator-independent diagno-
sis of coronary artery lesions was developed. This study
contributes to:

1. Automatic evaluation of the arterial wall structure
using deep features: To have a complete tissue charac-
terization model, as the first step, it is very efficient if
the model can automatically recognize between normal
and pathological arterial wall structure.

2. Automatic intracoronary tissue analysis by develop-
ing a VGG-based FCN: According to the results of the
previous step, the model can look for arterial wall lay-
ers in the coronary arteries with normal three-layered
structure and lesions in pathological cases.

3. Avoiding the pre-processing steps: First, the pre-
processing steps are additional computational steps and
second, designing a pre-processing approach, which can
be generalized to all the cases is very challenging. This
can decrease the certainty level of the tissue characteri-
zation model, specifically in diseased coronary arteries.
Considering the artifacts of the imaging system, and the
small size of the arterial wall as well as the limitations of
the traditional approaches. It is more efficient if we can
consider the original images without applying any pre-
processing step to assure that all the details of the tissues
are considered in our analyses.

This work is organized as follows: The proposed method is
explained in section 2. The results are discussed in section 3,
and the work is concluded in section 4.

2 MATERIAL AND METHODS

Different steps of our tissue characterization model is shown
in the flowchart of figure 1 . The main focus of this study is
to propose a fully automatic intracoronary tissue characteriza-
tion model to evaluate coronary artery tissue layers as well as
pathological formations. The proposed model is designed in
the following steps:
1. Evaluating each OCT pullback frame by frame: The

model starts by evaluating the overall structure of the arterial
wall for each frame of the OCT pullback using a CNN-based
approach (Sec.2.2).
2. Characterization of different tissues based on the result of

the first step for each frame of the OCT pullback (Sec.2.3):
- If the arterial wall structure was recognized as normal in

the first step, the model segments the arterial wall layers using
FCN-based models. Tissue layer segmentation is important

FIGURE 1 All steps of the proposed tissue characterization
model.

because it can assist clinicians in evaluating the arterial tissue
by estimating the thickness of each layer (Sec.2.3.2).
- If the arterial wall structure was recognized as diseased,

extraction of pathological formations (lesions) was performed.
In pathological cases, the model looks for all the possible
lesions developed in the arterial wall tissues due to the coro-
nary artery disease. In this step, a FCN-based approach is
used to extract all the lesions regardless of the lesion type
(Sec.2.3.3).
3. Lesion type characterization: Having all the lesions

extracted, we applied a CNN-based method with a final deci-
sion usingmajority voting to characterize the lesion types. This
step was proposed in our previous work [24]. Although this step
is not the main contribution of the current study, we discussed
the final results of lesion type characterization in the discus-
sion section to demonstrate the final output of the complete
intracoronay tissue characterization system (Sec.3). Each step
of the work is explained in details in the following sections.

2.1 Data collection
The experiments are performed on 45 OCT pullbacks obtained
from different patients with KD. Each OCT pullback consists
of approximately 100 frames of DICOM images per patient.
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FIGURE 2 Normal structure of coronary artery is shown in
(a). The arterial wall has three-layered structure with intima,
media, adventitia, and surrounding tissues. The diseased arte-
rial wall with neo-intimal development and disappearance of
the media layer is shown in (b).

There are some cases with more than 100 frames per OCT
pullback. The total number of frames, which are used for the
experiments are 5040 frames. 26 OCT pullbacks with the total
of 2900 frames are considered as normal in this study since
the three-layered structure of the arterial wall was preserved
in all these frames. The other 19 OCT pullbacks with the total
of 2140 frames are considered as pathological cases with neo-
intimal development and developed lesions. Image acquisition
is performed using FD-OCT (St. Jude Medical Inc., St. Paul,
Minnesota, USA) with the pullback speed of 20 mm/sec. The
axial and lateral resolutions of the OCT system are 12-15 �m
and 20-40 �m respectively. Permission to conduct this study
on retrospective OCT studies was granted by the institutional
review board.
OCT images were labeled by trained operator using custom

software inMatlab. Each annotated imagewas reviewed by two
cardiologists and if there was any disagreement, a consensus
was reached by reviewing carefully each region of interest.

