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Abstract: The Quality of Service (QoS) and security of Satellite Communication (Satcom) are crucial
as Satcom plays a significant role in a wide range of applications, such as direct broadcast satellite,
earth observation, navigation, and government/military systems. Therefore, it is necessary to
ensure that transmissions are incorruptible, particularly in the presence of challenges such as Radio
Frequency Interference (RFI), which is of primary concern for the efficiency of communications.
The security of a wireless communication system can be improved using a robust RFI detection
method, which could, in turn, lead to an effective mitigation process. This paper presents a new
method to recognize received signal characteristics using a hierarchical classification in a multi-layer
perceptron (MLP) neural network. The considered characteristics are signal modulation and the type
of RFI. In the experiments, a real-time video stream transmitted in the direct broadcast satellite is
utilized with four modulation types, namely, QPSK, 8APSK, 16APSK, and 32APSK. Moreover, it is
assumed that the communication signal can be combined with one of the three significant types
of interference, namely, Continuous Wave Interference (CWI), Multiple CWI (MCWI), and Chirp
Interference (CI). In addition, two robust feature selection techniques have been developed to select
more informative features, which leads to improving the classification precision. Furthermore,
the robustness of the trained techniques is assessed to predict unknown signals at different Signal to
Noise Ratios (SNRs).

Keywords: supervised learning; time series classification; jamming detection; Automatic Modulation
Classification; feature selection; Genetic Algorithm; Principal Component Analysis; QPSK modulation;
APSK modulation

1. Introduction

In an optimal radio communication system, the design objective is to allow users to share a
medium with minimum or no interference [1]. RFI is one of the most critical issues facing Satcom since
it corrupts radio communication networks, disrupting the transmitter channel and Signal of Interest
(SoI) reception capacity [2]. Nevertheless, a critical capability is concerning robust RFI recognition
and characterization through effective real-time monitoring [3]. Since civilian non-intentional RFI
could compromise industry revenues and military interference may cause mission failure and put
lives in danger [4]. In this context, it is essential to deploy effective jamming detection methods in
both civil and military applications. The jamming detection technologies need to be adapted to the
kind of RFI such that their efficiencies are maximized [4–6]. Designing a highly accurate detection
technique, which can deal with different jamming types under severe channel distortions, represents an
interesting avenue for research.
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Several spectrum sensing techniques, such as Cyclo-Stationary Feature Detection (CFD) [7],
Energy Detection (ED) [8], and matched filtering-based detection [9], have been proposed for RFI
monitoring in Cognitive Radios (CR) [10]. Among these techniques, CFD [7] can recognize the SoI from
interference and noise, even in very low SNR contexts, but its implementation is computationally very
complex [11]. On the other hand, ED is straightforward to deploy but is unreliable in cases of in-band
interference and very noisy conditions [11]. As the matched filtering detector is highly dependent
on the demodulation of a primary user signal, for its part, it requires a dedicated receiver design,
which may not be possible in a practical CR terminal [12]. More significantly, the techniques above can
only determine the presence and not the type of interference.

To address this, Artificial Intelligence (AI)-based methods have been employed and found as a
superior to traditional approaches since classification techniques may not only determine the different
kinds of RFI but also specify the modulation types efficiently. In most of the related studies, the authors
focus on either determining the various types of RFI or the modulation types of SoI without considering
the presence of the jamming signal.

In this work, we propose a novel approach based on hierarchical classification design to recognize
not only the types of the received signal and Automatic Modulation Classification (AMC). To this
end, we have considered modulation recognition under two severe conditions such as channel noise
and the existence of various jamming signals. Moreover, we have generated a new real-time RFI
dataset in which SoI is a video stream transmitted with four modulation types (QPSK, 8APSK,
16APSK, and 32APSK) in a real-time direct satellite-to-ground communication based on DVB-S2
standards. Furthermore, the studied SoI is combined with one of the three major jamming signal types,
namely CWI, MCWI, and CI. Notably, we have studied the effect of these three jamming signals on
RFI classification and AMC because they are very simple to be deployed by adversaries.

