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Abstract— X-ray angiograms are currently the gold-standard
in percutaneous guidance during cardiovascular interventions.
However, due to lack of contrast, to overlapping artifacts
and to the rapid dilution of the contrast agent, they remain
difficult to analyze either by cardiologists, or automatically
by computers. Providing, a general yet accurate multi-arteries
segmentation method along with the uncertainty linked to those
segmentations would not only ease the analysis of medical
imaging by cardiologists, but also provide a required pre-
processing of the data for tasks ranging from 3D reconstruction
to motion tracking of arteries. The proposed method has been
validated on clinical data providing an average accuracy of
94.9%. Additionally, results show good transposition of learning
from one type of artery to another. Epistemic uncertainty maps
provide areas where the segmentation should be validated by
an expert before being used, and could provide identification
of regions of interest for data augmentation purposes.

I. INTRODUCTION
Congenital heart diseases are, to date, one of the major

causes of death in the world. In Canada alone, one birth
over a hundred is affected by a congenital heart disease
and that number is growing every year [1]. For instance,
congenital stenosis - a narrowing of the vascular structure
developed by the fetus - affects the blood flow of the patient
and, when left untreated, can result in severe consequences.
When possible, interventional cardiologists perform angio-
plasty. It consists in dilating the narrowed part of the artery
using an inflatable balloon, and when required, a stent is
placed. The current gold-standard imaging technique used
during percutaneous interventions is X-ray angiography. It
consists in acquiring X-ray images of the patient’s artery
while, at the same time, injecting a contrast agent, such as
iodine, using a catheter to reveal the topology of vascular
structures. However, the analysis of vascular structures from
X-ray angiography is challenging due to the rapid dilution
of the contrast agent, the superposition of complex vessel
topologies and the radiographic noise. Recently, augmented
and virtual reality technologies have been introduced to the
medical community [2], [3], [4]. Those techniques rely on
the use of an accurate 3D modeling of the region of interest.
Most 3D reconstruction techniques require the use of prior
segmentation [5], hence rendering the reconstruction heavily
dependent on the accuracy of the segmentation.
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Vessel segmentation from X-ray angiography has been a
prolific area of studies. The most popular approach is based
upon the analysis of the Hessian matrix of the X-ray images -
known as vesselness filters, to enhance elongated vessel-like
structures [6]. Recent works on blood vessel segmentation
from angiograms focus on the use of graph-based methods
[7] or convolutional neural networks (CNN) [8]. However,
most of those studies focus on the segmentation of only
one type of artery and none, to our knowledge, tries to
generalize the learning to multiple different types. Medical
imaging analysis is often impacted by a shortage of available
data. We believe that mixing different types of arteries, and
not only specializing the learning to one, is an efficient
way to perform data augmentation that can be particularly
efficient on learning the textures and patterns contained in
the background.

Even if CNN provide state-of-the-art results in numerous
domains [9], including medical imaging, the output often
consists in just a prediction and no measure of confidence
regarding the said-prediction is given. Recent approaches
towards Bayesian convolutional neural networks [10] allow
for the modeling of uncertainties. There are two uncertainties
that one can model: aleatoric uncertainty and epistemic un-
certainty. The former gives information about the uncertainty
contained in the input while the later provides uncertainty
values regarding what has and, particularly, what has not
been learned by a network. Providing information about how
confident the model is can, specifically in a medical task,
provide a way to raise awareness on predictions that are not
confidently enough predicted by the network.

For those reasons, we wish to provide a method to
automatically segment different types of arteries while also
providing a measure of uncertainty that reflects the correct-
ness of the yielded predictions. Hence, the contributions of
this paper are threefold:

• Automatic segmentation of various blood vessels: aorta,
coronary arteries, and pulmonary arteries,

• Pixel-wise epistemic uncertainty measurements in the
context of blood vessel segmentation,

• Calculation of pixel-weights designed to optimize the
distribution of uncertainty by pushing towards its cor-
relation with the correctness of the predictions.

