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Running title: Real-time biomechanics review

Purpose: The finite element method (FEM) is the preferred method to simulate

phenomena in anatomical structures. However, purely FEM-based mechanical sim-

ulations require considerable time, limiting their use in clinical applications that

require real-time responses, such as haptics simulators. Machine learning (ML) ap-

proaches have been proposed to help with the reduction of the required time. The

present paper reviews cases where ML could help to generate faster simulations, with-

out considerably affecting the performance results.

Methods: This review details the ML approaches used, considering the anatomical

structures involved, the data collection strategies, the selected ML algorithms, with

corresponding features, the metrics used for validation, and the resulting time gains.

Results: A total of 41 references were found. ML algorithms are mainly trained with

FEM-based simulations, in 32 publications. The preferred ML approach is neural net-

works, including deep learning, in 35 publications. Tissue deformation is simulated

in 18 applications, but other features are also considered. The average distance error

and mean squared error are the most frequently used performance metrics, in 14 and

17 publications, respectively. The time gains were considerable, going from hours or

minutes for purely FEM-based simulations to milliseconds, when using ML.

Conclusions: ML algorithms can be used to accelerate FEM-based biomechani-

cal simulations of anatomical structures, possibly reaching real-time responses. Fast

and real-time simulations of anatomical structures, generated with ML algorithms,

can help to reduce the time required by FEM-based simulations and accelerate their

adoption in the clinical practice.

a)Electronic mail: renzo.phellanaro@mail.mcgill.ca
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I. INTRODUCTION

Biomechanical modelling (BM) of the behavior of anatomical structures under various

conditions is an essential step for many research and clinical applications. The physical phe-

nomenon being modelled is governed by corresponding partial differential equations (PDEs).

BM is used to develop virtual reality simulators with haptic feedback, which are used to

train surgeons on the surgical techniques required for minimally invasive surgery1,2 and to

assess innovative interventions for the treatment of heart failure3. BM is also used during

preoperatory surgical planning, to estimate the risk of rupture of atherosclerotic plaques in

vulnerable patients4. BM is used in augmented reality applications to deform virtual organ

atlases of the liver5–7, prostate8, and stomach9–11 during intraoperative navigation, which

are then registered to the medical images of an specific patient. The organ atlases contain

important additional information about the internal structure of the organs, such as the

position of blood vessels and tumors, which aids the clinician during surgery12. Another

BM application is the calculation of the response of bones to load during daily activities

for orthopaedic implant design13 and prediction of bone adaptation due to disuse14. Fatigue

and consequent crack growth in cancellous bone, specifically in the femur, is also studied

with BM, in order to prevent and analyze the causes of bone fracture15,16. Additionally,

prediction of the spine deformation in patients that suffer adolescent idiopathic scoliosis

(AIS) is also modelled with BM17,18.

As it can be noted, the biomechanical modelling of the behavior of anatomical structures

is important for many clinical and research applications. In order to achieve a suitable BM, a

set of PDEs and their corresponding boundary conditions have to be satisfied. For example,

Pellicer-Valero et al.7 model the elastic bevahior of the liver in response to externally applied

forces using an energy balance equation. The solution of this equation requires the total

potential energy of the system to be minimum at the equilibrium. The same strategy is used

by Madani et al.19 to model stress in atherosclerotic arterial walls, by minimizing the total

potential energy in a situation of equilibrium. A different approach is taken by Mendizabal

et al.20, where the elastic behavior of the breast in response to the presence of an ultrasound

probe is modelled by considering the Dirichlet and Neumann boundary conditions.

One of the most widely used methods to solve the PDEs and generate biomechanical

simulations is the finite element method (FEM), also referred to as finite element analysis or
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modelling. In general terms, the FEM provides a set of mathematical tools used to approx-

imate the solution of PDEs that govern the biomechanical phenomenon being analyzed21.

The FEM allows a proper understanding of how structures and tissues deform given a set

of external stimuli and appropriate boundary conditions by discretizing the overall physical

model with a representative mesh and evaluating the behaviour of each individual part of

such a mesh22. By using the FEM, it is possible to retrieve information that is otherwise

impossible to obtain experimentally. The FEM also allows the identification of localized

deformation and it captures the internal stresses in structures. However, the FEM is also

known to require considerable amounts of computational resources, which have been sup-

ported by the current advances in hardware and software design22.

Motivated by the successful applications of the FEM to generate biomechanical simula-

tions, some developments focused on clinical applications where real-time responses to the

user are required. The strategies to increase the simulation speed in order to achieve real-

time responses include using more powerful hardware elements, such as graphics processing

units (GPU), and combine them with fast and parallelizable algorithms22. In this scenario,

machine learning (ML) algorithms have gained relevance as many scientific works, such as

the ones included in this review, have demonstrated that ML algorithms can provide robust,

fast, and real-time responses for BM. The publications report a time reduction going from

minutes, required to generate a simulation using only the FEM, to milliseconds, when using

ML.

ML algorithms can be trained by using biomechanical simulations of the behavior of

anatomical structures generated with the FEM. FEM-based simulations are computationally

expensive to generate, but a trained ML algorithm can considerably reduce the time required.

This reduction in time is possible thanks to the data-driven approach provided by ML

algorithms, as an alternative option to the resolution of PDEs through the FEM. Once an

ML algorithm is trained with enough data, it can generate a simulation considerably faster

than when using the FEM. Besides, in some scenarios, ML can help the FEM by tackling

redundant calculations. Or in cases where sequential computations are performed, ML can

intervene in some of the steps and aid in accelerating FEM computations.

