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Abstract. The development of printable cement-based material is a high priori-
ty in the field of 3D printing for construction. There are many admixtures avail-
able for the design of the printing mortar ink which can influence the wet and 
final properties of the mortar. In this work, artificial intelligence has been uti-
lized to predict those properties and guide the dosage of each admixture. The 
algorithms were developed from a factorial experimental plan. The mortar in-
vestigated consists of cement blended with silica fume to reduce the embodied 
carbon of the mixture. The selected admixtures were a superplasticizer, a vis-
cosity modifying agent, nano-clay, C-S-H seeds and an accelerator with a wa-
ter-reducing effect. A rotary rheometer was used to measure the viscosity and 
the dynamic yield stress of both mortar and cement-paste mixtures. Additional 
tests were conducted such as the small Abrams cone and the ASTM C1437 flow 
test. Several predictive algorithms were developed and compared, in which arti-
ficial neural networks were used. Furthermore, to enhance the performance of 
the neural network, a genetic algorithm was used to optimize the network pa-
rameters. To evaluate the performance of the models, the normalized root mean 
square error (NRMSE), and coefficient of determination (R2) were calculated. 
This approach is a single-objective prediction which yields promising capability 
to predict the wet properties of both mortar and cement pastes, which can be 
later expanded into a multi-objective approach. 

Keywords: Artificial neural networks, genetic algorithms, wet properties, mix 
design, 3D printing. 

1 Introduction 

In recent years, artificial intelligence (AI) has been increasingly utilized to solve 
complex problems across many engineering sectors. Civil engineering is among them, 
where AI has been applied for the prediction of concrete properties, such as compres-
sion strength, drying shrinkage, filling capacity, concrete durability, segregation and 
slump [1-6]. The majority of the studies in this field use artificial neural network algo-
rithms (ANN), tree-based models, and fuzzy logic. The combination of AI methods 
with optimization techniques is also promising. ANN has been implemented along 
with the whale algorithm or the multi-objective grey wolves technique, whereas the 
adaptive network based fuzzy inference system has been used with genetic algorithms 
[2-4]. These studies confirm that AI techniques are a promising avenue to predict the 
properties of concrete materials. 
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In this study, the main objective is to develop ANN models that can predict the wet 
properties of mortar and cement-paste mixes. Two different methods were compared: 
the leave-one-out cross validation method and the genetic algorithm (GA) optimiza-
tion technique which divides the available dataset into training and testing data with 
proportions of 70% and 30%, respectively. The GA technique was applied to investi-
gate an increase in the prediction performance of the ANN model in searching the 
optimal parameters. Sixteen formulations were available from a previous study of 
Charrier and Ouellet-Plamondon [7] where six early age property measurements were 
conducted, such as rheological and slump tests. The objective of the present study is 
the prediction of those six properties, namely the yield stress, viscosity, and mini-
slump test for cement-paste mixes and slump, flow and deformation tests for mortar 
mixes for 3D printing applications. The coefficient of determination (R2) and the 
normalized root mean squared error (NRMSE) were employed to evaluate the effec-
tiveness of the proposed models and to compare the two different methods. 

2 Materials and testing methods 

2.1 Materials and mix design 

Binder and admixtures. The cement that was used in this study is the GUb-8SF 
which is a binary cement with silica fume and a specific gravity of 2.8. A local sand 
was selected with specific gravity of 1.65 and the water used was tap water. The se-
lected admixtures were five in total; a superplasticizer (SP), an accelerator (A), the C-
S-H seeds (X), nanoclay (C), and a viscosity modifying agent (VMA). The SP, A, X 
were added to control the workability of each mixture. The A and X are strength-
enhancing admixtures which are also known to improve cement hydration. Finally, 
the VMA and C were used to increase the stability of the mix. The solid content of the 
admixtures was determined according to ASTM C494 [8]. Further details can be 
found in the published study  