As feature selection is the previous step to classification in supervised learning, we have developed
two feature selection approaches, namely the Genetic Algorithm (GA) and Principal Component
Analysis (PCA), to select more informative features for an efficient classification process. GA is an
evolutionary algorithm that improves the selection process over time. An advantage of GA over
other techniques is that it allows the best solution to emerge from the best of prior solutions [13].
PCA, as a robust feature selection approach, is considered according to its low noise sensitivity,
fewer memory requirements, and high efficiency in the training process [14]. This technique has
been used in a wide range of computer science applications for feature extraction [15]. PCA projects
a dataset from many correlated coordinates onto fewer uncorrelated coordinates called principal
components, with information preserved as much as possible [15].

The rest of the chapter is organized as follows: Section 2 reviews the previous research in RFI
classification and characterization; a methodology is proposed in Section 3; experimental results are
provided in Section 4, and finally, the paper is concluded in Section 5.

2. Related Works

The main focus of this study is determining the type of received signal and its modulation in a
Satcom scenario based on a supervised ML-based classification using MLP. ML methods have been
used in different research studies for RFI classification and AMC regarding their flexibility in data
processing and accuracy in the designed models. As in [12] an Artificial Neural Network (ANN) is
proposed for a jammer detection in wideband radios. To this end, spectral correlation is used as the
feature extraction technique. According to the obtained results, the proposed technique performed
efficiently on SNR values down to −3 dB.

In [16], three robust ML-based classifiers such as MLP, Support Vector Machine (SVM) and
Random Forest (RF) have been deployed to detect jamming attacks in the 5G wireless network.
According to the results RF has slightly more precise classification performance. Reference [17]
presents an efficient MLP-based approach to recognize one of the jamming attacks known as Denial of
Service (Dos). Moreover, an unsupervised correlation-based feature selection method using the Pearson
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Correlation Coefficient (PCC) is used to select more informative features. The authors in [18], present a
robust MLP technique combined with a GA-based feature selection to detect various intrusions such
as Remote to Local (R2L), User to Root (U2R) and DoS attacks. In [19], an efficient MLP design has
been developed to recognize different intrusions. In [20], an efficient MLP is proposed to determine
either a DoS attack exists in the wireless network or not.

In our previous work [21], we developed an MLP in different learning modes, namely Stochastic
Gradient Descent (SGD), full-batch, and mini-batch. As the results show, the proposed technique
can precisely classify four received signals, including SoI and a combination of SoI with three other
jamming signals. Moreover, we deployed PCA to select more appropriate features to optimize the
classification process.

In this work, we intend to propose a solution to determine not only the type of received signal
but also Automatic modulation classification (AMC). AMC is a significant procedure for present and
next-generation communication networks and facilitates the demodulation process at the receiver
side [22]. Therefore, modulation recognition is an intermediate step between signal detection and
demodulation. AMC is a system that automatically identifies the modulation type of the received
signal [23], and the technology is widely used in various applications, such as dynamic spectrum
management [24] and interference identification in CR [23].

In [25], a robust hierarchical classification based on MLP has been presented to recognize the
modulation types of communication signals. As was thoroughly discussed in [14], AMC can be
implemented regarding either a likelihood-based or a feature-based scenario. The disadvantages of a
likelihood-based approach may include high computational complexity and sensitivity to impairments,
such as phase and frequency offsets. The feature-based AMC, maybe comparatively more efficient [23]
as it leverages robust extracted features such as an instantaneous amplitude, phase, and frequency [26],
cyclostationary features [27], higher-order cumulants [28], and spectral correlation features [22].
In [23,29], the authors investigated different modulation types of recognition in a digital video
broadcasting scenario based on higher-order cumulants and MLP.

