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Abstract— We present a novel model-free approach for
cardiorespiratory motion prediction from X-ray angiography
time series based on Long Short-Term Memory Recurrent
Neural Networks (LSTM). Cardiorespiratory motion prediction
is defined as a problem of estimating the future displacement of
the coronary vessels in the next image frame in an X-ray angiog-
raphy sequence. The displacement of the vessels is represented
as a sequence of 2D affine transformation matrices allowing
2D X-ray registrations in a sequence. The new displacement
parameters from a sequence of transformation matrices are
predicted using an LSTM model. LSTM is a particular form
of Recurrent Neural Network (RNN) architecture suitable for
learning sequential data and predicting time series. The method
was developed and validated by simulated data using a realistic
cardiorespiratory motion simulator (XCAT). The results show
that this method converges quickly and can predict the complex
motion in the angiography sequences with irregularities. The
mean values of prediction error over all the patients are
approximately 0.29 mm (2 pixels) difference for the combination
of both motions, 0.51 mm (3.5 pixels) difference for cardiac
motion and 0.44 mm (3 pixels) for respiratory motion.

I. INTRODUCTION
Navigation guidance during cardiac interventions, such

as balloon angioplasty and stent placement are performed
generally under X-ray fluoroscopy [1]. During percutaneous
coronary interventions (PCI) catheters and arteries are vi-
sualized by X-ray angiography time series. Contrast agent
material must be injected to be able to track the arteries
during the intervention. It is crucial to minimize the amount
of contrast agent injection in order to have a less invasive
intervention.

During the cardiac intervention, several organs including
the arteries are moving given the heart beating, respiratory
movement and sometimes the patient’s movements. These
movements not only degrade the image acquisition but also
make the navigation and guidance more difficult. Hence,
there is a demand to compensate the induced motions by
estimating and predicting the target’s (arteries’) movements.
Moreover, while the target’s movements are tracked in the
images, the needs to inject the contrast agent to visualize the
vessels will be reduced [2]. Motion prediction can impact
robotic-assisted interventions as well, a field in the fast
expansion. It is highly required to counteract the systematic
latencies through target tracking and mechanical constraints.
This compensation can be performed by estimating and
predicting the future target positions [3].
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In recent years, numerous approaches have been developed
for controlling the cardiorespiratory motion as well as mini-
mizing its effect. However, challenges still arise regarding a
general and not patient-specific model that can compensate
not only the cardiorespiratory motion but also the unexpected
patient’s movements.

Cardiorespiratory motion compensation is relevant for a
wide range of interventional procedures involving coronary
arteries, pulmonary arteries. Moreover, CT and MR motion
compensation protocols are important for proper imaging of
anatomical structure under motion. In general, the motion
compensation methods are categorized into three groups:
model-based, model-free and hybrid approaches. In model-
based methods, the motion is represented in a special
mathematical mode like linear prediction, Bayesian filtering
(Kalman, Extended Kalman, and particle filtering), sinusoidal
model, support vector machine and hidden Markov model
etc. Motion models use surrogate data as an input and come
up with a motion estimation as an output whilst they are
patient-specific [4], [5], [6], [7], [8], [9], [10], [11]. The
second category includes the model-free methods which
are heuristic learning-based algorithms to find a pattern for
respiratory motion having a lot of observed data [12], [13],
[14], [15], [16]. The current available model-free motion
compensation approaches were developed only to predict
respiratory motion. Most of these methods outperformed the
model-based group. The third category includes methods
which are a combination of these two approaches and are
called hybrid methods [17], [18].

In this work, we present a novel model-free method using
a supervised LSTM network to predict cardiorespiratory mo-
tion in angiography sequences. In our approach, the motion
signals are extracted from the images and represented by
transformation matrices. Then, the LSTM network is trained
to predict the next geometrical transformation in the next
frame from previous ones.

II. METHODOLOGY

In order to predict the motion behavior, geometrical fea-
tures are selected and extracted from the 2D images of the
X-ray angiography sequences. These geometrical features
are represented by transformation parameters (translation,
rotation, scaling, and shearing) which are extracted frame by
frame in a sequence by an affine registration method. Then,
the new position of the arteries in the upcoming frame in the
sequence can be predicted using an RNN-based network.
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A. Pre-processing

The require steps for extracting the motion features are as
follows: At first, some preprocessing and filtering strategies
are required to segment and accordingly to extract the center-
lines of the arteries. Then the 2D motion feature extraction
can be done on the 2D X-ray sequences while registering the
X-rays frame by frame in the sequence.