The present paper reviews the work that has been done in the field of ML to increase the

speed of biomechanical simulation of anatomical structures and obtain real-time responses.

It is expected that real-time responses would help to increase the use of biomechanical sim-
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ulations in clinical applications to train new surgeons, plan and assist surgical interventions

with simulated biomechanical response, predict the reactions and evolution of anatomical

structures under various conditions and morphological states, amongst others.

II. REVIEW METHOD

The publications regarding the use of the FEM and ML for the biomechanical simulation

of the behavior of anatomical structures included in this review are obtained using the

Google Scholar, PubMed, and Web of Science search engines. All chosen search engines are

currently being used in prestigious reviews and meta-analyses23, and the search features and

results they provide are known to complement each other24.

All publications that mention the terms ”finite element analysis”, ”finite element method”,

or ”finite element modeling”, together with the terms ”deep learning” or ”machine learning”

are initially selected for this review. Additionally, publications that are cited on or cite the

initial search results are also included if their content includes concepts related to the FEM

and ML. All obtained results are then filtered, excluding the ones that do not refer to any

anatomical structure. Also, publications before the year 2005 are excluded, as it is after

2005 that the use of ML algorithms to accelerate FEM-based simulations of anatomical

structures has gained widespread. Additionally, particular attention is given to publications

that report the time required to generate simulations using the FEM and ML-algorithms,

and if they explicitly mention the term ”real-time”.

The first section of this review describes the main ML algorithms used for BM of anatom-

ical structures found in the scientific literature. The next section details the main strategies

used to obtain datasets required to build and evaluate the models provided by the ML algo-

rithms. The datasets can be obtained from purely virtual FEM-based simulations, subjects,

or a combination of both. Then, a list of strategies on how to split the available datasets

on training, validation, and testing sets is provided in the following section, which also

includes additional comments on how to properly train an ML algorithm. After that, this

review offers a description of the principal input and output features that the ML algorithms

use. Finally, the present work analyzes the metrics used for validation, and the time gains

achieved when using ML. It is expected that this information would help researchers and

clinicians to accelerate the adoption of biomechanical modeling in the clinical practice. A
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summary of the results of the present review is offered in Tables I and II.

Table 1 placeholder

Table 2 placeholder

III. MACHINE LEARNING ALGORITHMS USED AS AN

ALTERNATIVE TO THE FINITE ELEMENT METHOD

Neural networks (NN), tree based algorithms, and support vector regression machines

(SVR)25 are the three main types of algorithms used to generate fast and real-time simu-

lations of anatomical structures. A total of 35 out of the 41 reviewed works use a neural

network to generate simulations, thus, making NN the most used type of algorithms. The

second most popular type are tree based algorithms, with 6 publications, followed by SVR,

with 4 publications. Tables I and II indicate the algorithms used in each application, in the

algorithm column. It must be noted that some publications compare the use of more than

one type of algorithm to generate the simulations.

In ML, neural networks are a model of computation that resembles the networks of neu-

rons in the brain. In this ML model, a large number of computing elements or artificial

neurons connect and interact with each26. The adoption of NN for clinical and research

applications has increased considerably in recent years27,28, partly due to the advances in

hardware developments, such as GPUs, and the success obtained in many applications by

DL29. However, the use of NN to simulate the biomechanical behavior of anatomical struc-

tures is previous to the invention of DL. Zhong et al. published early work on simulation of

the deformations that the liver experiences under externally applied loads, using a cellular

neural network30. Morooka et al. created the NeuroFEM neural network to study defor-

mations of the liver2,5 and stomach11 in the presence of external forces. Other works focus

on the use of feedforward and radial basis function (RBF) NN to simulate the behavior of

various anatomical structures. Finally, seven reviewed publications use DL architectures,

such as the U-Net20,31, to generate simulations.

Tree based algorithms are the second most popular alternative to generate biomechanical

simulations. Tree based algorithms represent knowledge by using a stratified model that
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includes a series of rules, which are often easy to interpret by humans26. The reviewed

literature uses decision trees (DT)3,32,33, extremely randomized trees (ERT)34, and random

forests (RF)7,17, obtaining promising results. Only two of the publications directly compare

the accuracy of the results obtained using RF and NN. In the first case, RF and a feedfor-

ward NN are used to estimate liver tissue displacement in the presence of external forces7.

The feed forward NN displays a vastly superior performance when compared to RF in this

particular case. In the second case, a combined approach is used to predict the evolution of

the shape of the spine in subjects affected by AIS17. Initially, descriptors of the spine shape

are calculated using either independent component analysis (ICA) or stacked denoising au-

toencoders (SDAE), based on a feedforward NN. Then, the descriptors are used as input to

a RF algorithm to calculate the final prediction. Both combined options, ICA and RF, and

SDAE and RF obtained similar performances.

Finally, SVR has also been used to generate biomechanical simulations of anatomical

structures. SVR makes use of the concept of margins or support vectors in high dimensional

spaces to tackle the complexity of problems involving the evaluation of multiple features26.

One application of SVR is the estimation of the risk of rupture of cerebral aneurysms using

SVR with a RBF kernel35, by using hemodynamic parameters calculated with computational

fluid dynamics (CFD) and other features as input. In this case, SVR is used as part of the

method pipeline and not to replace the CFD calculations. A similar application was proposed

by Liang et al.36 to calculate the risk of rupture of ascending aortic aneurysms using SVR

with a RBF kernel. The main difference with the previously cited work is that in this case,

the FEM method is only used to generate an annotated dataset for the SVR algorithm.