AMC-based higher-order cumulant features are the primary concern of this study, inspired
by [23] with proposing an approach based on higher-order cumulants of wavelet coefficients and MLP.
Moreover, this study also applies PCA to select features that are more informative to accelerate the
classification process. The results indicate that this method precisely classifies various modulation
types with an accuracy above 99% at different SNRs ranges (−4 ∼ 4) dB [23]. In [30], an AMC-based DT
approach and higher-order cumulants are proposed. Additionally, different designs of DT, such as Fine
Tree (FT), Medium Tree (MT), and Coarse Tree (CT), are also thoroughly analyzed. In [31], the author
has applied SVM as the classifier and 4th-order cyclic cumulant feature to classify three modulation
types such as ASK, BPSK, and QPSK by assuming that the channel noise is in the range of−10 ∼ 10 dB.
The experiment result shows that the 4th-order cyclic cumulant feature has an efficient discrimination
capability in both non-noisy and noisy channels [31].

3. Proposed Methodology

The focus of this research study is on recognizing and characterizing the received radio frequency
signals. To this end, a hierarchical classification design is proposed in which the first level deals with
signal type recognition, and the second one automatically classifies the modulation type. Figure 1
presents the overview of the set-up, configuration, and framework of this study. It includes four main
steps, namely data acquisition, feature extraction, feature selection, and classification. Each step is
presented in detail in the rest of this section.
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Figure 1. Proposed RFI recognition and characterization methodology.
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3.1. Data Acquisition

As thoroughly has been explained in [21], the dataset created and used in this study is extracted
from a real-time video stream, which is modulated and processed by GNU radio. GNU is a free
and open-source software development toolkit that provides signal processing blocks to implement
software radios. The SoI is transmitted using a Universal Software Radio Peripheral (USRP-N210) [32],
which is an enhanced version of the USRP that includes a larger FPGA. In GNU radio, the modulation
type and amplitude of the transmitted signal can be easily adjusted [33].

A Satcom emulator [34] (RTLogic) is used for modeling a real-time communication channel.
The programmatic control of the channel simulator is facilitated over an Ethernet connection using
a control protocol or optional plugin to System Tool-Kit (STK) software. The channel simulator
produces IF/RF signals with extracting signal behavior for any scenario, such as various satellite’s
orbit around Earth [35]. The Kratos STK plugin provides real-time, phase-continuous control of the
channel simulator when playing STK scenarios [34]. Furthermore, the generated jamming signals are
transmitted using a NanoBee modem and are combined with SoI by an additive combiner [21]. Finally,
the combined signal is received by a MegaBee modem [21].

A summary of the dataset characteristics is presented in Table 1. The generated dataset consists of
300 samples for each class of modulation type, namely Quadrature phase-shift keying (QPSK) and
8/16/32 asymmetric phase-shift keying (APSK).

Table 1. Real-time dataset characterization.

Characteristic Value

Total number of samples 4800

Length of generated signals 32,448 (8 ms)

Sampling frequency 40 × 106 Hz

Modulation types QPSK, 8 APSK, 16 APSK, and 32 APSK

AWGN power 140 dBm (SNR ∼= 9 dB)

No. of each signal type per modulation type 300

3.2. Feature Extraction

According to distinguishable characteristics of RF signal in each classification phase
(RFI classification and characterization), this study considers two feature extraction methods to use in
“RFI classification” and “modulation type recognition”, as follows:

3.2.1. Features for RFI Classification:

To address RFI classification phase, by inspiring from [21] the six extracted features from each
received signals are mean, standard deviation, skewness, Real-Signal Kurtosis (RSK), average power,
and average power of the wavelet coefficients (4th approximation and details from 1st to 4th Order) as
follows by assuming each received signal x with size 1 by n:

• Mean:

µ(x) =
1
n

n−1

∑
i=0

x(i) (1)

• Standard deviation (σ):

σ =

√
1
n

n

∑
i=1
|x(i)− µ(x(i))| (2)
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• Skewness (I/Q): As in [36], the skewness of a signal is computed as:

Skewness =
E(x− µ(x))3

σ3 (3)