Mix design. For the mortar mixes, the sand/cement ratio was selected to be 1.8. 
Based on literature this ratio results in a mortar mixture with acceptable pumpability-
extrudability. The water/cement ratio was a fixed proportion of 0.345 for all of the 
mixes, both for cement-paste and mortar mixes. In this ratio, the water content of each 
admixture was included. The water content of each admixture was determined by 
measuring the residue of each admixture with oven drying, according to ASTM C494 
[8]. Furthermore, the dosage for each admixture was determined based on the litera-
ture review [7] and experimental tests with different dosages that were conducted in a 
preliminary study. The quantities of SP, C, A, X and VMA used were 0.26%, 0.50%, 
0.70%, 0.30% and 0.004% of the cement weight, respectively. A two-level full-
factorial design was implemented for the experimental design, where the admixtures 
except for SP were either present in the aforementioned amounts or absent. It is al-
ways preferable to do a factorial design. The only exception is if the admixtures do 
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not interact with each other with absolute certainty. Factorial design can also reduce 
the number of runs necessary, resulting in prompt convergence. The SP was included 
in all mixes to reduce the water content. Hence, the total amount of the mixes was 
24=16. Finally, all the admixtures were added to the water just before the addition of 
the binder, apart from the C admixture which was dry mixed with the binder. The 
mixing procedures for the cement paste were made according to ASTM C1738 [9]. 
The 16 mixes and the six testing methods are explained in [7, 10]. 

3 Artificial intelligence 

In 3D concrete printing a common challenge is the development of a suitable mixture. 
Some of the most important properties of the mixture are the flowability, extrudabil-
ity, and buildability [11-13]. However, in general those properties tend to be contra-
dictory to each other. In order to address this problem, artificial intelligence can be 
utilized to develop the best possible mixture. Compared to linear and quadratic mod-
els, machine learning provides better predictive performance of the concrete mixture 
properties, such as compressive strength and slump [3]. At an early stage of the study, 
the two most prevalent algorithms were compared, the random forest (RF) and the 
artificial neural network algorithms (ANN). The preliminary results showed better 
accuracy of the ANN. Thus, only the results of the latter are discussed herein in detail. 

3.1 Algorithms 

Neural Network. The ANN can be described as an interconnected system of nodes 
inspired by the biological neural networks of the human brain. The ANN consists of 
three basic components, namely the input, hidden, and output layers. This model is 
trained in order to predict the output from a provided input. Compared with traditional 
computational models, the advantages of ANN are that it does not require predefined 
constraints and it is powerful in large data problems. Furthermore, ANNs can observe 
a pattern during training or identify complex nonlinear relationships in the data itself. 
ANNs have been used in concrete mixture design where the input and output layer 
nodes are decision variables and objectives, respectively. Training the network with a 
dataset changes the weights between the nodes and increases the predictive perfor-
mance [3].  

Evaluation. In order to evaluate the performance of the models, the normalized root 
mean square error (NRMSE), and coefficient of determination (R2) are calculated. 
The NRMSE is the normalized mean squared difference between targets and outputs, 
and R2 describes the correlation between outputs and targets. In brief, lower NRMSE 
and higher R2 (with a range between 0 and 1) show better accuracy of the model. 
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3.2 Methodology 

Cross-validation: Leave-one-out. Following the approach of [10], the first algorithm 
that was developed in MATLAB was a neural network with the leave-one-out cross-
validation method. As the author mentions, this method was chosen in order to avoid 
overfitting of the model. The available dataset was 16 different mixes; therefore, the 
training of each network was made from the 15 out of the 16 samples in total and the 
remained sample was used for testing. As a result, the developed algorithm produced 
16 different networks which were compared by calculating the NRMSE and R2. Line-
ar, quadratic and cubic regressions were performed to achieve better results. Further-
more, each network is consisted of three layers, namely the input, output and one 
hidden layer with ten neurons. The input neurons were the types of admixtures that 
were used, whereas the output is one property of the material, such as the yield stress, 
viscosity or mini-slump. The selected training function of the network updates the 
bias and weight values according to Levenberg-Marquardt optimization. This mini-
mizes a combination of squared errors and weights and then determines the correct 
combination to produce a network that generalizes well. The process is called Bayesi-
an regularization backpropagation [14].  

