Accepted in IEEE 63rd International Midwest Symposium on Circuits and Systems (MWSCAS 2020), 2020
Authors accepted manuscript. The final published version available at https://doi.org/10.1109/MWSCAS48704.2020.9184456

CU Size Decision for Low Complexity HEVC Intra
Coding based on Deep Reinforcement Learning

Mohammadreza Jamali and Stéphane Coulombe

Department of Software and IT Engineering

Ecole de technologie supérieure, Université du Québec

Montreal, Canada

mohammadreza.jamali.1 @ens.etsmtl.ca, stephane.coulombe@etsmtl.ca

Abstract—High efficiency video coding (HEVC) uses a
quadtree-based structure for coding unit (CU) splitting to ef-
fectively encode various video sequences with different visual
characteristics. However, this new structure results in a dramati-
cally increased complexity that makes real-time HEVC encoding
very challenging. In this paper, we propose a novel CU size
decision method based on deep reinforcement learning and active
feature acquisition to reduce HEVC intra coding computational
complexity and encoding time. The proposed method carries out
early splitting and early splitting termination by considering the
encoder and CU as an agent-environment system. More specif-
ically, through early splitting, the proposed method precludes
the need for rate-distortion optimization at the current level. In
addition, through early splitting termination, it disposes of the
lower level computations. The proposed method provides a very
fast encoder with a small quality penalty. Experimental results
show that it achieves a 51.3% encoding time reduction on average
with a small quality loss of 0.041 dB for the BD-PSNR, when we
compare our method to the HEVC test model.

Index Terms—Coding unit size decision, deep reinforcement
learning, high efficiency video coding (HEVC), H.265, intra video
coding, low complexity video coding, video compression

I. INTRODUCTION

High efficiency video coding (HEVC)/H.265 is the most re-
cent video coding standard that achieves a significant improve-
ment in compression efficiency and provides a 50% bit rate
reduction compared to the highly successful H.264/advanced
video coding (AVC) with the same quality. The improved
performance of HEVC is at the expense of much higher com-
putational complexity at the encoder, making it challenging to
be deployed in real-time applications. In frame splitting, unlike
H.264/AVC which employs 16 x 16 macroblocks, HEVC
introduces coding tree units (CTUs) with a maximum size of
64 x 64 [1]. The CTU may be split recursively and content-
adaptively into coding units (CUs) in a quadtree-based manner,
resulting in an efficient coding of background and objects with
various sizes and shapes. This frame partitioning along with
mode decision result in a significant computational complexity.

To lower this high complexity, previous works have pro-
posed to either avoid processing the entire tree, resulting in a
fast CU size decision [2]-[6] or decrease the number of intra

This work was supported by Vantrix Corporation and by the Natural
Sciences and Engineering Research Council of Canada under the Collaborative
Research and Development Program (NSERC-CRD 428942-11).

Hamidreza Sadreazami
Bio-engineering Department
McGill University
Montreal, Canada
hamidreza.sadreazami @mail.mcgill.ca

modes going through the rate-distortion optimization (RDO)
[7]-[12], resulting in a fast mode decision. Some other works
combine the two approaches to achieve faster encoders [13],
[14]. In [4], a data-driven CU size decision is proposed in
which a support vector machine based method is applied at
all four CU levels. This method consists of two steps. In the
first step, an offline classifier decides on CU split termination
or skipping the current CU. In the second step, and for those
CUs which are not early skipped or early terminated, an
online binary classifier, based on previous frames, is proposed
to further refine the CU size decision. In [6], a method is
proposed for fast CU size decision using statistical informa-
tion. This method uses the image complexity along with an
adaptive depth prediction process to early determine the size
of the CU. The CU splitting is terminated early based on a
Bayesian classification and a quadratic discrimination analysis.
In [13], a gradient-based approach is proposed for fast CU size
decision which uses texture complexity. The gradients are also
employed to decrease intra mode candidates.