• The Real-Signal Kurtosis (RSK): This feature has been proposed by the author of [37] in which the
kurtosis of In phase and Quadratic (I/Q) components of the signal is computed, and finally the
RSK is obtained by averaging the computed kurtosis (I/Q).

kurtosis =
E((x− µ(x))4

σ4 (4)

RSK =
|KurtosisI |+ |KurtosisQ|

2
(5)

• The average power: according to [38], the average power of each signal over its length is
calculated as:

AveragePower =
1
n

n

∑
i=1
|x(i)|2 (6)

• Average power of the wavelet coefficients:

First, each observation (x) is decomposed up to 4 levels (in this case, the higher levels than 4
are less informative) using 10th Daubechies wavelet (db 10). Notably, different types of the
wavelet have been tested and the best classification result obtained using db 10. Secondly the
average power of the 4th approximation and details of 1st to 4th level is computed by applying
Equation (6).

Therefore, the size of each feature vector for the RFI classification phase is 1 by 10.

3.2.2. Features for Modulation Type Recognition:

To present the modulation type recognition, the higher-order cumulant-based features have been
computed for the AMC process. In mathematics, moments are employed to describe the probability
distribution of a function. The pth order and qth conjugation moment for a received signal x[n] in
time-step n are defined as [39]:

Mpq = E[x[n]p−q(x[n]∗)q] (7)

where E(.) and []∗ are the expected operator and complex conjugate, respectively. Equation (7) can be
approximated as [29]:

Mpq =
1
n

N−1

∑
n=0

x[n]p−q(x∗[n])q (8)

In this work, the magnitude of the 2nd, 4th and 6th [21] cumulants are computed to distinguish
between QPSK, 8APSK, 16APSK, and 32APSK:

C21 = M21 = E[|x(n)|2] (9)

where C and M, and index, respectively present Cumulant, Moment and their order.

C42(x) = M42 − 2M21 − |M21|2 (10)

C63 = M63 + 18M20M21M22 + 12(M21)
3 − 9M21M42 − 3M20M43 − 3M22M41 (11)

Notably, different orders of cumulant-based features were tested, and the best results were
achieved using the above orders (|C21|, |C42| and |C63|).
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3.3. Feature Selection Techniques

In supervised classification, it is required to minimize the number of features to speed up the
training and classification processes, [40]. However, fewer characteristic features may come at the
expense of classification accuracy degradation [40]. However, the trick in dimensionality reduction is
to trade some precision for simplicity [15]. This study considers a comparative study of two feature
selection techniques, namely PCA and GA. The main reason for using these techniques in this study is
due to its low noise sensitivity, less memory requirements, and high efficiency in the training process.

3.3.1. Principal Component Analysis (PCA)

In [41], PCA has been presented as an efficient feature selection method with lower computational
complexity in comparison to other approaches, like colony optimization [41]. PCA as a feature selection
approach is implemented as follows [21].

First, the mean of each feature set is calculated then each value is subtracted from the mean. It is
a crucial step to ensure that the first principal component describes the direction of the maximum
variance [15]. A further step is calculating the covariance matrix, which is a representation of the linear
dependency between two values. The third step is the calculation of eigenvectors and eigenvalues
of the covariance matrix to determine the principal components of the data. Therefore, the highest
eigenvalues are related to the most uncorrelated eigenvectors, which are considered to be the principal
components. The main focus of PCA is to put maximum possible information in the direction of the
first component, then the maximum remaining data in the second one, and so on. Since a feature
component is less significant for feature extraction, it can also be interpreted that this feature is less
informative in the original space [15].

3.3.2. Genetic Algorithm (GA)

GA is known as a search-based optimization technique inspired by Genetics and Natural
Selection [42]. GA has been widely used not only for feature selection but also for optimizing the
hyper-parameters of an Artificial Neural Network (ANN), such as weight [40,43–51].