II. METHODOLOGY

A. Dataset and pre-processing

A dataset of 368 images from X-ray angiography was ac-
quired in our institution during various cardiac interventions
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and annotated by an experienced technician. This study was
approved by our IRB. The images contain three different
types of arteries: aorta, coronary arteries and pulmonary
arteries. All the images have been assigned to 3 subsets:
training set, validation set and test set. The configuration of
the three subsets is the following:

• Training set: 25 different patients representing 254
images in total. Half of those images contain only
background information. The other half is composed
of: 50 aortas, 27 pulmonary arteries and 50 coronary
arteries.

• Validation set: 26 images in total. This set is composed
of 9 aortas, 8 pulmonary arteries and 9 coronary arteries.

• Test set: 88 images in total extracted from 10 patients.
Amongst those 10 patients 5 are different from those of
the training set. 34 images contain aortas, 24 images
contain pulmonary arteries and 30 contain coronary
arteries.

Several steps of data augmentation have been performed
including horizontal flipping and random cropping.

B. Uncertainty modeling

As mentioned in the introduction, epistemic uncertainty
is directly yielded by what the model was and was not
capable of learning. On the other hand, aleatoric uncertainty
represents the amount of noise already contained in the
original images. The objective is to obtain a map showing
where the classification might be failing according to the
model’s beliefs. The uncertainty modeling is done solely us-
ing epistemic uncertainty. By activating dropout at test time,
and performing Monte-Carlo sampling over the predictions
yielded by the network, the uncertainty is calculated using
the entropy on the average prediction probabilities (eq. 1)
[10].

U(ŷ) =
1
T

T

∑
t

H(ŷt) (1)

With T representing the number of Monte Carlo sampling
and H Shannon’s entropy defined as follows:

H(ŷ) =
C

∑
c

ŷc log(ŷc) (2)

In which C represents the number of classes.

C. Pixel-weighting

We propose a pixel-weighting technique designed to adapt
the distribution of uncertainty and make it correlate more
with the correctness of the classification.

For that purpose we propose the following equation to
dynamically define a weight for each pixel of the dataset
during the training.

ωi = 1+Ū(ŷi)×

α, if the pixel belongs in FP
β , if the pixel belongs in FN
0, else

(3)

With i representing one pixel in the dataset and Ū(ŷi) =
1−U(ŷi). FN and FP are respectively defined as the sets of

False Positive and False Negative pixels. The constants α

and β are used to define a compromise between FN and FP
pixels and hence adapt the solution yielded by the model.
The weighting increases the loss of the wrongly classified
pixels by applying a penalty based on the complement of
the uncertainty.

Because the calculation of the epistemic uncertainty is a
complex time-consuming process, we propose to approxi-
mate that uncertainty, during the training only, by removing
the costly Monte Carlo sampling. Hence our formulation of
the uncertainty, during the training process, becomes:

U(ŷ) = H(ŷ) =
C

∑
c

ŷc log(ŷc) (4)

The final loss used during the training can be expressed
in the following way:

Lω(yi, ŷi) = ωiLXH(yi, ŷi)

= ωi

C

∑
c

yi,c log(ŷi,c)
(5)

Where LXH represents the cross-entropy loss function and
C is the number of classes.

To reduce that weighted loss, the model now has two
choices for the wrongly classified pixels. It can try to reduce
the unweighted loss and hence improve the accuracy of the
predictions or decrease Ū(ŷi) (increase the uncertainty).

D. Segmentation model

The segmentation is performed using a FC-DensetNet103
convolutional neural network, a densely connected CNN
designed for semantic segmentation [11]. It is composed
of 103 layers. The layers are defined inside dense blocks,
transitions down and transitions up. A Dense block is formed
with first a Batch Normalization layer, then a ReLU activa-
tion, followed by a 3x3 convolution and finally a dropout
layer with probability p = 0.2. The transition down block is
composed of a batch normalization layer, a ReLU activation,
a 1x1 convolution, a dropout layer with probability p = 0.2
and finally a 2x2 non-overlapping max-pooling. Finally, the
transition up block is composed of a 3x3 inverse convolution
with stride 2.