The SVR algorithm is used then for classification of aneurysms as either high or low risk,

and also for regression to estimate the pressure risk ratio of the analyzed aneurysm. Lastly,

2 publications compare the performance of SVR with a RBF kernel and a NN with one

hidden layer. Cilla et al.4 estimate the Von Mises stress in the coronary artery by analyzing

its geometrical features, obtaining a similar performance with both, SVR with a RBF kernel

and NN with one hidden layer. Tonutti et al.37 estimate the deformation of brain tumors

affected by external forces. The accuracy of the results generated by SVR with a RBF kernel

was greater than the accuracy obtained with the NN with one hidden layer.

7



IV. DATA COLLECTION

One crucial element when using ML algorithms is the availability of a proper dataset for

training, validation, and testing purposes. In order to obtain the required dataset, the most

common solution adopted in the literature is to use the FEM to generate it, with or without

underlying data from subjects or physical phantoms, and this strategy is used in 32 of the

41 reviewed publications, as it can be seen on Tables I and II, in the data source column.

Alternatively, annotated datasets obtained from subjects can also be used when available.

In some cases, a mesh representing the anatomical structure of interest is created ac-

cording to statistical models, population sample data reported in the scientific literature,

and suggestions of clinicians and other experts in the field. In this case, the mesh does

not correspond to the anatomy of any particular subject. In order to generate the sim-

ulations, necessary assumptions and simplifications, included as boundary conditions, are

made regarding the characteristics of the anatomical structure being analyzed. The FEM

is then used to simulate the biomechanical behavior of this mesh in response to the studied

phenomena in each application in order to generate a dataset. For example, Morooka et

al.5 generated a mesh representing the liver, assuming elastic properties, but disregarding

the viscosity and plasticity of this organ. Also, Deo et al.9 created a mesh representing the

stomach, assuming it to be a Neo-hookean solid. Another example can be seen in the work

of Hambli et al.38, where a femur head is simulated, assuming elastic behavior and isotropic

properties for this bone.

In more recent years, a transition from meshes that represent a population sample to

meshes that represent individual subjects or physical phantoms has gained popularity. In

order to generate the latter type of meshes, usually a medical image of the subject or physi-

cal phantom is acquired, the anatomical structure of interest is segmented, and the mesh is

then generated by using the segmented organ data. Considering that the mesh corresponds

to a subject or physical phantom, it is possible to associate additional data to the mesh, such

as individualized material properties, which can be obtained with other techniques used to

analyze the anatomical structure of interest. The main reason to use a mesh is that in many

cases it is not possible or it is decided not to directly apply the selected phenomena to the

anatomical structure being studied. Such decisions are linked to ethical limitations when

the subject is alive; the logistics required to apply and record the results of many configu-
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rations of the studied phenomena; the possibility of damaging the anatomical structure or

physical phantom, turning it unusable for other experiments; and the increase in variables

that have to be accounted for in a physical setting, such as experimental variability and

environmental factors. Consequently, the FEM is used in these cases to simulate the desired

phenomena in meshes that represent anatomical structures reconstructed from medical im-

ages of subjects or physical phantoms, in order to generate a dataset without risking any

damage to the original anatomical structure. Some examples in the literature include meshes

reconstructed from computed tomography (CT) images of ex vivo discarded livers intended

to be used for transplantation39 or from magnetic resonance (MR) images of brains that

presented a tumor37. Additionally, meshes were also reconstructed from ultrasound images

of physical phantoms that represent the breast20 and MR images of the prostate8. It should

be noted that even when the meshes mentioned in this paragraph come from individual

subjects or physical phantoms, the phenomena applied to them are simulations and follow

the assumptions and simplifications associated to the FEM.

In some other cases, data regarding the morphology, material properties, and behavior

of anatomical structures from individual subjects are used directly to train a ML algorithm,

without requiring any additional data generated with the FEM. For example, Ardestani et

al.40 accessed a public database containing the gait trials data of four participants with knee

prostheses. Sensors installed in the knee prostheses can measure joint load data. All these

data are used to train a feedforward NN capable of predicting gait patterns associated

to joint load, and vice versa. Similarly, Komaris et al.41,42 accessed a public database

with kinematic measurements data of twenty-eight regular professional runners. Reflective

markers attached to the lower-body of the runners and motion capture cameras are used

to record the movement of the lower limbs. The data are then used to train a feedforward

neural network (NN) to estimate ground reaction forces, and compare it with the forces

measured by an instrumented treadmill.

Another publication43 collected and prepared bovine pericardium samples. Microscopy

images of the samples are then used to train deep learning (DL) models to classify tissue

stiffness and to predict nonlinear anisotropic stress-strain curves. The strategy of obtaining

data from animal samples is also used by Mouloodi et al.44,45 as they use nine hydrated

bones from cadavers of horses. Different loads are applied to the bones and measures of

strain and displacement are registered. The collected data are used to train a NN that can
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estimate bone loading.

Alternatively, Garcia-Cano et al.17 validated their approach with a private database of 150

patients collected at the Centre Hospitalier Universitaire Sainte-Justine, Montreal, Canada,

with the spinal shape annotated with the help of a trained technician. The data are used to

train a ML model that could predict the progression of spinal curve deformation in patients

with AIS. Similarly, Guo et al.18 used a private database with anthropometry records of

more than three thousand patients affected by scoliosis, collected between the years of 1975

and 2014 at the Duchess of Kent Children’s Hospital at Hong Kong. The data are used to

train a DL algorithm, known as a long short-term memory network, which can predict the

progression of spinal curve deformation in patients with AIS. Even when both mentioned

works are on AIS, no comparison of their strategies has been done yet, to the best of our

knowledge.