As shown in Figure 2, a GA algorithm starts with an initial population, which is a subset of all
the possible solutions (Also known as individuals) to the given problem [42]. Each individual has
a set of genes, represented by a string of zeros and ones [42]. To evaluate the quality of a solution,
a fitness value is assigned to each individual. Further various strategies can be applied to select the
best individuals known as parents [42]. After the parent selection step, the variation operations such
as mutation and crossover [42] are applied to generate new off-springs [42]. Finally, these off-springs
replace the existing individuals in the population, and the process is repeated until reaching the
stopping criterion.

As shown in Figure 3, to adapt GA technique with this study, the steps below are proposed:

• Binary representation: In the feature selection step, each of the elements in the feature vector
may or may not be selected. Therefore, a string is used to represent the selected and discarded
features. In the given string, each 1 indicates that the corresponding feature to the index is chosen,
while each 0 determines the discarded features [42].

• Population model: In a steady state of GA technique, one or more off-spring is generated in each
iteration, and they replace one or more individuals from the population [42].

• Population initialization: This study considers a random initialization, in which k bits of the string
is randomly set to 1. In other words, k features are chosen out of the n-dimensional space of
features [42].

• Parent selection: The “Rank Selection” approach is used for selecting parents since the individuals
in the population have very close fitness values. In this work, the fitness value is the classification
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accuracy which is computed by specifying the number of True Detection (NTD) and the number
of False Detection (NFD) [21]:

Accuracy =
NTD

NTD + NFD
∗ 100 (12)

Therefore, each individual in the population is ranked according to their fitness, and the parent
selection depends on the rank of each individual, not on the fitness value [42].

Figure 2. General framework of GA algorithm.

• Mutation: The swap mutation is deployed, in which two random positions on the chromosome are
selected, and their values interchanged. It should be noted that in this application, the crossover
is the same as the mutation. In other words, if two parents are selected, to exchange the elements
in the selected indices (single point or other crossover methods), while preserving the number of
1s in the solution, so it accurately mimics the mutation process [49].

• Survival selection: The survival policy determines which individuals should be maintained in the
next generation. However, this is a crucial step as it must ensure that the fitter individuals are not
kicked out of the population while maintaining diversity in the same population. In this work,
a fitness-based selection is used, in which the children tend to replace the least fit individuals in
the population [49].

• Termination criterion: The algorithm is terminated when a set number of generations is reached.
Figure 4 shows the variation in the best fitness values during 100 generations for RFI classification
using five features. The result presents the improvement in the classification accuracy of over
100 number of generations up to 99.81%. Moreover, the best fitness value corresponds to the
chromosome [0010001111], which indicates that the more informative features are the standard



Appl. Sci. 2020, 10, 4608 9 of 18

deviation of the received signal and average power of the 4th wavelet coefficients (D1 to D4)
using Daubechies 10 (dB10) wavelet.

Figure 3. The proposed GA algorithm for feature selection.
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Figure 4. Variation of the best fitness values per generations number for RFI classification application
using two features.

3.4. Classification

As shown in Figure 1, the classification phase contains a hierarchical design, including two
levels. The first level is a global search using one classifier to detect the type of received signals (SoI,
SoI + CWI, SoI + MCWI, and SoI + CI). Furthermore, a localized search is deployed for each type of
signal to recognize the modulation type. To this end, we used the same classifier design proposed in
our previous work based on MLP [21] trained using 10-fold cross-validation technique.

Cross-validation is a statistical approach used to evaluate the ability of ML-based models on
unseen data. Generally, it is deployed in applied ML to compare and select a model for a given
predictive modeling problem [52]. As the benefits of this generalization technique can refer to easy
to understand, simple implementation, and results in skill estimates that generally have a lower bias
than other methods such as a simple train/test split [52]. The procedure has a key parameter called k
that refers to the number of groups that a given data sample is to be split into such that the procedure
is often called k-fold cross-validation [52]. The implementation steps of k-fold cross-validation are
as follows:

Step 1: Shuffle the dataset randomly and split it into k groups.