To lower HEVC encoder high complexity, in this paper, a
new framework for intra CU size decision is proposed based
on deep reinforcement learning (RL) and active feature acqui-
sition [15]. The proposed method is realized by incorporating
a CU early splitting and a CU early splitting termination.
The CU early splitting aims at skipping mode decision at the
current level and moving directly to the next depth without
RDO computations. In addition, CU early splitting termination
aims at terminating the splitting process and skipping mode
decision for the next levels. As a result, the proposed method
eliminates the non-necessary CU levels from the RDO process.
We also propose to consider CU size decision as a markov de-
cision process (MDP) and the encoder as an agent, sequentially
taking coding decisions. To the best of our knowledge, this is
the first work to consider HEVC intra CU size decision as a
sequential decision making problem and to solve it by RL.
In addition, it is the first work to utilize sequential feature
acquisition in HEVC coding. Sequential feature acquisition is
proposed to compute the most discriminative features used to
make better decisions by the RL agent. It should be noted
that any CU size decision method, including ours, provides an
independent module which may be combined with fast mode
decision methods to achieve even faster intra coding.

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any

copyrighted component of this work in other works.

scoulombe
Accepted in IEEE 63rd International Midwest Symposium on Circuits and Systems (MWSCAS 2020), 2020

Fig. 1: Example of frame splitting into CUs (red) and PUs
(green) based on the HEVC quadtree structure, RaceHorses.

The paper is organized as follows. Section II discusses
HEVC intra coding. Section III introduces requisite RL con-
cepts. In section IV, our method of CU size decision for
complexity reduction is proposed. Section V presents the
experimental results and finally section VI concludes the paper.

II. OVERVIEW OF HEVC INTRA CODING

HEVC intra coding, compared to previous video codecs,
carries some new features such as a new frame splitting
approach and an increased number of prediction modes. In
frame splitting, it uses a quadtree structure, where the largest
CU (with a size of 64 x 64) is recursively split into four equal-
sized CUs. The size of the smallest CU is 8 x 8. To perform
the prediction with intra coding, for each CU a prediction unit
(PU) is associated, except for the 8 x 8 CU, which could be
predicted as an 8 x 8 PU or four 4 x 4 PUs. Fig. 1 shows
an example of dividing a frame into CUs and PUs for one of
the sample sequences, namely, the RaceHorses sequence [16],
using such quadtree structure. From this figure, it can be
observed that there are many possibilities to split a picture into
multiple blocks and many ways to combine the coding tools.
In order to find the best combination, an exhaustive execution
of RDO may be performed, which is highly time consuming.

In mode decision, HEVC increases the number of intra
modes to 35, compared to 9 modes in H.264. To select the best
mode at each CU level, the HEVC test model (HM) operates
in two steps. First, it selects the N candidates with the lowest
rough mode decision (RMD) costs. Then the RDO process
chooses the mode with the lowest RDO cost as the final mode.
In the first step, the RMD cost (Cryp) is computed as:

Crup = SATD, +)\p X Rp, (D)

where)\, is a Lagrange multiplier, R, is the mode coding bi-
trate and SATD; is the sum of absolute transformed differences
(SATD) between the predicted and original blocks.

In the second step, and for the selected candidates, the RDO
cost (Crpo) is computed as:

Croo = (SSE; + we X SSE) + A X R,)

where)\, is a Lagrange multiplier and R,,, is the PU coding
bitrate. SSE; and SSE. are the sum of squared errors (SSE)

St

St+1 Ct a

Environment

Fig. 2: Reinforcement learning configuration [17].

between the reconstructed luma and chroma blocks and the
original ones, respectively, and w. is the chroma weight
determined based on the quantization parameter.

III. REINFORCEMENT LEARNING

Reinforcement learning is a type of machine learning
technique containing a set of powerful algorithms to find
optimal solutions for complicated sequential problems. In an
RL system, an agent is learning how to take actions in an
environment to minimize (maximize) a cost (reward) function.
The agent, at time ¢, observes the environment state as s;
and then takes action a; which results in an immediate cost
(reward) of ¢;(r;) while the environment goes to the next state
of s¢y1. Fig. 2 shows a configuration of an RL system.