2.2 General evaluation of arterial wall
structure
In this step of the work, we investigated the features that a
CNN learns to train Random Forest as the classifier to discrim-
inate between normal and diseased frames. Normal structure is
referred to the three-layered structure of the arterial wall even
if the artery is affected by disease, the three-layered structure
is preserved. The diseased arterial wall structure is referred to
the neo-intimal development [25] (figure 2 ).

2.2.1 Pre-trained VGG-19
Convolutional Neural Networks (CNNs) are developed on
convolutional layers. These layers are responsible to excite fea-
tures from the local receptive field of the input image. There-
fore, convolutional layers are composed of shared weights
between the nodes to extract the similar local attributes in the
input channels by sliding the filters through the input image
with defined step size called stride. The extracted feature map
from each convolutional layer is the input of the next layer.
Using a non-saturating activation function, Rectified Linear
Unit (ReLU), that replaces the negative values by zero in the
feature map, which can accelerate the training process [26]. The
pooling or sub-sampling is used for dimensionality reduction
by keeping the most important information. To evaluate the
arterial wall structure, the general information of the shape and
borders and some details of the texture are enough at this step.
Therefore, a CNN, which can provide us such information, can
be quite useful.
VGG-19 is originally in the category of deep convolutional

neural networks [27]. Deep networks consist of stacks of con-
volutional layers with very small receptive field kernels. The
input size of VGG-19 is defined as 224×224×3, which is fixed.
Since OCT images are RGB images, the depth of our input is
3 and we needed to resize the OCT images with the original
size of 352×352×3 to 224×224×3. The only pre-processing
is that the mean RGB value was subtracted from each pixel
for each input image. As it is shown in figure 3 , the VGG-19
architecture consists of 5 stacks of convolutional layers. Spe-
cific number of filters with small receptive field of 3×3 are
applied in each convolutional layer with convolutional stride of
1 pixel. Also, 1-pixel padding preserves the spatial resolution
through the convolutional layers. Considering that the output
of each layer is the input of the next layer, for each convolu-
tional layer the number of parameters is calculated as number
of filters×filter size×input depth+number of filters (each filter
has a bias). Also, the depth of each layer output is the number
of filters at each convolutional layer. Every convolutional layer
follows by a ReLu as the activation function to introduce non-
linearity. After each stack of convolutional layers, max pooling
is applied for dimensionality reduction. Therefore, there is no
learning parameter defined for pooling layers. 2×2-pixel win-
dow with stride of 2 is used for max pooling. Therefore, in
pooling layers, the output is 1 pixel for every 2×2-pixels and
the windows do not have any overlap since the stride is defined
as 2. As a result, the spatial resolution divides by 2 in each
pooling layer while the depth remains the same. The origi-
nal VGG-19 architecture consists of two fully connected layers
(fc6, fc7) with 4096 units and a classification layer (fc8). We
removed the classification layer since we applied VGG-19 as
feature extractor. We extracted the features from fc7, which
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is the last fully connected layer right before the classification
layer.
To compare the activations excited by each layer of the

network with the original image, all the activations are pro-
jected to the input pixel space [28]. Using the ReLU function,
the positive activations are used to build the final feature map.
Considering that the ReLU replaces negative values by zero,
the white regions in figure 4 show the positive activations.
The channels in each layer learn various activations. The first
layers learn and excite the abstract level information regard-
ing the shape, corners, and edges of the original image, which
can effectively capture information regarding the borders of
different layers. Complex invariance by evaluating the texture
information are recognized in deeper layers. This may deter-
mine the robustness of deep features to describe and evaluate
the general structural differences between images to discrim-
inate between normal and diseased frames in various OCT
pullbacks. Figure 4 is the representation of few activations
extracted by VGG-19, which demonstrates the usefullness of
this network as feature extractor for the first step of the work.
The feature vectors for each frame of OCT pullbacks are
extracted form layer fc7, which is the fully connected layer
right before the classification layer. These feature vectors are
used to train Random Forest.