1) Data simulation with XCAT simulator: Different mo-
tion patterns including different parameters and different
patient anatomy were simulated using the 4D XCAT simu-
lator. This simulator generates realistic simulation of cardiac
contractions and breathing. One major challenge to address
the problem of predicting complex irregular motion signals
is the lack of available data. Thus, it is necessary to have
an efficient tool which can be used for technique testing,
evaluation, and comparison. Each technique involves several
selectable parameters for image acquisition, reconstruction,
processing, and analysis [22].

In this work, we have used three different patient
anatomies with age variety and genders (TableI). For each
patient, three different types of motion (only cardiac, only
respiratory and both motions) were generated. The simu-
lation was done also in different circumstances in which
the patient has normal and abnormal respiratory and heart
beating cycles. The normal value for the length of the
heartbeat cycle is 1 second and for the respiratory cycle is
5 seconds those can vary among patients and change if the
patient is under stress or not breathing normally [23]. The
length of the sequences was between 120 to 150 frames to
capture at least five heart and/or respiratory cycles.

2) Segmentation and centerline extraction of the X-rays:
The vascular structure is extracted from the original X-rays
and segmented by applying image processing filters such
as the Median filter and Frangi filter [19]. Fig. 1 shows
the extracted vessel structure from the original X-rays. The
Frangi filter parameters are set based on the diameter of
the coronary arteries. For sigmas an interval of [1,6] is
considered with a step size of 0.1. From the segmentations,
the centerlines of the arteries can be extracted using the
morphological skeleton operation.

B. Coherent Point Drift (CPD) registration

Point set registration algorithm is widely used in computer
vision problems such as image registration. The registration
can be rigid or non-rigid. The CPD algorithm is based

TABLE I
THE VARIATION OF THE SIMULATED DATA.

Patient gender and age Heart beating cycle Respiratory cycle
Male-1 year old 1 SEC (Normal) 5 SECS (Normal)

Male-50 years old 1 SEC (Normal) 5 SECS (Normal)
Female-50 years old 1 SEC (Normal) 5 SECS (Normal)
Male-50 years old 2 SECS (Abnormal) 8 SECS (Abnormal)
Male-1 year old 3 SECS (Abnormal) 6 SECS(Abnormal)

Fig. 1. Preprocessing steps on the X-rays to segments the vessels

on Gaussian Mixture Model (GMM) while assigning cor-
respondence points among two sets of points. Then, given
the type of registration, it retrieves the transformations for
mapping each point set to the other [20]. The two point
sets can be aligned and registered rigidly and non-rigidly
while considering the alignment as a probability density
estimation problem. Then fitting the GMM by centering the
first point sent to the second and maximizing the likelihood,
the GMM is forced to move coherently as a company to
retain the topological structure of the point sets [20]. In case
of affine registration, a coherence constraint is inflicted by
re-parametrizing of the GMM centroid locations with affine
transformation parameters (translation, rotation, shearing,
scaling). These parameters are concatenated to build the
Affine Transformation matrix (AT) as follows:

AT =

 sxcos(θ) sysin(θ) x− cxsxcos(θ)− cysysin(θ)
−sxsin(θ) sycos(θ) y+ cxsxsin(θ)− cysycos(θ)

0 0 1


(1)

While A00 = sxcos(θ), A01 = sysin(θ), A10 = −sxsin(θ),
A11 = sycos(θ), Tx = x− cxsxcos(θ)− cysysin(θ) and Ty =
y+cxsxsin(θ)−cysycos(θ). We used notations A00, A01, A10,
A11, Tx, Ty for the predicted parameters.

The extracted centerlines of the arteries are considered as
bright point sets. We register every centerline point set in
each frame to the previous frame in a sequence using CPD
algorithm while the registration is affine. However, multiple
factors, including an unknown nonrigid spatial transforma-
tion (deformation), noise, and outliers caused by the segmen-
tation can reduce the accuracy of point set registration.