For each unique group:

Step 2: Take the group as a holdout or test dataset.
Step 3: Take the remaining groups as a training dataset.
Step 4: Fit a model on the training set and evaluate it on the test set.
Step 5: Retain the classification accuracy and discard the model.

Finally, the model’s performance is evaluated by the average of all the obtained classification
accuracy values.

Therefore, each observation in the dataset is assigned to an individual group and stays in that
group during the training procedure. Therefore, each sample has the opportunity to be used in the
holdout set once and used to train the model k− 1 times [52]. Choosing an optimal value for k is very
crucial since a poorly chosen value for k may result in a misrepresentative of the model’s skill, such as
a score with a high variance or bias [52]. This study considers k = 10 due to achieved experiments
results with low bias in estimated model skill. The value of k = 10 is widespread in the field of applied
ML tasks.
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4. Results and Discussion

This section presents and analyses the performance of the proposed algorithms for both
RFI and modulation classification. All the simulations have been performed with MATLAB
(Version R2019b), in a Core i5-5257U CPU computer system, operating at 2.70 GHz with RAM = 8 GB.
Moreover, the dataset used for the classification has been generated at AWGN power −140 dBm,
and approximately SNR value is 9 dB. As shown in Table 2, the power of the received signals (dBm/Hz)
is measured using a signal analyzer in a 3.84 MHz Bandwidth (BW).

Table 2. Measured power of received signals.

SoI Power CWI Power MCWI Power CI Power

−40 dBm −33 dBm −35 dBm −32 dBm

The Jamming to Signal Ratio (JSR) is computed as

JSR = PowerSoI − PowerJamming (13)

Therefore, the measured JSR for CWI, MCWI, and CI is 7 dB, 5 dB, and 8 dB, respectively.

4.1. RFI Classification Results

The performance of the developed MLP approach in [21] is considered for RFI classification.
Therefore, a two-layer MLP is used with 10 and 4 neurons in the input and output layers, respectively.
Moreover, the logarithmic sigmoid and linear functions are used as the hidden and output layer
activation functions [21]. Table 3 presents the details of the designed MLP using different Hidden
Layer Neurons (HLN) and Batch Sizes (BS). The training process of this study is performed by the
MLP using a 10-fold cross-validation.

Table 3. RFI Classification results based on MLP at different HLN and BS.

HLN BS = 1 BS = 100 BS = 500 BS = 1500 Full-Batch

10 98.58% 91.56% 56.88% 45.18% 39.29%
20 98.50% 92.75% 61.46% 49.16% 37.83%
30 99.58% 92.88% 59.86% 49.16% 40.62%

As the results show, by increasing the HLN the accuracy can slightly improve. Moreover, due to
high variety of classes in the dataset the online learning mode performs better in which the network’s
key parameters are updated based on each sample one by one. Therefore, the most accurate result
has been achieved using HLN = 30 and online learning mode (BS = 1), with a precision of 99.58%.
Table 4 illustrates the results of applying the proposed MLP + GA approach for RFI classification,
using the different Numbers of Features (NoF) with HLN = 30. According to the results, the highest
accuracy, 99.97%, is obtained with BS = 1 and NoF = 8. Also, the classification precision is increased
by dealing with more features. Table 5 demonstrates the result of deploying PCA + MLP for the first
classification phase using a various number of features and learning modes such as online learning
(BS = 1), mini-batch, and Full-Batch. As can be seen, the classification accuracy reached to 97.05% with
only five features. Table 5 demonstrates the result of deploying MLP + PCA for the first classification
phase. As can be seen, a precise classification was achieved with only five features.
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Table 4. Effect of GA-based feature selection on the designed MLP’s performance (HLN = 30).

NoF BS = 1 BS = 100 BS = 500 BS = 1500 Full-Batch

2 94.41% 85.46% 80.04% 52.77% 48.46%
5 99.81% 98.39% 87.84% 72.63% 49.65%
8 99.97% 99.76% 96.45% 81.53% 50.27%

Table 5. Effect of PCA-based feature selection on the designed MLP’s performance (HLN = 30).