An exceptional case is noticed in the earliest work considered in this review30, where a

dynamic cellular NN is used to mimic the deformations experimented by the liver tissue

when external forces are applied to it. In this case, the parameters of the network are not

trained and their setting is left to the user.

V. TRAINING, VALIDATION, AND TESTING SETS FOR MACHINE

LEARNING ALGORITHMS

Once the datasets are obtained, they should be assigned to either training, validation or

testing sets, which are essential steps in the development of any ML algorithm. In general,

the training set is used by an ML algorithm to learn the parameters of the model that

describes the available data, the validation set is used to adjust the hyperparameters of

the same ML algorithm, and the testing set is used to evaluate the performance of the ML

algorithm with previously unseen data46. As the results when processing the testing set

indicate how well the model learnt by the selected ML algorithm generalizes to new unseen

data, these are commonly the results reported in the scientific literature.

One of the main strategies found in the analyzed papers to split the datasets consists of

simply selecting a percentage for each set. For example, Cilla et al.4 assigned 80%, 10%, and

10% of the datasets to the training, validation, and testing sets, respectively. Alternatively,

Zadpoor et al.47 use percentages of 90%, 5%, and 5%, and Komaris et al.41 use percentages
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of 60%, 20%, and 20%. The right set of percentages depends on each application and no

specific rule was found to select them. However, the amount of data available and the

amount of data required by the ML algorithm being evaluated can influence the selected

percentages. Particularly, NN require considerable amounts of data to generate suitable

models, so the training percentages tend to present high values47.

It is also possible to repeat the splitting of the datasets with fixed percentages for the

training, validation, and test sets. The results of each round of splitting are averaged in order

to obtain a more robust report of the performance of the ML algorithm being evaluated.

These approach is known as cross-validation48. As the datasets are separated in folds that

are assigned to either the training, validation or test sets, this approach can also be referred

to as k-folding, where k is the number of folds. Liang et al.36 use cross-validation with 10

folds to evaluate a method to predict the risk of ascending aortic aneurysm. In the particular

case where the fold assigned to the testing set includes only one dataset, this approach is

known as leave-one-out48. Jahya et al.8 use leave-one-out to evaluate their model to predict

deformations of the prostate.

During the present review, it was also observed that some scientific studies do not use a

validation set to adjust the hyperparameters of the selected ML algorithm, and either use

its default values or tune it empirically. For example, in some cases, the hyperparameters of

NN, such as the number of layers, number of hidden units, activation functions, learning rate,

number of epochs, and others are not tuned by using a validation set given the considerable

computational requirement to train a NN. In those cases, common percentages of datasets

assigned to the training and testing datasets are 70% and 30%32, 80% and 2020,31,35,45 or

90% and 10%6,49, respectively.

Another very important aspect to consider besides selecting the training, validation, and

testing sets to evaluate an ML algorithm is the avoidance of overfitting, as this phenomenon

limits the capacity of the learnt model to be generalized and applied to process new unseen

data. Overfitting occurs when an ML algorithm generates highly accurate results in the

training set, but the learnt model performs poorly when applied to new unseen data50.

The techniques used to reduce of overfitting are known in the scientific literature as regu-

larization techniques50. When training NN, the most commonly used technique is dropout,

and it consists in randomly dropping units of the network and its corresponding connec-

tions while the network is trained. As a consequence, the neural network is prevented

11



from adapting too much to the training set50. Some examples of NN trained using dropout

regularization can be found in18,19,41,42.

L1 and L2 are alternative regularization techniques, also for NN, which seek to reduce the

weight or importance assigned to each individual dataset when training a neural network51.

As no dataset is given a considerable weight, the possibility of one or a few datasets driving

the training of the model is mitigated. Pellicer-Valero et al.7 use L1 and L2 regularization

when training a neural network to simulate deformations of the liver.

Finally, it is also possible to artificially augment the datasets available for training, vali-

dation, and testing by adding noise and applying geometric transformations to the available

datasets. This technique is known as data augmentation and it seeks to reduce the pos-

sibility of overfitting by exposing a machine learning algorithm to a set of datasets with

artificially added variation52. Pfeiffer et al.6 use this strategy to model the behavior of the

soft tissue of the human organs during surgical navigation.

VI. INPUT AND OUTPUT FEATURES

The estimation of tissue deformation due to external forces is the most frequently observed

analysis, in 18 of the 41 reviewed publications. On one hand, it is possible to estimate

the deformation of the soft tissue of anatomical structures such as the liver53, stomach11,

breast20, and others, as they are affected by external forces applied with surgical instruments.

In addition to the deformation experimented by the tissue, some applications also generate

as output the reaction forces, which are used, for example, to send feedback to the user in

haptics simulators9,10,53. On the other hand, it is also possible to estimate the deformation of

harder structures, such as the bones as they are affected by load45. It was also observed, in

2 publications44,47, that external forces can be calculated as the output of an ML algorithm

that receives tissue deformation data as input. Both publications target bones and they

estimate the applied load as output, by sending bone deformation data as input to an ML

algorithm.

Another common output of the reviewed ML algorithms are specific tissue properties.