The model is first trained on the entire training set using
the categorical cross-entropy. At the end of the training, the
top layers are removed and all the other layers are freezed.
We then add three dense layers of the following respective
sizes: 500, 100, 2. Each of the dense layers is also preceded
by a Batch Normalization and a Dropout layers. The last
dense layer also contains a softmax activation function. The
training is later resumed using our weighted version of the
loss function

III. RESULTS AND DISCUSSION

The initial training has been conducted on 1150 epochs
using Keras with Adam for the optimizer and a categor-
ical cross-entropy loss function. The second training was
conducted on 150 epochs for our weighted version of the
categorical cross-entropy.



A. Accuracy of the segmentation

Table I gives the overall and artery-specific accuracy,
specificity and sensitivity scores. As can be seen, the best
overall performance of the network is obtained on the aorta.
This is due to the relatively simple shape of this type of
artery. Indeed, the main trunk of the aorta is large compared
to coronary arteries and most parts of the pulmonary arteries.
Also, an aorta generally presents a low number of bifurca-
tions and overlapping, which renders the segmentation task
easier. According to the results yielded by our methodology,
pulmonary arteries seem to be the most difficult type of
vascular structure to segment. Indeed, it contains a very large
number of bifurcations that overlap and occlude each other.
Furthermore, the contrast agent is not necessarily evenly
diluted in the entire arteries. Additionally, all the bifurcations
and the problems of contrast rendered the manual segmen-
tation difficult, which could explain part of the lower results
obtained on pulmonary artery segmentation.

Fig. 1 presents visual results of the obtained segmentation
for one sample of each type of artery. As can be seen,
the segmentation yielded by our method (row (c)) appears
really close to the ground-truth manual segmentation, even
on patients for which no image has been used during the
training process. Furthermore, our model correctly classified
some thin bifurcations deemed too small during the manual
segmentation (see first column of Fig. 1).

B. Visualization of the uncertainty from the segmentation

Rows (d) and (e) of Fig. 1 give visual uncertainty maps
for the results obtained by the segmentation model. Row (d)
represents the uncertainty for pixels correctly classified by
the network while row (e) focuses on misclassified pixels.
Those results are displayed as uncertainty maps: for each
pixel an intensity is given according to its uncertainty. Hence,
the brighter the color, the more important the uncertainty.
This uncertainty shows multiple things.

First, we can see that the background generally contains
low to no uncertainty. It means that ribs and other surround-
ing structures have properly been learned by the model and
are not considered as arteries. However, the last column
shows ribs segmented as part of the artery due to some lack
of knowledge from the network, noticeably regarding the
specific camera configuration (the image is either zoomed
out or the patient is smaller than the other patients). Same
conclusions can be drawn on the inside of the arteries where
low uncertainty is usually yielded. The portions of maximum

TABLE I
ACCURACY, SENSITIVITY AND SPECIFICITY SCORES FOR THE

DIFFERENT TYPES OF ARTERIES CONTAINED IN THE TEST SET.

Accuracy Sensitivity Specificity
Aorta 95.2% 97.2% 92.3%
Coronary 96.8% 97.1% 92.2%
Pulmonary 93.3% 95.0% 82.0%
Overall 94.9% 96.3% 84.6%

uncertainty in the images seem to be located on pixels
at the border of the arteries. This is mostly due to the
manual segmentation that can be challenging in the case of
pulmonary and coronary arteries and also because of the lack
of contrast in some regions at the borders of the arteries. The
problem at the borders of the arteries mostly arises when
the contrast agent is very diluted in the blood and when
structures with really dark intensities are located around the
arteries (see columns 3 and 4 of Fig. 1).

A second source of high uncertainty is generated by
the overlapping of nearby structures. Indeed, because an-
giograms are 2D projections of a body, bones or other organs
can overlap and sometimes occlude parts of an artery. Those
particular regions are particularly difficult to classify. One
example of that is displayed in the 4th column of Fig. 1
where ribs with similar intensity than the aorta, and some
cables overlap with the vessel, rendering the segmentation
difficult to perform. However, even though those regions are
flagged as false negatives, they yield high uncertainty that
can give an idea to the model or the operator to use the
segmentation with caution.