To apply RL to the CU splitting problem, we describe it
as a sequential decision making problem, where the CU is an
MDP and the encoder is an agent sequentially taking coding
decisions. An MDP is defined as a tuple of (S, A, T, C'), where
S is a set of states, A is a set of actions, C is a stochastic cost
function and 7" is a stochastic function, which determines the
transitions between the states. By taking an action a, the agent
changes the state of the MDP from s to s’. In such a system,
a policy 7 is defined as a function which outputs an action a
for a given state s such as a = 7(s). The value of an action
performed in a certain state is defined by a state-action value
function Q™ (s, a), which indicates the expected return cost,
when starting from state s, taking action a and then following
policy 7. This function is called @)-function and defined as:

ZVkCtM‘St—Syat—a])

k=0

Q"(s,a) = Ex

where 0 < v < 1 is a discount factor to make future costs
less important than the immediate cost.

If the MDP is large with too many states and actions (or
continuous states and actions), the state-action value function
is represented with function approximation as follows:

Qr(s,0) = Qx(s,a). 4

This makes it possible to generalize from observed states
and actions to unobserved ones. In our proposed method,
and as a function approximation method, we propose the use

(sacs) Policy

Explorer Learner Performer

Fig. 3: Three agents of a batch-mode reinforcement learning
system.

of neural networks as they are known to approximate any
function by using non-linearity via different activations.

Batch-mode Reinforcement Learning

In batch-mode RL, the agent tries to find the best policy
using a set (batch) of transition samples. Batch-mode RL
algorithms are popular because of their low complexity, data-
efficiency and stability. In batch-mode RL, the agent receives a
set of n transition samples F = {(s¢, at, ¢, Se4+1)[t = 1,...,n}
and then finds the best possible policy based on these samples.
Unlike online learning, where the performance agent and the
learning agent are the same, in batch-mode RL they are clearly
separated with an additional agent for exploring purpose. Fig.
3 shows the three agents of a batch-mode RL system.

IV. FAsT CU SI1ZE DECISION

We consider CU size decision as a sequential decision mak-
ing problem and formulate it by RL. We deploy a batch-mode
RL, based on fitted-Q iteration (FQI) [18], to find a policy for
coding unit size decision in the context of intra HEVC coding.
To this end, we use n transition samples in the form of four-
tuples (s,a,c,s') in the set F = {(s,a,¢,s')|l = 1,...,n}
to estimate the state-action value function (Q-function). The
policy is derived based on this estimation, which starts with
Q°(s,a) = ¢° for all states and actions, where ¢° is the initial
value and is set to zero ((j‘) is a constant and, therefore, is
not a function of s and a). Ql(s,a) is then estimated using
Q°(s,a). It is noted that the exact Q' (s, a) is the conditional
expectation of the immediate cost as given by:

Q'(s,a) =E

ct‘stzs,at:al. 5

It is the expected cost of an action a in a given state s if the
agent interacts with the environment just one time. After the
first estimation, the following two steps are iterated starting
from ¢ = 0 until a terminating condition is satisfied:

1- The set

7—11+1 _ {(S, a, q’ﬁtl)@zl =c+ ryglel% Qi<s/, a/)} (6)

is generated based on all transition samples provided by the
set F. In the above definition, ¢ and s’ are functions of s and
a, so q‘éf} is a function of s and a.

2- A supervised learning method is used to find Q**! as an
approximation of Q**! based on the set 7*1.

Having QN (s,a), and by assuming a discrete action space,
the approximated optimal policy is obtained as:

7% (s) = argmin QN (s, a). 7
acA

Using this policy, the performance agent can take an action in
a given state, although the state has never been seen before.

A. Problem Formulation

If the system dynamics and the cost function are available,
based on dynamic programming (DP), an optimal policy 7*
exists for the system. However, in the proposed method, we
aim at finding a policy based on a finite set of observed
sample transitions. Since theoretically it is not tractable to
find an optimal policy based on this finite set of samples, our
objective is to find an approximation of such policy. In the
proposed method, we consider .S to be multi-dimensional and
continuous and A to be a finite set of discrete actions.