First, bone properties, such as crack density and length, bone density, damage, and elastic

modulus can be estimated by using ML algorithms to process data regarding the applied

stress, load frequency, and other additional properties of the bones15,16,38,54. Second, articular
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cartilage mechanical and physical properties, such as friction, elasticity, and permeability can

be calculated by ML algorithms by analyzing force-time data during cartilage indentation

tests55. Third, the stiffness of ligaments in the foot can be predicted by ML algorithms

by processing foot kinematic data56. Fourth, elastic properties of tissue samples of bovine

heart are estimated by directly processing microscopic images of the samples, with ML

algorithms43. Finally, material and hemodynamic parameters of models that describe the

thoracic region of the aorta and the blood flow inside the aorta are estimated by using ML

algorithms to analyze its geometry57,58.

Stress calculation is also possible by using ML algorithms. Geometrical features of the

aorta, coronary, and other arteries are used as input data to estimate the value of the Von

Mises stress of plaque and the artery wall4,19. Alternatively, data regarding the cartilage

load level and subject motion path is used to estimate the value of the Von Mises stress of

the involved articulation cartilage33. Lastly, stress, pressure, and volume in the heart are

simulated by using an ML algorithm to analyze load and material properties data3.

Finally, some more specific input and output pairs are also present in the reviewed works.

These include gait estimation using knee joint implant data40; aneurysm rupture risk esti-

mation using shape features36, geometrical parameters, and wall shear stress data35; spinal

curve progression estimation using spinal shape data17 and anthropometry records18 from

patients affected by AIS; zero-pressure shape estimation using aorta geometry data; and

ground reaction forces simulation using kinematic measurements as input to the chosen ML

algorithm. A summary of all the observed input and output features is included in Tables I

and II, in the input features and output features columns.

VII. PERFORMANCE METRICS

Performance metrics are required to quantify the results obtained while training and

evaluating a model built with ML algorithms. The present section describes the main

performance metrics used in different applications that use ML algorithms to simulate the

biomechanical behavior of anatomical structures. A summary of the metrics is also provided

in Tables I and II, in the metrics column.

The principal metric used for validation and testing purposes of ML algorithms in the

reviewed literature is the mean squared error (MSE), also presented as the value of its
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squared root or root mean squared error (RMSE), so that RMSE =
√
MSE. The MSE

is calculated as the average of the differences between the resulting values generated by

the chosen ML algorithm (Y = {yi}, 1 ≤ i ≤ N) and their corresponding reference values

(X = {xi}, 1 ≤ i ≤ N), squared, as it is shown in Equation 1.

MSE(X, Y ) =
1

N

N∑
i=1

(xi − yi)
2 (1)

One of the main advantages of the MSE is being considerably simple to use, with no

parameters to tune and low computational complexity. It also exhibits many useful mathe-

matical properties for comparison and optimization of results, such as nonnegativity, identity,

symmetry, triangular inequality, convexity, and differentiability59. Lastly, thanks to its fre-

quency of use in many scientific publications, it allows performance comparisons with other

proposed ML methods.

Some other publications have also used the mean absolute error (MAE) as a performance

metric, defined in Equation 2. In some cases, each individual error being averaged has a value

smaller than 1, such that when this value is squared during the computation of the MSE, an

even smaller value is obtained. Too small values might not be accurately represented due to

limitations of the hardware used for experiments, thus, leading to erroneous calculations60.

In these cases, the MAE is a reasonable alternative.

MAE(X, Y ) =
1

N

N∑
i=1

|xi − yi| (2)

Additionally, it is also possible to calculate the normalized values of both the RMSE and

the MAE. In the first case, the corresponding metric is the normalized RMSE (NRMSE),

presented in equation 3 as a function of the RMSE58.

NRMSE(X, Y ) =
RMSE

max(xi)−min(xi)
× 100% (3)

In the other case, the corresponding metric is the normalized MAE (NMAE), presented

in equation 4 as a function of the MAE43,49,57,58.
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NMAE(X, Y ) =
MAE

max(xi)−min(xi)
× 100% (4)

In both cases, the normalization process allows a direct comparison between the NRMSE

or NMAE of different estimated parameters.

Another metric based in the MAE found in the literature for biomechanical simulation

using ML algorithms is the relative MAE (RMAE1)
4, defined in Equation 5.

RMAE1(X, Y ) =
1

N

N∑
i=1

|yi − xi

xi

| (5)

Notice that xi corresponds to the reference values of the parameters being estimated.

Similarly, to the NMAE, the RMAE allows a direct comparison of the performance mea-

surement when estimating different parameters.

In an alternative formulation of the RMAE2
10, the denominator is set to be the maximum

reference value (max(xi)), as it is shown in Equation 6.

RMAE2(X, Y ) =
1

N

N∑
i=1

| yi − xi

max(xi)
| (6)

A different metric of the performance of an ML algorithm is the Pearson correlation

coefficient (PCC)61 between the ML generated values Y and their corresponding reference

values X. There are many ways to present the formula of the PCC, and one of them is

indicated in Equation 7.

PCC(X, Y ) =

N∑
i=1

xiyi−

N∑
i=1

xi

N∑
i=1

yi

N√√√√√ N∑
i=1

x2
i−

(
N∑
i=1

xi)
2

N

√√√√√ N∑
i=1

y2
i −

(
N∑
i=1

yi)
2

N

(7)

The PCC measures the strength of the linear relation between X and Y , and its value

falls in the range between -1 and 1. A PCC value of -1 reflects a perfectly negative relation,

a value of 1 reflects a perfectly positive relation, and a value of 0 indicates the absence of a

linear relation between X and Y61. Differently from the previous metrics of error, the PCC

does not directly measure the difference between estimated Y and reference X values, but

rather provides information regarding the linear relation between X and Y .
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Finally, there are cases where the biomechanical simulations are used to predict the

individual displacement of elements of a group in space and time. These elements can be,

for example, nodes of a mesh that represents the soft tissue of the liver6,7, the breast20, the

brain37, the prostate8 or the stomach11, or points along a line that represents the shape of

the spine17.