The last two columns contain examples for which the
model provided some errors of segmentation. In accordance
to previously drawn conclusions, a part of the high un-
certainty regions belong on the boundaries of the arteries.
Those columns also display that large uncertain patches also
lie in regions containing false positive and false negative
classifications. This configuration of uncertainty is what
seem, to us, the most important to consider. It means that
even though the model made mistakes in the segmentation,
by either over-segmenting (ribs segmented as arteries in th
5th column) or under-segmenting (missing part of the aorta in
the 4th column), it still has an idea of where those mistakes
have been made.

Those images also show that wrongly classified pixels
contain higher uncertainty values than well classified points.

C. Comparison weighted vs unweighted loss

Our proposed weighting of the categorical cross-entropy
loss function does not impact the accuracy of the predictions.
Indeed, we obtained respective general accuracies of 94.9%
for the weighted version and 94.7% for the regular cross-
entropy after an average of 10 predictions for each.

Fig. 2 shows a comparison of the distribution of uncer-
tainties for the weighted loss compaired to the original,
unweighted, categorical cross-entropy for one image of our
dataset. As can be seen, the unweighted version of the
categorical cross-entropy tends to yield a lot of overconfident
predictions, even for the missclassified points. This is, in
part, due to an inflation of the most probable class created
by the softmax loss function [12]. On the other hand, our
weighting of the cross-entropy seems to counter that inflating
effect. What can be observed is that, even though some
good classifications are yielded with less confidence (more
uncertainty), the number of confident errors is decreased.
This is particularly useful in areas, such as medical imaging,



(a) Original angiograms

(b) Ground-truth manual segmentations

(c) Corresponding segmentations

(d) Corresponding uncertainty map for well classified pixels

(e) Corresponding uncertainty map for misclassified pixels

Fig. 1. Segmentation for the three types of vascular structures considered in this paper (columns 1-3). Columns 4 and 5 present difficult cases with low
contrast in the vascular structure. Rows (d) and (e) are presenting the uncertainty maps as follows: dark colors for low uncertainty and bright colors for
high uncertainty.

where an error can have severe consequences. This observa-
tion is further confirmed in the table II that presents average
uncertainties of well and incorrectly classified pixels for both

versions of the loss.



(a) Distribution of uncertainty for the unweighted loss.

(b) Distribution of uncertainty the weighted loss.

Fig. 2. Histograms for the distributions of uncertainty for the unweighted
and the weighted losses. Histogram displayed in log scale.

TABLE II
COMPARISON OF AVERAGE UNCERTAINTY VALUES FOR WELL AND

WRONGLY CLASSIFIED PIXELS IN BOTH THE REGULAR CATEGORICAL

CROSS-ENTROPY AND OUR PROPOSED WEIGHTED CATEGORICAL

CROSS-ENTROPY.

Mean uncertainty Unweighted loss Weighted loss
Well classified pixels 2.5 * 10ˆ{-2} 7.8 x 10ˆ{-2}
Wrong classifications 2.5 * 10ˆ{-1} 4.1 * 10ˆ{-1}

IV. CONCLUSION

We proposed a new method to perform blood vessel seg-
mentation on X-ray angiography using CNN. The approach
presented in this paper does not focus on one single type
of blood vessel, but instead, tries to model blood vessels
using patterns and features generated by the contrast agent.
The uncertainty modeling proposed along the segmentation
identifies regions where the model is not confident enough
about the predictions. Generally, high uncertainty regions
seem to correlate with wrong classifications, in accordance
with the proposed formulation of pixel weighting. Further
investigations are required to draw a strong link between
the outcome of the classification and the yielded uncertainty.
This research paves the way for automatic handling of epis-
temic uncertainty in the context of X-ray imaging. Further

works could consider incorporating the uncertainty in an au-
tomatic process designed to produce data augmentation using
high uncertain patches and hence, refine the segmentation
results.
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