NoF BS = 1 BS = 100 BS = 500 BS = 1500 Full-Batch

2 48.95% 44.74% 22.39% 18.21% 20.52%
5 97.05% 96.03% 94.79% 73.26% 54.40%
8 90.75% 96.53% 92.36% 64.05% 50.34%

4.2. AMC Phase Results

Table 6 illustrates the MLP-based classification results for modulation type recognition.
The number of neurons for each layer is 3, 30, and 4, respectively. The results show that in case
of no jamming, the average AMC accuracy is 87%. In the presence of jamming signals, the classification
performance is degraded locally, about 3%, 16%, and 36% for CWI, CI, and MCWI, respectively.
Each AMC classifier refers to a specific class of the received signal. AMC1, AMC2, AMC3, and AMC4,
are respectively referred to SoI, SoI + CWI, SoI + MCWI, and SoI + CI.

Table 6. AMC results based on MLP at different HLN and BS.

Classifier BS = 1 BS = 100 Full-Batch

AMC1 87% 57% 37.25%
AMC2 84.25% 43% 27%
AMC3 48% 47.50% 49%
AMC4 71% 65% 20%

Table 7 demonstrates the effect of GA-based feature selection on the second phase of classification
to recognize the modulation types. As is shown, MLP + GA can precisely classify the four modulation
types per each received signals using only one feature with a precision of 90.83%, 86.66%, 61.66% and
76.67% for AMC1 to AMC4 respectively.

Table 7. Effect of GA-based feature selection on the proposed MLP using HLN = 30 for AMC phase.

NoF AMC1 AMC2 AMC3 AMC4

2 88.58% 81.67% 43.33% 70%
1 90.83% 86.66% 61.66% 76.67%

Table 8 illustrates the effect of PCA-based feature selection on classifying the modulation types.
As is shown, MLP + PCA performs efficiently using only one feature for AMC1 to 4 with an accuracy of
86%, 89.77%, 51.11%, and 67.66%, respectively. The learning process is accelerated using PCA because
the classifier is trained with fewer features.

Table 8. Effect of PCA-based feature selection on the proposed MLP using HLN = 30 for AMC phase.

NoF AMC1 AMC2 AMC3 AMC4

2 81.33% 85.66% 50.33% 66.66%
1 86% 89.77% 51.11% 67.66%
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4.3. Comparative Classification Results

This section includes a summary of the results for RFI classification and characterization. Figure 5
demonstrates the comparative analysis of deploying the proposed approaches for the first level
classification to recognize the type of received signals. All the three approaches reach performance
accuracy more than 90%, while MLP + GA with five features slightly outperforms other techniques.

Figure 5. Comparative results of the RFI classification results with considering BS = 1 and HLN = 30
MLP (with all features), MLP + GA (NoF = 5) and MLP + PCA (NoF = 5).

Figure 6 indicates the results of the proposed classifiers for the second classification process to
distinguish four modulation types (QPSK, 8APSK, 16APSK and 32APSK). As the results present, in no
jamming case, the highest accuracy is achieved using MLP + GA (NoF = 1) with an accuracy of 90.83%.
For AMC2, MLP + PCA (NoF = 1) outperforms other techniques with a precision of 89.77%. In the
presence the two other jammers such as MCWI and CI, MLP + GA performs more precisely.

Figure 6. Comparative results of the RFI classification results with considering BS = 1 and HLN = 30
MLP (with all features), MLP + GA (NoF = 5) and MLP + PCA (NoF = 5).

Figure 7 illustrates the computation times of the presented techniques for the RFI classification.
To this end, we used the “tic toc” function in MATLAB to calculate the consumed training time. As the
results show, GA + MLP is computationally more expensive, and as a result, the computation time is
comparatively longer, while MLP + PCA is the most efficient one.
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Figure 7. Comparative training time for MLP (21.81 min), MLP + GA (310 min) and MLP + PCA
(9 min).