In the cases described in the previous paragraph, error metrics based in the distance

between corresponding, simulated and reference, elements are commonly used. It is possible

to define Z, a vector where each entry corresponds to the space and time coordinates of an

element displaced according to an ML-based simulation, and W , a vector where each entry

corresponds to the space and time coordinates of the same element displaced according to

a reference model. Then, a commonly used metric referred to as the average distance error

(ADE)11 is calculated as the average Euclidian distance between corresponding elements in

W and Z. Similarly, it is possible to report the minimum (MinDE) and maximum distance

errors (MaxDE), which correspond to the minimum and maximum Euclidian distance be-

tween elements of W and Z2. Additionally, the percentage of samples with a distance error

lower than a predefined threshold (PSDE) is considered a relevant metric when evaluating

the performance of an ML algorithm33.

It has to be noted, as a final note, that this section lists the most commonly used metrics

of performance found in the reviewed literature. However, there are more performance

metrics suitable for specific applications, which are not included in this section.

VIII. REAL-TIME AND TIME GAINS

As this work is focused on real-time biomechanical simulations, it is important to men-

tion that the term real-time does not have the same particular meaning for each application.

Tanembaum defines a real-time operating system as a system where time is a key param-

eter, such that responses must happen within a precise range of time62. The specific value

of the range of time is usually expressed in milliseconds in the reviewed publications, but

some authors also consider a few seconds as real-time. Particularly, a real-time biomechan-

ical simulation of the liver reported a response time of 3 milliseconds31, while a real-time

biomechanical simulation of the heart reported response times between 5 and 11 seconds3.

It should also be noted that the response time required for a real-time simulation does
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not decrease depending on how recent a publication is. The present review found that the

response time required for a real-time simulation depends strictly on the type of application

being studied. Thus, considering this flexibility in the definition of the concept of real-time,

an application is assumed to have reached real-time when its authors report it that way,

under their particular requirements.

Tables I and II indicate the time required to generate a biomechanical simulation using

either the FEM (time FEM column) or an ML algorithm (time ML column). The time

FEM is reported in minutes (min) and the time ML is reported in milliseconds (ms), in

order to keep an organized presentation. All publications where the authors indicate their

application generates real-time results have their corresponding time ML in bold. It should

be noted that only 14 of the 41 reviewed publications claim to generate real-time results,

and 22 of them do not report either the time FEM, time ML, or both. However, in all 19

publications that report both, the time FEM and the time ML, the former is considerably

longer than the latter. Consequently, there is evidence in the scientific literature supporting

that ML can help to accelerate the biomechanical simulations of the behavior of anatomical

structures, obtaining real-time responses in most cases.

IX. DISCUSSION

The objective of the present paper is to provide a review of the publications that use ML

algorithms and the FEM to generate biomechanical simulations of the behavior of anatomical

structures under a set of predefined conditions. The main reason to use ML algorithms is

the considerable time gains obtained, without compromising the overall performance and

robustness of the simulations.

The main ML algorithms used in the publications included in this review, NN algo-

rithms are the most frequent choice. One of the main reasons for this selection is that the

biomechanical behavior of various anatomical structures can be represented by non-linear

functions, which NN have been demonstrated to approximate in an accurate way29, as NN

can include non-linear functions as part of their formulation.

Some tree based algorithms, such as the ones used in the reviewed literature, are also suit-

able to approximate non-linear functions63, and they are the second most frequent choice to

simulate the biomechanical behavior of anatomical structures. One advantage of tree based
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algorithms is that they can be represented by tree diagrams, which are relatively easy to be

understood by the user64. However, in the 2 publications that NN and tree based algorithms

were compared to predict the biomechanical behavior of an anatomical structure, NN dis-

played an either similar17 or superior performance7. Particularly, the publication where NN

displayed a similar performance to tree based algorithms processed vectors with hundreds

of thousands of elements to describe each training element, while the publication where

NN displayed a vastly superior performance processed vectors with hundreds of millions of

elements. This fact suggests that NN, specifically deep learning algorithms such as the one

used in7, might be more suitable to handle massive amounts of data, as it has already been

reported in other publications65.

SVR is the third most frequently used ML algorithm in the literature. SVR is known

to be a linear regression algorithm, which needs to project non-linear data in a higher

dimensional space, by using different kernels, in order to be able to process the data25.

This strategy is proven to be useful and in the 2 publications that compare SVR and NN

algorithms, SVR displays similar4 or more accurate37 results than NN. However, it must be

noted that the NN algorithms used for comparison included only one hidden layer, which

do not included considerably deeper architectures which are currently available as part of

the DL approaches29. A comparison between SVR and DL approaches may lead to different

results and conclusions.

The mentioned ML algorithms require datasets to be trained, validated, and tested.

However, obtaining a suitable dataset can be a challenging task when studying anatomical

structures, considering the ethical and legal regulations to access and store data, the amount

of work required to annotate the data in the case of supervised learning, and the logistics

required to guarantee that the selected dataset accurately represents the target population,

particularly during the study of anatomical structures of living subjects.