C. Recurrent Neural Network (RNN) based time series pre-
diction with LSTM

Long Short-Term Memory (LSTM) is an RNN architecture
to solve the vanishing and exploding gradient problem and
optimizing the RNNs memory. The LSTM structure com-
pounds memory blocks instead of hidden units in the con-
ventional RNNs. The memory blocks include memory cells
which can store the temporal information of the sequential
data as well as specific multiplicative units called gates in
order to control the flow of information. Each memory block
contains an input gate to control the flow of input activations
into the memory cell, an output gate to control the output
flow of cell activations into the rest of the network and a
forgetting gate [21]. Therefore, an LSTM network is able to
keep only the necessary information from the past and forget
the rest to optimize its memory.



To predict a single frame including the affine transformation
matrix given the previous frames, we used a many-to-one
LSTM structure in which given a sequence of frames as input
we are expecting one single frame as output. Fig.2 and Fig.3
show the structure of many-to-one frame prediction.

Fig. 2. One-To-Many LSTM stucture

Fig. 3. Affine transformation matrix sequence prediction for the next frame

The LSTM network is trained to predict the arteries
transformation in the next frame from the previous ones.

D. New frame prediction in angiography sequences with
LSTM

In this section, we explain how LSTM performs the
prediction of new transformation parameters in the upcoming
frame in a sequence.

1) Feeding the LSTM network with transformation ma-
trices as inputs and training the LSTM network: Let N =
6 be the number of 2D affine transformation parame-
ters representing translation, rotation, shearing and scaling
(T x,Ty,A00,A01,A10,A11), and T is the number of frames
or the number of transformation matrices. To effectively feed
the LSTM we sort the parameters in a vector X t of size
N ∗ T . This vector is called the transformation parameter
vector (TP). Then the values in the vector TP are normalized
to be fed into the network. The normalization was required
since the range of values for some parameters are so small
or big and in that case, the network can not learn or
converges slowly. Then at the end of prediction, they can be
de-normalized to have the real values. Now the prediction
problem is defined as solving the predictor of X t (denoted
by X̂ t ) via a series of previously measured TP vectors.

We assumed that all the parameters are independent from
each other. Thus, to predict the TP vector X t the model

predicts one element or parameter xt
nat a time by feeding

the LSTM one vector (xt
0,x

t
1, ...,x

t
n) of size n = T at a time.

Then given the fact that the real-time prediction of the TP
needs continuous feeding inputs and learning, over the time
by increasing the number of frames the prediction process
becomes slow. Thus, to come up with a solution a learning
window W is considered by a fixed number of previous
frames to learn from in order to predict the current TP
(Fig.4).

The LSTM network is trained using Truncated Backprop-
agation Through Time (TBPTT) so that the sequence is
processed one-time slot at a time and periodically an update
is performed back for a certain number of time slots.

Fig. 4. Sliding learning window

2) Assessing metric: We used Mean Absolute Error
(MAE) to assess the quality of the predictions because this
metric is not overly sensitive to outliers and can simply eval-
uate the overall error. Given the fact that the segmentation
is not perfect, some parts of vessel centerlines in the frames
may be lost or got extended by noise. Hence, we had to
choose a metric to be less sensitive to this problem while we
compare the predicted values to the ground truth resulted in
CPD registrations.

Additionally to evaluate the overall error of predicted
transformed centerlines we first calculated the distance trans-
form of the original centerlines image. For each pixel of the
background, we obtained its distance to the closest centerline
point. The distance transform or distance field for each white
pixel on the extracted centerline assigns a number that is
the distance between that pixel and the nearest nonzero
pixel of the vessels. Thus, to calculate the final distance we
projected the predicted transformed centerline on the distance
transform matrix and averaged the obtained values as an
overall prediction error.

III. EXPERIMENTS AND RESULTS

We have used three different patients simulated in normal
and abnormal modes while having 120 to 150 frames for
3 different motions (cardiac, respiratory and both motions).
The vessel centerlines were segmented and extracted using
Frangi filter and skeleton for the all frames of each sequence.
Then to extract the motion features we applied affine registra-
tion using CPD algorithm. For each sequence, a set of trans-
formation matrices representing the motion features are used
as the input for an LSTM network. The transformation ma-
trices include 6 parameters representing translations (T x,Ty)
and rotation, shearing, scaling (A00,A01,A10,A11) in 2D.