2.2.2 Random Forest (RF)
Random Forest was developed based on generating an ensem-
ble of trees [29,30], which has considerable advantages com-
pared against other existing classifiers:
1. The random vectors can control the growth of the trees

in the ensemble and this increases the classification accuracy
using Random Forest.
2. Random Forest can perform accurate classification on

large data sets.
3. There is a very low risk of over-fitting in using Random

Forest compared against other classifiers.
4. In the case of medical images, which are noisy images,

Random Forest is robust to deal with noisy data.
The CART methodology is used to grow the trees to max-

imum size without pruning. The accuracy of Random Forest
depends on the strength of each tree (s), and the correlation
between the trees (�). The smaller the �∕s2 ratio results in the
better functioning of Random Forest. In our experiments, the
optimal number of trees is set to 429 by evaluating the perfor-
mance of Random Forest using out of bag (OOB) error rate
(figure 5 ) for 500 of trees. Fewer number of trees reduces
the computational complexity in training the Random Forest
model. The number of randomly selected predictors (mtry) is
set to 7 using grid searching.

2.2.3 Training and Validation
We consider all the frames of the OCT pullbacks obtained from
the total of 45 patients. We resize the images to 224×224×3,
which is the input size of VGG-19. To generalize the model
to all the cases, we extract the features from each frame of the
OCT pullbacks and consider all the features with associated
labels as a single feature matrix. Then, we split the features
into training, validation, and test sets. To ensure that consecu-
tive frames are not selected and our system is not biased. First,
we split randomly 75% of the feature vectors as the training
features, and the remaining 25% of the features as the test fea-
tures. Then, to create the validation set, we split the training
set into the validation set by randomly selecting the 25% of the
training set and the remaining 50% built the final training set.
Random Forest is trained using deep features of the training
set and it is validated and tested using validation and test sets
respectively to classify between normal and diseased arterial
wall structures.
To reduce the computational burden, we preformed the

experiments by one random selection of training, validation,
and test sets in this step of the work. However, we per-
formed leave-one-out cross-validation to assure that there is no
over-fitting, also to evaluate the performance of the model in
different selections of training, and validation sets.
Therefore, in this step, VGG-19 is used as feature gen-

erator to train Random Forest as the classifier to generally
discriminate between normal and diseased images in each
pullback.

2.3 Tissue analysis
In this step, if the pullback frame was recognized as normal in
the first step, the system looks for segmenting different arte-
rial wall layers (intima and media), and if the pullback frame
was recognized as diseased in the previous step, in this patho-
logical cases, the system looks for possible developed lesions
in arterial wall tissues. We used FCN-based approach in this
step for the following reasons: we do not have the region of
interests extracted (the arterial wall layers in normal cases and
the lesions in pathological cases) to feed them to a CNN and
obtain the features to distinguish between various tissues of
coronary artery. Therefore, if we want to use CNN, we should
use it as patch-based classification. However, using CNN for
patch-based classification has some important limitations: 1.
we should perform patch-based classification and run the net-
work for each patch in the image separately. For each patch,
we have a single feature vector and this is computationally
very expensive because in patch-based approaches, the patches
overlap and this results in redundant feature extraction. Pre-
processing of the images to remove unnecessary information
from the images can help the processing time using CNNs,
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FIGURE 3 The architecture of VGG-19.