One strategy to obtain the required datasets is to create meshes that represent the

anatomical structure of interest and to simulate their behavior under the selected biome-

chanical phenomena via the FEM. The finite element models are generated according to

mathematical models, population sample data reported in other publications, and sugges-

tions of clinicians. The main advantages of this solution are that the ethical and legal

regulations that apply to the study are considerably reduced, as no subjects are directly in-

volved in the study. Also, the annotations can usually be generated automatically as part of
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the FEM-based simulation, and the representativeness of the dataset can be set to an accept-

able level by using reported population sample data. Additionally, even when they take a

considerable amount of time, FEM-based simulations can be generated in vast amounts and

with different parameter settings automatically, which is convenient for data augmentation

strategies, commonly used to train ML algorithms such as deep learning (DL)29.

Even when datasets created using mathematical models, population sample data, and

suggestions of clinicians may provide a reasonable approximation of the anatomical struc-

ture of interest and its biomechanical behavior, they represent averaged population sample

data, which may correspond to no individual subject in the studied population. In order

to guarantee that the biomechanical simulations correspond to a subject, many works cap-

ture the shape and material properties of the anatomical structure being studied in subjects

by using medical imaging modalities and other techniques for material analysis. However,

applying the desired biomechanical phenomena may still not be feasible due to ethical rea-

sons, logistics, possible damage to the anatomical structure, and increase of variables to be

controlled. Consequently, the FEM is still required to simulate the biomechanical behavior.

The main disadvantage is that the FEM generates simulations by using models designed

by a human subject and limited by a set of assumptions and simplifications applied to the

biomechanical behavior being studied. Then, in the best case scenario, the ML algorithm

will learn the simplified model, which might not be the most suitable choice to represent

the behavior of the target anatomical structure. This characteristic limits one of the main

advantages of ML algorithms, which is directly letting the machine learn the most suitable

model to solve a task. Additionally, the practice of using values reported in the literature

to set the parameters of a FEM-based model can limit the generalizability of the ML model

to new unreported cases.

In order to avoid imposing any assumptions or simplifications to the model learned by

a ML algorithm, the most suitable alternative is to apply it directly to datasets obtained

from subjects. Nevertheless, it is difficult to obtain data regarding the shape and materials

of an anatomical structure and its biomechanical behavior. In the publications analyzed,

only 8 of them could obtain all the mentioned data from subjects. The main strategies used

include accessing public and private databases and using animal samples.

One important consideration to have is that, even when ML can deliver faster biomechan-

ical simulations than the FEM in the reviewed publications, this does not imply that the
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FEM will eventually be discarded. First, the FEM is still required in many cases to generate

annotated training datasets for the ML algorithms, for example when in vivo experiments

are not possible due to ethical reasons, or when there is a risk of damaging the physical

samples or phantoms used to generate the dataset, or when data augmentation strategies

requiring an underlying mathematical model are being used. Some publications have also

considered integrating both ML algorithms and the FEM as an hybrid approach to their

particular problem. For example, Hambli et al.16,38,54 published various studies where a hy-

brid method combines the FEM to estimate bone properties at macroscopic scale with NN

to estimate bone properties at mesoscale.

Once suitable datasets have been obtained, they should be split in training, validations,

and testing sets. A commonly observed approach is to select fixed percentages for each set.

The training and evaluation process can be repeated many times in order to obtain robust

results, following a technique known as cross-validation. Alternatively, some publications

prefer to avoid the generation of a validation set and adjust the hyperparameters of the

selected ML model either empirically or by using default values. XXX

The present review also lists the main input and output features used to train, validate,

and test different ML applications. It was noted that some input and output pairs are

frequently used as a pattern to study different anatomical structures. For example, in the

haptics field, it is common to estimate deformations and reaction forces in various anatomical

structures when an external force is applied. Another common pattern is the estimation of

tissue properties of an anatomical structure after analyzing its biomechanical behavior. It

is expected that the identified patterns will help researchers and clinicians to apply ML

algorithms to their particular requirements and also to create new application patterns.

Regarding performance metrics, it is always very important to provide a quantitative

evaluation of any FEM or ML based biomechanical simulation. These metrics allow the

user to compare and select the most suitable approach for their particular problem and take

and informed decision. Many publications prefer to use metrics that provide information

about the mean error, such as the MAE, MSE or RMSE66. Nevertheless, it is possible to

use the PCC to obtain additional information regarding the strength of the linear relation

between the distribution of the reference data and the obtained results. When the concept

of displacement in space and time is involved in the evaluation of an ML algorithm, it was

observed that metrics for distance error are used. The ADE provides information regarding
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the mean distance error information, while the MinDE and MaxDE correspond to the

minimum and maximum distance error, respectively.

Finally, in terms of the time required to generate a simulation, it was evidenced that

in all publications that report it, the time required by simulations generated used only

the FEM is considerably longer than the time required by any method that includes ML

algorithms. Even more, simulations generated using ML algorithms can provide real-time

responses, as defined according to their particular application requirements. Based on these

facts, a combined strategy using FEM models to generate datasets offline and ML algorithms

trained on those datasets to provide real-time responses can help to accelerate the adoption

of biomechanical simulations in the clinical practice, in situations that require fast responses

and robustness.

X. CONCLUSION

This work presents a review of the research being done to generate faster biomechanical

simulations of the behavior of anatomical structures by using machine learning algorithms

and the finite element method, without compromising the performance of the simulations. A

total of 41 publications were reviewed, covering a wide spectrum of anatomical structures.