4.4. Prediction Phase Results

In this section, the robustness of the proposed techniques is thoroughly analyzed in detecting
unseen data generated at different AWGN power ranging from −140 to −125 dBm. The performance
of the classifier varies depending on the noise level and the existence of jammers. To detect the type
of the received signal, the trained MLP using 10-fold cross-validation has a higher generalization
accuracy in detecting unseen data generated at the same noise level as the training data. Therefore,
the prediction accuracy degrades by increasing AWGN power. Table 9 shows the results of evaluating
the trained classifier’s performance to recognize the type of received signal at different AWGN powers.

Table 9. Evaluating the robustness of the trained networks in predicting unseen data at different noise
levels using BS = 1 and HLN = 30.

AWGN Power (dBm) −140 −135 −130 −125

MLP + 10-fold cross-validation 85.63% 78.70% 60% 55%
MLP + PCA 82% 72.30% 70% 66.90%
MLP + GA 81.56% 73.44% 71% 63.25%

Tables 10–13 show the effect of noise on the trained classifiers in predicting the type of new data.
As is shown, two main factors concerning the prediction accuracy are the type of jammer and noise
power. Apparently, in the presence of MCWI and CI, the classifiers cannot perform precisely.

Table 10. ML-based prediction results for AMC1.

AWGN Power (dBm) −140 −135 −130 −125

MLP + 10-fold cross-validation 81% 53% 34.73% 15.30%
MLP + PCA 78% 55% 35.70% 15.70%
MLP + GA 83.50% 54% 36% 15.25%

Table 11. ML-based prediction results for AMC2.

AWGN Power (dBm) −140 −135 −130 −125

MLP + 10-fold cross-validation 81.33% 75.33% 50.50% 42.50%
MLP + PCA 84% 76% 53% 43%
MLP + GA 82.33% 76.50% 54.23% 44%
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Table 12. ML-based prediction results for AMC3.

AWGN Power (dBm) −140 −135 −130 −125

MLP + 10-fold cross-validation 52.12% 48.50% 48.50% 48%
MLP + PCA 57% 50% 49.50% 48.50%
MLP + GA 58.25% 47% 48.33% 47%

Table 13. ML-based prediction results for AMC4.

AWGN Power (dBm) −140 −135 −130 −125

MLP + 10-fold cross-validation 61% 57.33% 53.50% 52%
MLP + PCA 55.50% 48.50% 48% 48.50%
MLP + GA 60% 54.33% 47% 50%

5. Conclusions

In this study, a novel hierarchical classifier has been proposed to facilitate the RFI classification
and characterization. The proposed classifier not only classifies the type of the received signal but
also determines its modulation precisely. Moreover, three robust approaches have been developed,
namely MLP + 10-fold cross-validation, MLP + GA, and MLP + PCA. The results confirm that for the
RFI classification phase, the classification accuracy reaches 99.81% using the MLP + GA technique,
depending on the chosen batch size. In general, MLP + GA performs more precisely in determining
the modulation type and RFI classification. Moreover, the results approve that PCA-based feature
selection is more efficient in terms of computation time and computational complexity versus GA.
In future studies, we intend to look at deep learning-based classification techniques using raw received
data to avoid complicated feature extraction and selection steps.

6. Materials

The raw RFI dataset is available at https://zenodo.org/record/3819586#315.XriaSGhKh3h. In this
dataset, Signal of Interest (SoI) is a real-time video stream that is transmitted using DVB-S2 standards in
four modulation types, including (QPSK, 8/16/32 APSK). Furthermore, this SoI combined with three
well-known jamming signals, namely Continuous Wave Interference (CWI), Multiple CWI (MCWI),
and Chirp Interference (CI). This dataset includes 300 samples per modulation type for each type of
signal. Therefore, there are 4800 observations in the dataset, and each sample is a vector of size 1 by
32488 (8 ms) at sample frequency 40 Hz. Also, AWGN power is −140 dBm which is approximately
equal to SNR = 9 dB.
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