FIGURE 4 Visualization of few activations learned by VGG-19 architecture in different layers. Projection of features in pixel
space demonstrate the usefulness of the network to determine the general structure of the arterial wall.

but pre-processing is an additional step, and there is a risk
of losing important information during the pre-processing as
well. On the other hand, patch size selection is very challeng-
ing because the patch sizes should fit the size of the filters
defined for each layer of the network. For all these reasons,
CNNs are not very useful at this step of the work. To solve
this problem, we found that FCNs are very efficient in this step
because they do not have the limitations of the patch-based
classification using CNNs. The network is trained end-to-end,
pixels-to-pixels to exceed the training process and it avoids the
problem of redundant feature extraction of multiple overlapped
patches. Therefore, there is no need for pre-processing because

the training is fast enough to consider the whole image and
make sure that all the information is considered in our analyses.

2.3.1 Fully Convolutional Networks (FCNs)
Generally, the network architecture used for semantic seg-
mentation is composed of an encoder network followed by a
decoder network. The encoder can be a pre-trained network.
The decoder is responsible to project the learning features by
the encoder from the feature space to the pixel space to get
the dense classification. FCNs perform semantic segmentation
by considering the context as well as each pixel localization
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FIGURE 5 OOB error rate to find the optimal number of trees
of RandomForest. The error rate remains almost constant from
the tree number 429.

in the images. Compared to CNNs, FCNs can take the image
with an arbitrary size as an input, since there is no fully con-
nected layer involved to restrict the input size. FCNs are built
on locally connected convolution, pooling, and up-sampling
layers. The network does not have any fully connected layer,
which considerably reduce the number of parameters and train-
ing time. Considering the local connected layers in the network
architecture, the network works independently from the orig-
inal image size [31]. In our experiments, the input size of the
network is defined as 177×360×3 based on our application.
The main parts of the FCNs are down-sampling path to extract
the contextual information and the up-sampling path to recover
the pixel localization.

VGG-based FCN:
One of the standard networks, which is used as the basis of
semantic segmentation is VGG architecture. VGG-19 is used
in this study. Using VGG-based FCN, the knowledge is trans-
ferred from VGG-19 to perform semantic segmentation. The
VGG-19 is used as the encoder of the FCN model. Fully con-
nected layers are converted to fully convolutional layers using
1×1 convolution, which produce the feature map. Then, the
up-sampling is started to convert the feature map from feature
space to pixel space using transposed convolutions. Besides the
deconvolutional layers, up-pooling is required as well. Consid-
ering that the max-pooling operation is non-invertible, the max
location switches are recorded during max-pooling to approx-
imately reconstruct the data from the above layer using the
recorded positions.

Network configuration:
The learning parameters are set by grid searching to find the
optimal parameters at each layer. For transfer learning and
fine-tuning, we initialized the weights of each layer of the

VGG-based FCN by transferring the weights from the pre-
trained VGG-19. The first layers of the network provide the
abstract level information regarding the shapes, borders, and
edges, which are general attributes. Therefore, we started fine-
tuning from the last layer of the network and we continued
fine-tuning by changing the learning rates of the last two lay-
ers, last three layers and so on, to reach the best performance of
the network on validation set. An extensive interval of learn-
ing rate values is chosen for grid searching to find the optimal
learning parameters at each layer of the network. The inter-
val of learning rate values is chosen from zero to two with
the step of 0.001. We kept the momentum and the scheduling
rate at 0.9 and 0.95 respectively at each step of fine-tuning. the
learning rates for all the convolutional layers are set to 0.01
based on the best performance of the network. Other signif-
icant factors, which determine the performance precision of
FCNs are the choices of loss function and optimizer. In both
normal and pathological cases, the arterial wall layers (intima
and media) and the lesions represent a very small fraction of
the cross-sectional coronary artery images, which causes the
occurrence of the class imbalance problem. This results in sub-
optimal performance of the network. To deal with the problem
of class imbalance, we chose Generalized Dice Loss (GDL) as
our objective function [32], which is defined as follows,

GDL = 1 − [2(ΣlwlΣnrlnpln)∕(ΣlwlΣnrln + pln)] (1)