For each publication, this review provides details regarding the used ML algorithms, the

strategies used to obtain datasets required by those ML algorithms, the techniques employed

to split the datasets in training, validation, and testing sets, the selected input and output

features for each ML algorithm, the performance metrics considered, and the time gains

obtained. In all cases that reported the time required to generate the simulations, ML

algorithms were always a faster alternative to purely FEM-based simulations. Even more,

14 publications claimed to have achieved real-time responses by using ML algorithms. It

is expected that these fast responses will help to accelerate the adoption of biomechanical

simulations in the clinical practice, for applications such as surgical training, planning,

intervention, and follow up of patients.
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Ref. Year Structure Data Algorithm Input features Output features Metrics Time FEM Time ML

(min) (ms)

30 2006 Liver - Cellular NN External force Deformation Qualitative - -

5 2008 Liver FEM NeuroFEM NN External force Deformation ADE 0.5 28

9 2009 Stomach FEM RBF NN External force Deformation RMAE - 7

Reaction force

38 2010 Femur FEM NN Applied stress Bone properties MSE 16 1000

Load frequency

10 2011 Stomach FEM RBF NN External force Deformation ADE 0.3 4

Reaction force RMAE

54 2011 Femur FEM Neuromod NN Applied stress Bone properties MSE - -

Load frequency

15 2011 Femur FEM Neuromod NN Applied stress Apparent MSE 1800 1000

Bone properties damage

53 2011 Liver FEM NN External force Deformation MAE - -

Reaction force PCC

RMAE

RMSE

4 2012 Coronary FEM Feedforward NN Geometrical Von Mises PCC - -

artery SVR RBF features stress RMAE

16 2012 Femur Subjects Neuromod NN Applied stress Crack density MSE 1380 1000

FEM Bone properties and length

11 2012 Stomach FEM NeuroFEM NN External force Deformation ADE 0.5 28

8 2013 Prostate Phantom Feedforward NN External force Deformation ADE 11 40

FEM

67 2013 Cartilage FEM Feedforward NN Load level Von Mises MSE 780 690

Focused time Motion path stress PCC

delay NN

2 2013 Liver Subjects NeuroFEM NN External force Deformation ADE - -

FEM MinDE

MaxDE

47 2013 Bone FEM Feedforward NN Deformation External force MAE - -

MSE

PCC

RMAE

40 2014 Knee joint Subjects Feedforward NN Knee joint Gait MSE - -

load

55 2016 Cartilage FEM NN Force-time Cartilage MSE - 110

data properties PCC

33 2016 Liver Subjects Ensembles of External force Deformation ADE - 430

Breast FEM decision trees PSDE

56 2017 Foot FEM Feedforward NN Foot Ligament MSE - -

RBF NN kinematics stiffness PCC

43 2017 Bovine heart Subjects Deep NN Microscopy Tissue elastic MAE - 10000

images properties NMAE

39 2017 Liver Subjects Deep NN External force Deformation ADE 1 2890

FEM

34 2017 Breast Subjects Decision trees External force Deformation ADE 120 85

FEM Extremely PSDE

randomized trees

Random forests

TABLE I. Summary of the publications included in this review, sorted by year of publication. The

time ML is indicated in bold for publications that claim to have achieved real-time responses (part

1).
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Ref. Year Structure Data Algorithm Input features Output features Metrics Time FEM Time ML

source (min) (ms)

37 2017 Brain tumor Subjects NN External force Deformation ADE 150 7

FEM SVR MSE

36 2017 Thoracic aorta Subjects SVR RBF Shape features Aneurysm rupture RMSE 30 -

FEM risk

35 2018 Brain Subjects SVR RBF Geometrical Aneurysm rupture - - -

aneurysm FEM parameters risk

Wall shear

stress

17 2018 Spine Subjects Feedforward NN Spinal shape Spinal curve RMSE - -

Random forests progression

49 2018 Thoracic aorta Subjects Feedforward NN Aorta Zero-pressure MAE 27 1000

FEM geometry shape NMAE

32 2018 Breast FEM Decision trees External force Deformation ADE 120 240

Extremely

randomized trees

Random forests

3 2019 Heart Subjects Cubist trees Load Stress MAE 20 5000

FEM XGBoost trees Tissue Pressure and 60000 11000

properties volume

18 2019 Spine Subjects Long short-term Anthropometry Spinal curve MSE - -

memory NN records progression

41 2019 Lower body Subjects Feedforward NN Kinematic Ground reaction MAE - -

measurements forces RMSE

57 2019 Thoracic aorta Subjects NN Aorta Tissue MAE 120 1000

FEM geometry properties MSE

NMAE

19 2019 Arteries FEM Deep NN Geometry Von Mises MAE - -

and pressure stress MSE

parameters

20 2019 Breast Phantom U-Net NN External force Deformation ADE 0.02 3

FEM

44 2019 Equine bone Subjects NN Deformation External force MSE - -

Strain PCC

45 2019 Equine bone Subjects NN External force Deformation MSE 330 123000

Strain PCC

6 2019 Liver FEM U-Net NN External force Deformation ADE - 20

MSE

42 2020 Lower body Subjects Feedforward NN Kinematic Ground reaction PCC - -

measurements forces RMSE

58 2020 Thoracic aorta Subjects Deep NN Aorta Hemodynamic MAE 15 1000

FEM geometry parameters NMAE

NRMSE

RMSE

31 2020 Liver Subjects U-Mesh NN External force Deformation ADE 0.01 3

FEM

7 2020 Liver Subjects Feedforward NN External force Deformation ADE - 4

FEM Random forests MAE

MSE

PCC

PSDE

TABLE II. Summary of the publications included in this review, sorted by year of publication.

The time ML is indicated in bold for publications that claim to have achieved real-time responses

(part 2).
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