The first step is an exploration phase, where the encoder
runs and the data is collected. In this step, which is the
exploring phase in the batch-mode RL, the actions are chosen
randomly to see the impact of good and bad actions. In the next
step, we choose neural networks and in particular, multi-layer
perceptrons (MLPs) to approximate the Q)-function since they
are capable of approximating nonlinear functions very well.
This step, as the learning agent, is the second module of the
algorithm. Finally, the encoder behaves as the performance
agent by using the learned)-function and takes actions based
on the policy obtained in the learning phase.

Algorithm 1 shows different steps of the proposed method
for CU size decision in the form of a fitted learning algorithm.
In order to obtain the approximated optimal policy, we use
a modified version of (7) to make the implementation more
straightforward. In this approach, the set F is split based
on different actions resulting in multiple F, for each action.
Then a regression algorithm can be applied to each of these
subsets to derive the corresponding Qév (s). Then all these Q-
functions are computed and the action which its related Qflv (s)
is minimum is selected. In view of this, we apply the proposed
supervised learning method based on MLPs separately to each
action. After all iterations, a separate Qfl\’ is achieved for each
action. For a given state, the performance agent (encoder in
our case) chooses the action with the lowest value of Qflv as
the selected action. In the algorithm, /N4 is the total number
of actions and n,,, is the number of four-tuples in F,, . In
addition, AS; is the set of valid actions in state s;.

m*

B. State Representation

To apply RL to high-dimensional environments, the state
space should be mapped to a low-dimensional feature space.
Thus, one of the key components of any RL system is state
representation, i.e., mapping states to low-dimensional feature
vectors using field knowledge. This includes determining the
number of features and also the areas they are targeting. If the
state space is n-dimensional, the mapping is:

¢:R" — R™ m<n, (3)

where m is the dimension of the feature space. As a result,
the collected data set is:

Fo ={(¢(s), a,¢,6(5))l(s,a,¢,5') € F},)

Algorithm 1 Encoder training phase (learning agent)

Input: F = {(s,a,¢,s')i[l=1,...,n}, A, Na
Output: QY as an approximation of the value function QY
for all action a € A
: k=0
2: initialization: set ng to zero everywhere on s, m =1 to
Ng

3: repeat

4: for m=1to N4 do

5: Fa,, ={(s,a,¢,8') € Fla=an}

6: Ta, = (i, 00),1 =1,...,n4,, } where:
7: i =S,00=c + ’YQIHEIHLQSI(S;)

8: Function approximation based on NN
9: QkH+1 « NN(T..)

10: end for

1n: k=k+1

12: until £ = N

13: return QaNm, m=1to Ny

in which ¢(s) = (f1(s), f2(s), ..., fn.(s)), where Np is
the number of features describing the state. To find the
best mapping ¢, we experimentally obtain the best state
representation based on the most relevant features. To this
end, in the proposed method, the selected features for the
problem of CU size decision are:

- featureRMDcostBlock: the RMD cost of the CU.

- featureRMDcostBlockComputed: binary value indicating
whether the RMD cost is computed for the CU.

- featureRDOcostBlock: the RDO cost of the CU.

- featureRDOcostBlockComputed: binary value indicating
whether the RDO cost is computed for the CU.

- featureMGA: the mean of gradient amplitudes (MGA) of
the CU.

- featureMDGA':: the mean of directional gradient amplitudes
(MDGA) of the CU.

- featureEarlySplitTermination: binary value
whether the CU splitting is early terminated.

- featureEarlySplitting: binary value indicating whether the
CU is early splitted.

- featureStandardSplitting: ~ binary value indicating
whether the CU is splitted similar to the standard HEVC
implementation.

indicating

MGA is an appropriate measure to evaluate block’s varia-
tion. A CU with a low degree of pixel variation is less likely
to be split into four smaller CUs. The MGA as a measure of
global gradient is given by:

MGA = %ZZ(\GX(MM +lGy (@), A0

where n is the number of pixels in the CU, and Gx and Gy
are the gradient components computed by Sobel operator.