Optimization algorithm and 70/30 rule. A testing plan is used to ensure that the 
evaluation provides realistic estimates of model performance on unseen data. General-
ly, one of the main steps is to split the data into training and testing sets. The propor-
tions of split may vary depending on the project, although 70/30 is the most common, 
where 70% is for training and 30% for testing. In the first few attempts to apply this 
methodology to this network, the number of the hidden layers and neurons along with 
the training method, remained the same as the ones of the leave-one-out-cross valida-
tion method. The genetic algorithm was later selected in order to optimize the pa-
rameters of the network depending on the property to be predicted. The genetic algo-
rithm (GA) is one of the oldest and most widely used evolution algorithms (EA). GA 
is inspired by the natural evolution of species, where the population adapts and 
evolves based on the environmental conditions. It consists of a population of individ-
uals in which each one represents a potential solution to the problem. Similarly, to 
other EAs, a GA develops a random population of candidate solutions and iteratively 
forms subsequent populations of solutions by the selection, crossover, and mutation of 
a portion of the best solutions. The number of the total population can be gradually 
increased in each iteration [3]. The parameters that were tested to improve the predic-
tive performance of the neural networks were the number of hidden layers, the num-
ber of neurons of each hidden layer, the number of neurons of the output layer and the 
training method. Since the number of the neurons in the output layer was a parameter, 
single and multi-objective predictions were performed. The goal of the genetic algo-
rithm was to simultaneously maximize the R2 and minimize the NRMSE. The second 
selected training function is a network training function that updates bias and weight 
values according to Levenberg-Marquardt optimization. Typically, it is the fastest 
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backpropagation algorithm, despite requiring more virtual memory than other algo-
rithms [14]. 

4 Results and discussion 

The first approach was to use linear regression and to compare the 16 different com-
binations of the training and testing sets. The linear regressions of the networks for 
predicting the properties of the cement paste are shown in Fig. 1. The black dots rep-
resent the training data, whereas the red dot is the testing sample. The best perfor-
mance for the yield stress was achieved in the 14th network, with R2=0.999 and 
NRMSE=0.013. The testing sample was the 3rd mix and the rest were used for train-
ing the network.  

 
Fig. 1. The linear regression that was performed for the 14th network of yield stress (Fig. 1a), 
13th network of mini-slump (Fig. 1b) and 4th network of viscosity (Fig. 1c) of the cement paste. 

Moreover, the best network for predicting the mini-slump was the 13th network, with 
R2=0.958 and NRMSE=0.054. The testing sample was the 4th mix and the rest were 
used for training the network. However, concerning the network for the viscosity, the 
predictive performance was below an accepted value, as the R2 and NRMSE were 
0.44 and 0.084 respectively. 

 
Fig. 2. The linear regression that was performed for the 16th network of deformation (Fig. 2a), 
the 3rd network of flow (Fig. 2b) and 15th network of slump (Fig. 2c) of the mortar. 

Predicting the properties of the mortar mixes was also feasible. The predictive per-
formance of the networks was even better than those of the cement paste. Particularly, 
in the 16th network with the deformation as the only objective, the R2 was greater than 
0.999 and the NRMSE was 0.002. Concerning the flow, the best network was the 3rd 
with R2 and NRMSE being 0.97 and 0.0018 respectively. As for the slump, which is 
the third and final property measured for the mortar mixes, the 15th was the best net-
work in which the R2 was 0.994 and the NRMSE was 0.033. 
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The linear regressions of all the properties had strong correlation except for the vis-
cosity of the cement paste. With the aim to develop a better network for the viscosity, 
a second approach was attempted by comparing linear, quadratic and cubic regres-
sions. This approach was not only used for the viscosity, but also for all of the six 
properties to observe if there will be any further improvement in performance. The 
best performance among the cement paste properties was achieved by the 14th net-
work for predicting the yield stress, with R2=0.999 and NRMSE=0.013 with quadratic 
regression. However, the performance was the same as the linear regression. The 
testing sample was the 3rd and the rest was used for training the network.  

 
Fig. 3. The quadratic regression that was performed for the 14th network of yield stress (Fig. 3a) 
and the cubic regression for the 12th network of mini-slump (Fig. 3b) and the 15th network of 
viscosity (Fig. 3c). 