Fig. 5. Prediction of 2D translation parameters for moving arteries with both cardiac and respiratory motions. The ground truth values are shown in
orange color while the blue lines show the predictions

Fig. 6. Prediction of 2D affine transformation parameters (rotation, shearing and scaling) for moving arteries with only cardiac motion. The ground truth
values are shown in orange color while the blue lines show the predictions

These values are normalized by dividing by the maximum
value in each TP vector. Since the prediction is considered as
a regression problem we used a linear activation function for
our model and the RMSProp as an optimizer for compiling.
Finally, each TP vector was predicted separately while 80
percent of each TP vector was considered as the training set

and 20 percent as the testing set.
Based on the experience, the best number of epochs

between a range of (100 to 1000) was 200 epochs and we
set that number for predicting the entire values. Keras library
was used for building and training the model. The accuracy
of the method is evaluated by comparing the predicted values



Fig. 7. Overlaying the transformed vessels with predicted transformation parameters (blue colored vessel) with the original transformed images

TABLE II
MAE ERROR FOR PREDICTING THE TRANSFORMATION PARAMETERS FOR ONLY CARDIAC AND BOTH MOTIONS)

MAE Both Motions Cardiac Only
Tx Ty A00 A01 A10 A11 Tx Ty A00 A01 A10 A11

Mean 0.09 0.1 0.11 0.06 0.1 0.09 0.17 0.15 0.13 0.17 0.17 0.19
Max 0.38 0.51 0.75 0.41 0.6 0.48 0.86 0.68 0.36 0.8 0.95 0.78
Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

TABLE III
MAE ERROR FOR PREDICTING THE TRANSFORMATION PARAMETERS ONLY RESPIRATORY MOTION

MAE Respiratory only
Tx Ty A00 A01 A10 A11

Mean 0.07 0.16 0.14 0.2 0.19 0.17
Max 032 0.72 0.79 0.73 0.82 0.32
Min 0.00 0.00 0.01 0.00 0.00 0.00

to first the results of the CPD registration using MAE. Then
overlaying the transformed centerlines of the vessels with
LSTM prediction on the distance transform of the extracted
centerlines from original images.

Therefore, we first evaluate how far our predictions were
from the expected values to the estimated ground truth
(CPD registration values)(Table II and III) and then we
compare our results to the original images by applying
the CPD registration on the original extracted centerlines
and predicted ones (Table IV). While the parameters are
predicted separately with a very low amount of MAE error
(Tables II and III), the transformation matrix prediction can

be made by concatenating the predicted parameters in a
matrix form and apply it to transform the original images.
We obtained a low accumulated error for the prediction of
the transformation matrix using the distance transform of the
original segmented vessels. Fig.7 shows the overlay of the
transformed segmented vessels with predicted transformation
parameters and the original transformed images.

Fig.5 shows the results for the prediction of parameters T x
and Ty with combination of cardiac and respiratory motions.
The input signal for T x has irregularities and does not look
periodic while the predictions with the LSTM network is
close to the ground truth. Also Fig.6 shows the prediction of



TABLE IV
THE AVERAGE OVER ALL SAMPLES DISTANCE TRANSFORM ERROR OF

THE ORIGINAL CENTERLINE IMAGE TO THE PREDICTED TRANSFORMED

ONE IN MM

Mean DT Error(mm) Both Cardiac Respirtory
0.29 mm 0.51 mm 0.44 mm

other parameters for both motions.

IV. CONCLUSION
In this paper we have shown that a RNN based network

can be used to predict the cardiorespiratory motion signal
extracted from 2D X-ray images in angiography sequences.
The prediction is based on the geometrical features of
the motion represented by transformation parameters in the
sequences. However, the accuracy of the prediction indirectly
depends on the accuracy of the segmentation and registration
algorithm in preprocessing steps. The method can generate
a good approximation of transformation parameters.

Based on the achieved results, our LSTM model is able
to predict the cardiac motion, respiratory motion as well as
complex motion signals including both cardiac and respira-
tory movements even with irregularities in the signal with
low amount of error 0.29 to 0.51 mm.

Although, our predictions for the affine transformation
parameters were in the same order of magnitude of the sim-
ulated transformation values, the deformation of the vessels
among the cardiac and respiratory movements was not taken
into account and reduced the accuracy of motion tracking.
For the future work, we are planning to evaluate our proposed
approach in 3D by applying a 3D/2D registration on actual
patient data and compare against simulated data.
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