MDGA shows if a CU can be accurately predicted by an
angular mode. The MDGA is given by:

MDGA = 37 S (Gx (i)] + Gy . 9)) cos(0(i).
o an

where 6 is the angle between the best angular mode
and the gradient. Using these features, each state can be
represented by a 9-dimensional feature vector. All the states
are categorized into two classes: terminal and non-terminal
states. Terminal states are the states in which the encoding
process is terminated for the CU and the episode ends. There
are three terminal states categories as follows:

- Early terminated (ET) state: is the state of a CU in which
the encoding process is terminated and the encoding of the
lower depths is avoided. The featureEarlySplitTermination for
this state is 1.

- Early split (ES) state: is the state of a CU in which the
encoding process at the current depth is interrupted and the
encoder moves to the lower depth. The featureEarlySplitting
for this state is 1.

- Standard split (SS) state: is the state of a CU for
which the encoding process at the current depth is fully
performed and the encoder moves to the lower depth to
continue the encoding process. This CU is treated exactly
as it is treated in the HM (the exhaustive approach). The
featureStandardSplitting for this state is 1.

Non-terminal states are those in which featureEarlySplitTer-
mination, featureEarlySplitting and featureStandardSplitting
are zero and the encoding process of the corresponding CU
has not yet terminated.

C. Action Space and Cost Function

The action space A = {aj,as,...,any,} contains Ny
discrete number of actions. In our problem, there are in total
five actions available for the encoder as the performance
agent. Not all actions are valid in all states. We define two
kinds of actions. First, there are information-gathering actions
(IGAs) which need to be taken just one time and gain some
knowledge about the state of the system. For the purpose of
this work, we consider obtaining the value of a feature as
the desired knowledge. Second, there are episode terminating
actions (ETAs) which lead to a terminal state and like IGAs
are taken only one time in each episode.

The reason to define and apply IGAs is well-understood
by considering the problem of active feature acquisition [15]
in a prediction scenario. Expensive features, in terms of
computation, which are not much useful for an accurate
prediction, should not be computed. In view of this, the
agent should be aware of whether computing a given feature
increases the accuracy of prediction or not. This is very
challenging when dealing with systems for which feature
computation requires a great deal of computational resources.
This problem is not usually considered in a traditional

machine learning framework, where the features are assumed
to be known a priori and without any cost (feature acquisition
and prediction are assumed to be independent). To address
this issue, we define IGAs in such a way that the agent
associates the cost of computing a feature with the cost of
taking an action in the RL, i.e., incorporating the concept of
active feature acquisition in the learning problem. Following
is the list of actions along with the states they are valid in:

- actEarlySplitTermination: this action early terminates the
splitting procedure and removes the lower depths to be pro-
cessed. It is an ETA and is valid when featureRDOcostBlock-
Computed=true.

- actEarlySplitting: this action early splits the CU before
completing the encoding process for the current depth. It is an
ETA and is valid when featureRDOcostBlockComputed=false.

- actStandardSplitting: this action splits the CU, as standard
procedure in HM, into four blocks. It is an ETA and is valid
when featureRDOcostBlockComputed=true.

- actComputeRMDcostBlock: this action computes the RMD
cost of the CU. It is an IGA and is valid when featureRMD-
costBlockComputed=false.

-actComputeRDOcostBlock: ~ this action computes
the RDO cost of the CU. It is an IGA and is
valid when featureRDOcostBlockComputed=false and
featureRMDcostBlockComputed=true.

It should be noted that no action is valid in a terminal state
because the episode ends in that state.

The cost function is defined to reflect the main trade-off
of an encoding system between computational complexity
and visual quality. Since we aim at designing a fast encoder
providing high rate-distortion performance, the time required
by each action as well as the RD loss resulted from taking that
action are considered as the costs for that action. The following
definition provides a combination of these two costs:

Cq = Crq + MCT, (12)

where ¢, is the cost of each action. c¢,4 is the rate-distortion
cost, cr is the computational time we pay as a result of taking
an action and 7 is the trade-off weight between c,4 and cp.