Moreover, the best network for predicting the mini-slump was the 12th network, with 
R2=0.994 and NRMSE=0.063 with cubic regression. The testing sample was the 5th 
and the rest was used for training the network. In this non-linear network, there was a 
minor improvement in the performance compared with the linear regression. Further-
more, the best network for predicting the viscosity of the cement paste was the 15th 
network, with R2=0.687 and NRMSE=0.094 with cubic regression. The regression 
showed almost a strong correlation, R2 ~ 0.7. Thus, it was considered acceptable. The 
testing sample was the 2nd and the rest was used for training the network.  

 
Fig. 4. The quadratic regression that was performed for the 16th network of deformation (Fig. 
4a) and the cubic regression for the 16th network of flow (Fig. 4b) and 12th network of slump 
(Fig. 4c). 

The best performance among the mortar properties was achieved by the 16th network 
for predicting the deformation, where the R2 was greater than 0.999 and the NRMSE 
was 0.002 with quadratic regression. However, the performance was also the same as 
the linear regression. The testing sample was the 1st and the rest was used for training 
the network. Concerning the network for the flow, the 16th was the best network 
where the R2 and NRMSE were 0.976 and 0.0017 respectively with cubic regression. 
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The performance was slightly improved, and the testing sample was the 1st. As for the 
slump, the best network was the 12th with R2 equal to 0.997 and NRMSE 0.079 with 
cubic regression. The testing sample was the 5th, with a modest improvement over the 
linear regression. In brief, the leave-one-out cross-validation method was applied 
successfully for both the mortar and cement paste properties, and the results of the 
evaluation methods were acceptable. However, despite the good results for the R2 and 
the NRMSE, the figures above, such as Fig. 3b of the mini-slump or Fig. 3c of the 
viscosity, also reveal a noticeable error between the prediction and observed values of 
the testing sample. This implies that the predictive performance is not realistic and 
that most of the networks are overfitted. This fact can be explained by the big imbal-
ance between the training (94%) and testing (6%) data. 
 
In order to face the above-mentioned problem, new networks were created with a 
better split of the available dataset. Based on the literature, the most common propor-
tions of the two sets, training and testing, is 70 and 30 percentage respectively. How-
ever, a better balance of training and testing data alone does not guarantee an im-
provement in the model. For this, it is essential to use a suitable algorithm to discover 
the optimal parameters of the network. To overcome this problem, the genetic algo-
rithm was used. The maximum generations of the algorithm were selected to be 50, 
the number of candidate solutions of the first generation was 80 and at every new 
generation the number was increased by 40. Depending on the cement parameter be-
ing modeled, different parameters were considered to be the best for each individual 
network. However, there were a few common parameters that were used in all net-
works. Specifically, the best training method was the Levenberg-Marquardt, the per-
formance method was the mean squared error, and the networks with only one hidden 
layer performed better. The data was divided into two parts, the training and testing. 
However, the division was conducted prior to entering the data to MATLAB network 
function. Hence, only the training data was input to the network and the ‘dividetrain’ 
function was selected to assign all data of the training set only. Testing of the network 
was performed with linear regression, and the results were used as input for the genet-
ic algorithm. Finally, in order to reduce the amount of time required for the overall 
algorithm, the number of the maximum epochs of each network was selected to be 
400. 
 

   
Fig. 5. Examples of the genetic algorithm and of a network in Fig. 5a and Fig. 5b respectively. 
In Fig. 5a, the results of the initial and first four generations are depicted. In Fig. 5b, the general 
form of a network with three layers is shown; the input, output and one hidden layer with 6 
neurons. 
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The number of output neurons, or objectives, was also a parameter. Several attempts 
were made to create multiple output networks; for instance, training two networks in 
total, one for the cement paste’s properties and another one for the mortars where 
each one had three objectives, or only one network with six objectives. However, the 
best predictive performance was achieved when each network had only one objective, 
hence the final number of the networks that were developed were six in total. As a 
result, each property of the mortar and cement-paste mixes has a separate optimized 
network. In the following discussion, each network is explained separately along with 
figures of the linear regression. In each figure, the black dots depict the training data 
set, 11 mixes, whereas the red dots, remaining 5 mixes, are the testing dataset. Final-
ly, the training and testing data were randomly selected every time at each iteration of 
the genetic algorithm. However, based on the final results, the best mixes for training 
all networks were the 2nd, 3rd, 5th, 7-11th, 13-15th mixes and the rest were used for 
testing the network. 