Where w is the weight assigned to each class with label l, n is
the number of image from the total of N images, r demonstrates
the pixel values of the ground-truth assigned to each label for
the image n, and p is the probabilistic decision map for each
class with label l. The weights for each class label is calculated
using the following equation,

wl = 1∕(ΣNn=1rln)
2 (2)

The weights demonstrate the contribution of each label in min-
imizing the loss function, which is defined as the inverse of the
region size for foreground (the region of interest), and back-
ground (all the other tissues). This makes the model suitable
to deal with the class imbalance problem. We selected adap-
tivemomentum estimation (Adam) for stochastic optimization,
which uses the first order gradients with little memory require-
ment and fast convergence. Figure 6 shows the architecture of
VGG-based FCN used in this study.

2.3.2 Intima-media detection in normal cases
The experiments are performed on 26 various OCT pullbacks.
All the frames at each pullback represent the coronary arterial
wall with three-layered structure. Two VGG-based FCNs with
the same structure explained in the previous section are trained
in parallel to extract intima and media layers respectively.
The first VGG-based FCN performs two class segmentation
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FIGURE 6 The architecture of VGG-based FCN.

FIGURE 7 Visual representation of the VGG-based FCN
process to segment intima and media layers.

to extract intima layer versus all other tissues, and the second
FCN takes the same frame of the pullback and simultaneously
performs segmentation of the second layer, media, versus all
other tissues. The segmentation result is combined as the final
decision to extract intima and media layers. The steps of tissue
layer detection is visually shown in figure 7 . The images are
categorized in three sets of training, validation, and test sets.
The total of 70% of the images are selected to build the train-
ing set, 15% of the images are used for the validation set, and
the remaining 15% of the images are used to build the test set.

2.3.3 Lesion extraction in pathological cases
The experiments are performed on 19 different OCT pullbacks
with pathological formations, such as calcification, neovascu-
larization, fibrosis, and macrophage accumulation. The VGG-
based FCN with the same architecture shown in figure 6 is
trained for two class segmentation of pathological tissues ver-
sus all other arterial wall tissues. Therefore, the output of the

FIGURE 8 Visual representation of the VGG-based FCN
process to detect intracoronary lesions regardless of the lesion
type.

network is the detection of lesions regardless of the lesion type.
The steps of lesion detection are visually shown in figure 8 .
The total of 70% of the images are selected to build the train-
ing set, 15% of the images are used for the validation set, and
the remaining 15% of the images are used to build the test set
We preformed the experiments by one random selection of

training, validation, and test sets at each step. But, leave-one-
out cross-validation was performed by leaving out the OCT
images of one patient for validation and training the model on
the OCT images of the remaining patients at each step of the
experiment. The mean±std of the overall accuracy for all the
experiments are reported at each step. This is performed to
assure that there is no over-fitting concern and also to evaluate
the performance of themodel in different selections of training,
and validation sets.
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FIGURE 9 Confusion matrix structure used to evaluate the
results. Positive refers to the class of interest (the tissue that we
wanted to segment or characterize) and the Negative refers to
the rest of the tissues including the image background.

3 RESULTS AND DISCUSSION

The experiments are performed on the total of 45 intracoro-
nary OCT pullbacks obtained from patients with Kawasaki
disease. The cross-sectional images of the 26 OCT pullbacks
are recognized as the coronary artery segments with three-
layered structure of the arterial wall that we called them normal
structure. The cross-sectional images of the remaining 19 OCT
pullbacks are recognized as diseased coronary artery segments
with neo-intimal development and formation of lesions.
To evaluate the results, at each step of the work, we calcu-

late the confusion matrix as it is shown in figure 9 . Having
the confusion matrix, we measure the per class Accuracy,
Sensitivity, and Specificity as follows,

Accuracy = TP + TN
TP + TN + FP + FN

(3)

Sensitivity = TP
TP + FN

(4)

Specif icity = TN
TN + FP

(5)

Where TP, FP, FN, and TN are True Positive, False Positive,
False Negative, and True Negative respectively. Using FCNs,
since it is also efficient to measure the BFscore to validate the
segmentation results, we calculated the BFscore as follows,

Precision = TP
TP + FP

(6)

Sensitivity = TP
TP + FN

(7)

BFscore =
2 × Precision × Sensitivity
P recision + Sensitivity

(8)

3.1 General evaluation of the arterial wall
structure
For the first step, Random Forest is trained to evaluate the gen-
eral structure of the arterial wall. The classification result is
reported as measured per class accuracy, sensitivity, and speci-
ficity in table 1 . The result shows the robustness of CNN
features to detect the general structure of the arterial wall in

FIGURE 10 Leave-one-out cross-validation to evaluate the
general arterial wall structure. The mean accuracy of the
classification is measured at each iteration to evaluate the
performance of the model.

normal and affected coronary arteries. The result of leave-one-
out cross-validation to evaluate the general structure of the
arterial wall is shown in details in figure 10 for each patient
that was left as validation set. The mean±std of all the exper-
iments were calculated as the overall accuracy of 0.94±0.05.
Using CNN as feature extractor, we have one feature vector for
each frame.We did not consider eachOCT pullback separately.
We considered different frames of different OCT pullbacks in
training, validation, and test sets since tissue texture can be
different from one patient to another. This way, Random For-
est was trained on the feature vectors extracted from different
frames of various patients. Therefore, the model can be gen-
eralized to all the cases since the training and test sets are not
restricted to a single patient with specific tissue attributes.

The model starts by evaluating each OCT pullback frame by
frame. The reasons why pre-trained CNN and Random Forest
are used in this step of the work are as follows: 1. It is efficient
to use pre-trained networks considering the fact that training a
network from scratch requires a lot of data and we deal with
the limited available data in the field of medical image analysis
specifically for infants and children. 2. It is more efficient and
computationally less expensive to use CNNs as feature extrac-
tors to train another classifier, when we deal with the problem
of characterization between the region of interests (normal ver-
sus diseased arterial wall structure, where the whole frame is
our region of interest). Using CNNs as feature extractor avoids
retraining the network during fine-tuning, which requires a
considerable amount of time. 3. Over-fitting concerns in deep
fine-tuning the network and finding proper learning rates for
each layer are other issues of using CNNs as the classifier.
There are many pre-trained CNNs that can be used as feature
extractor, but in this step of the work, we wanted to evalu-
ate each frame generally to discriminate between normal and
pathological arterial wall structure. Since, VGG-19 is a strong
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TABLE 1 Measured accuracy, sensitivity, and specificity to evaluate general arterial wall structure.

Arterial wall structure

Accuracy Specificity Sensitivity

Normal structure 0.95 0.97 0.94
Diseased structure 0.97 0.97 0.97

network to perform feature extraction, and we used the archi-
tecture of VGG-19 to build the FCNs in the next steps of the
work, to keep the model consistent in terms of choosing the
networks, VGG-19 is used in this study. Using CNN as feature
extractor, the processing time to extract the features for each
frame is less than 10 seconds, and the training process using
Random Forest in this step of the work takes about 3 minutes,
which is considerably fast.

3.2 Tissue analysis
Intima-media detection in normal cases:
As the next step, in normal cases, we detect arterial wall lay-
ers (intima, and media). Sometimes, the artery is affected by
disease, which results in thickening the arterial wall layers
although the three-layered structure of the arterial wall is pre-
served. We reported the mean±std of the measured per class
accuracy, specificity, and sensitivity as well as the BF-score of
all the test set images in table 2 for intima, and media detec-
tion. The results of leave-one-out cross-validation to detect
intima and media are shown in details in figures 11 , and 12
respectively for each patient that was left as validation set. The
mean±std of the results of all the experiments were calculated
as the overall accuracy of 0.92±0.01 and 0.87±0.01 for intima
and media respectively. The results demonstrate the good per-
formance of the model using different selections of training
and validation sets. This result can also overcome the over-
fitting concern. Figure 13 is the visual representation of the
intima, and media detection for the frames of three different
OCT pullbacks of various patients.