 
Fig. 6. The linear regression that was performed for the network with the yield stress (Fig. 6a), 
the mini-slump (Fig. 6b), and viscosity (Fig. 6c) of the cement paste as the only objective. 

For the best network with the yield stress as the only objective, the R2 was 0.9924 and 
the NRMSE was 0.0629. In order to achieve those results, the number of the neurons 
on the hidden layer was six in total. Concerning the network for the mini-slump, the 
R2 and NRMSE was 0.9833 and 0.00263, respectively. In this network, the best per-
formance was achieved with the number of the neurons on the hidden layer to be ten 
in total. As for the viscosity, the improvement was evident as the R2 was 0.9426 and 
the NRMSE was 0.023. The network performed better with eleven neurons in total on 
the hidden layer. 

 
Fig. 7. The linear regression that was performed for the network with the deformation (Fig. 7a), 
flow (Fig. 7b) and the slump (Fig. 7c) of the mortar. 

Furthermore, for the best network with the deformation as the only objective, the R2 
was 0.9921 and the NRMSE was 0.0263. In order to achieve those results, the number 
of the neurons on the hidden layer was seven in total. For the network for the flow, 
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the R2 and NRMSE were 0.9722 and 0.00176, respectively. In this network, the best 
performance was achieved with the number of the neurons on the hidden layer to be 
seven in total. As for the slump, which is the third and final property measured for the 
mortar mixes, the R2 was 0.9715 and the NRMSE was 0.0685. The network per-
formed better with four neurons in total on the hidden layer. The summary of the 
results is presented in Table 1.  
 
Table 1. Summarizing all the results of leave one out cross validation method (1st) and 70/30 method 

with genetic algorithm (2nd) 

Mixture Test/Property 

R2 NRMSE 

1st Method 2nd 
Method 1st Method 2nd 

Method 

Linear Quadradic, 
cubic Linear Linear Quadradic, 

cubic Linear 

Cement 
paste 

Yield Stress 0.999 0.999 0.9924 0.013 0.013 0.0629 
Mini Slump 0.958 0.994 0.9833 0.054 0.063 0.0263 

Viscosity 0.44 0.687 0.9426 0.084 0.094 0.023 

Mortar 
Deformation >0.999 >0.999 0.9921 0.002 0.002 0.0263 

Slump 0.994 0.997 0.9715 0.033 0.079 0.0685 
Flow 0.97 0.976 0.9722 0.018 0.017 0.0176 

5 Conclusion and future work 

Based on the evaluation methods that were applied, the leave-one-out cross validation 
method with quadratic and cubic regression perform slightly better for most proper-
ties. On the other hand, the 70/30 method with GA can predict the viscosity of the 
cement paste better than the cross-validation method. The viscosity was the most 
difficult property to be predicted without changing the controllable factors of the net-
work, such as the number of the neurons in the hidden layer. Finding the right values 
of those factors would be hard to be achieved without the GA method. However, the 
proportion of the training data of the dataset was different, specifically 96% and 70% 
respectively on the two methods. As a general conclusion, predicting properties for 
new mixes is possible by employing these two methods, although, the second method 
is the suggested one. Despite the fact that the available dataset was small, it was ade-
quate for training and validating the developed networks. However, the testing of 
those networks will be made with new unseen data. Hence, as a next step, the predic-
tion accuracy of the developed networks will be validated by forming new mixtures 
and testing them in the lab. More data will be added with the aim to have a large and 
diverse data set. Additionally, new attributes and objectives will be added by employ-
ing new tests on cement pastes and mortars, such as calorimetry and compression 
tests. Finally, multi-objective optimization algorithms will be developed with the aim 
to design optimum mortar mixes suitable for 3D printing applications, by achieving 
the desired properties, reducing the overall cost and forming more eco-friendly mixes. 
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