Lesion extraction in pathological cases:
In pathological cases, we extract the pathological tissues
regardless of tissue type. In this step, we aimed to extract all the
developed lesions automatically. We reported the mean±std
of the measured per class accuracy, specificity, and sensitiv-
ity as well as the BF-score in table 3 for extraction of the
lesions. The result of leave-one-out cross-validation to extract
the lesions is shown in figure 14 for each patient that was left

FIGURE 11 Leave-one-out cross-validation for detection of
the first layer of the arterial wall (intima) in normal cases using
VGG-based FCN. The mean accuracy of the classification is
measured for each patient to evaluate the performance of the
model.

FIGURE 12 Leave-one-out cross-validation for detection of
the second layer of the arterial wall (media) in normal cases
using VGG-based FCN. The mean accuracy of the classifica-
tion is measured for each patient to evaluate the performance
of the model.

as validation set. The mean±std of the results of all the experi-
ments were calculated as the overall accuracy of 0.95±0.02 for
all the experiments. The results demonstrate the good perfor-
mance of the model using different selections of training and
validation sets as well as overcoming the over-fitting concern.
Figure 15 is the visual representation of the pathological tis-
sue extraction for the frames of four different OCT pullbacks
of various patients. The results show a high precision of the



12 Atefeh Abdolmanafi ET AL

TABLE 2 Measured accuracy, sensitivity, specificity, and BF-score for intima and media detection using FCN model.

Arterial wall layers

Accuracy Specificity Sensitivity BF-score

Intima 0.90±0.04 0.86±0.06 0.93±0.03 0.99±0.01
Media 0.87±0.04 0.82±0.05 0.91±0.02 0.99±0.01

FIGURE 13 Visual representation of the VGG-based FCN results to detect intima and media layers for three frames of three
different patients. From left: the first image is the planar representation of the original OCT image, the second image is the
ground-truth, which shows intima with purple label and media with yellow label, the third image is the network result to extract
the tissues (the upper region is intima, and the other one is media), and the fourth image is the overlap of the network results on
the original image.

model to extract the lesions, which is the most challenging and
significant problem in coronary arteries affected by disease.

All the lesions, which are extracted in this step of the work,
are fed to the model developed in our previous study to char-
acterize the type of each lesion and show the results for our
complete tissue characterization framework of intracoronary
OCT images. To characterize the lesion type, we extracted fea-
tures from three different CNN networks (AlexNet, VGG-19,
and Inceptionv3). For each set of features, we trained Random
Forest as the classifier. Then, we used majority voting for final
classification result using all the Random Forest decisions.
This approach is explained in details in our previous study [24].
The final results of lesion type characterization is reported in
table 4 .

Using the FCN-based model, we could avoid the pre-
processing steps that were performed in our previous study.
This can help the model to be less expensive computationally
and more accurate since we make sure that there is no tis-
sue information, which was missed during the pre-processing
steps. In addition, technically, it is very difficult to train the
networks from scratch since we have limited number of avail-
able datasets specifically in infants and children population. To
overcome this problem, we fine-tuned pre-trained networks.
Therefore, instead of starting from scratch to initialize the
weights of each layer, we initialized the weights of our net-
work with the weights of the pre-trained network (VGG-19)
and fine-tuned the parameters in each layer to make sure that
the model performs accurately in our application. Then, we
investigated the proper loss function to train our model since



Atefeh Abdolmanafi ET AL 13

TABLE 3 Measured accuracy, sensitivity, specificity, and BF-score of lesion detection using FCN model.

Pathological cases

Accuracy Specificity Sensitivity BF-score

Pathological tissues 0.96±0.04 0.95±0.05 0.97±0.03 0.96±0.04

TABLE 4 Measured accuracy, sensitivity, and specificity to characterize lesion types.

Lesion type

Accuracy Specificity Sensitivity

Calcification 0.90 0.95 0.84
Fibrosis 0.94 0.96 0.94
Macrophage 0.92 0.97 0.89
Neovascularization 0.95 0.97 0.90

FIGURE14 Leave-one-out cross-validation for lesion extrac-
tion in pathological cases using VGG-based FCN. The mean
accuracy of the classification is measured for each patient to
evaluate the performance of the model.

we were dealing with the problem of imbalanced classes dur-
ing the training considering that the arterial wall layers and
lesions are very small areas compared against the surrounding
tissues and the background of the image.
In normal cases, two VGG-based FCNs with the same archi-

tecture are trained separately to segment intima versus other
tissues and media versus other tissues respectively. Therefore,
if the frame was recognized as normal in the first step of the
model, the two VGG-based FCNs work in parallel to detect
intima and media layers in the image. Training the network is
considerably fast, which was approximately 59 minutes with
354 iteration per epoch and the total of 35400 epoch.
In pathological cases, the same FCN architecture was used,

but it was trained to extract the lesions regardless of lesion type
in each frame of the OCT pullback. The network training time
was 41 minutes and 22 seconds. The network converged in 100
epoch with the total of 4900 iterations (49 iteration per epoch).

In this study, different factors were considered. First, we do
not have all types of the pathological tissues in all the frames
of each pullback. In some cases, intima is thickened without
the development of pathological tissues. In other cases, we
may have one, two, or more pathological tissues developed in
the arterial wall layer as a result of the disease. Second, the
number of images, particularly in pathological cases, are very
limited. Therefore, training a fully convolutional network to
segment all the tissue types is not possible since we aimed
to propose a model, which is not limited to a specific type of
pathological formations and can be extended to all pathologi-
cal lesions. Although we considered the four most significant
coronary artery complications caused byCAD in this work, but
we may extend the model to other possible lesions. Therefore,
it is not wise to train a single FCN model for each pathological
tissue type separately since it is computationally very expen-
sive and requires a huge memory. For this reason, we decided
to train a FCN, which can extract all the pathological tissues
without considering the lesion type. Then, using our proposed
tissue characterization model [24], extracting the CNN features,
and training a Random Forest to distinguish between the tissue
types demonstrated a high precision.

4 CONCLUSION

In this study, we aimed to propose a fully automatic tissue
characterization model, which can assist clinicians for bet-
ter diagnosis of the coronary artery complications caused by
coronary artery disease using OCT images. Our complete tis-
sue characterization model starts by evaluating the arterial
wall tissue structure for each frame of the pullback to recog-
nize between the normal three-layered structure of the arterial
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FIGURE 15 Visual representation of the VGG-based FCN results to detect pathological tissues for one frame of four different
patients. From left: the first image is the planar representation of the original OCT image, the second image is the ground-truth,
which is manual segmentation of the pathological tissues in OCT images, the third image is the network result to extract the
lesions regardless of the tissue type, and the fourth image is the extraction of all the regions, which is detected as pathological
tissues from the original image.

wall and neo-intimal development. Then, in normal cases, the
model can detect the arterial wall layers, and in pathological
cases, all the existing lesions can be extracted regardless of the
lesion type using a FCN model. The extracted lesions can be
categorized based on the lesion type using CNN features and
majority voting on Random Forest decisions. Our future work
will be concentrated on evaluating the distensibility variations
of the arterial wall tissues to assess the mechanical properties
of the arterial wall using stationary OCT.
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GRAPHICAL ABSTRACT TEXT

A fully automatic intracoronary diagnostic model is proposed
in this study, which contributes to evaluate the structural
changes of the arterial wall for each OCT pullback frame and
extract all the pathological lesions. The model is designed
based on fine-tuning and training a Fully Convolutional Net-
work, which demonstrates the strength of the deep features in
describing various coronary artery lesions.

GRAPHICAL ABSTRACT FIGURE
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