V. EXPERIMENTAL RESULTS

In this section, the performance of the proposed RL-based
method for CU size decision is investigated and the obtained
results are presented. For implementation, we use the HEVC
test model HM 15.0 and a PC equipped with an Intel®
Core™ i7-4790 CPU @ 3.60 GHz and 32 GB of RAM on
a Windows 10 system. The configuration and profile are set to
all-intra and Main profile, respectively. The trade-off weight
n of (12) is set to 0.2. The results are based on the common
test conditions recommended in [16], and are reported based
on time reduction (TR), Bjgntegaard delta rate [19] (BD-
Rate) and Bjgntegaard delta peak signal-to-noise ratio [19]
(BD-PSNR). The sequences belong to five classes to cover
various resolutions and applications. The results are averaged

over four quantization parameters (QPs): 22, 27, 32 and 37.
The training phase is performed based on Algorithm 1. For
-function approximation in line 9 of the algorithm, the MLP
is used which comprises one input layer, two hidden layers
having 18 and 9 neurons, respectively, and one output layer.
The number of layers and the number of neurons in each layer
are selected through a grid searching optimization technique.
The activation functions for the hidden layers are tanh and
for the output layer is linear. The tanh activation function
is a zero-centered function which overcomes the non-zero
centric problem. This makes learning for the next layer more
straightforward. A linear activation function can be used in
the output layer to result in an unbounded value or to control
the shape and range of output independently. The RMSProp
is used as the optimizer, with learning rate of 0.001, in the
training process and mean-squared error cost function is used
to measure the performance of the model. The entire network
is trained in a batch mode of size 32 and the updates are
performed by back-propagation which iteratively updates the
weights and minimizes the cost function.

Table I gives the results for the proposed RL-based method.
This method leads to a time reduction of 51.3% with a BD-
Rate increase of 0.84%:; a trade-off which is considerable. In
the exploring phase, the RaceHorses sequence is used as the
training sequence, and hence, the average results are presented
with and without considering this sequence. To compare our
work to the other methods, Table II presents results of related
works on coding unit size decision. As seen from this table,
the proposed method offers an improved complexity-efficiency
trade-off compared to other methods. It is about 20% faster
than method in [13] at a slight penalty in RD performance. The
quality is improved over [6] and both quality and complexity
are improved over [4]. Compared to [4] we introduce more
relevant textural features. In addition, in our proposed method,
features are only computed when they are useful for CU size
prediction. Otherwise, resources are not wasted for features
computations. Moreover, while [4] uses previous frames for
CU size decision, our method is only based on the current
frame. This makes our method applicable to HEVC intra
coding when it is applied to still image coding. It should
be noted that our method is using features based on gradient.
As a result, and compared to other works, it is specially
useful for sequences where there are dominant directional
gradients for most CUs or when the gradient for most CUs
in the frame is close to zero. This is the case in sequences
such as SteamLocomotive where there is one large object in
a homogeneous background. In these sequences, CUs in the
homogeneous areas become larger in size. As a result, CU
size decision becomes more straightforward for our method.
Our method also works well for sequences such as BQTerrace,
where there are long distinct edges in a frame making it easier
to find a dominant directional gradient and as a result the
proper CU sizes. It should be noted that the proposed RL-
based CU size decision method can be combined by any mode
decision method such as the method proposed in [7] to achieve
even faster HEVC intra coding.

TABLE I: Experimental results while implementing RL-based CU size decision compared to HM

Class Video sequence TR (%) BD-Rate (%) BD-PSNR (dB)
Traffic -54.5 1.21 -0.059
A PeopleOnStreet -54.4 1.25 -0.060
(2560 1600) Nebuta -52.9 0.21 -0.018
SteamLocomotive -52.8 0.22 -0.019
Cactus -49.6 0.85 -0.029
B Kimono -59.4 1.68 -0.056
ParkScene -50.2 0.76 -0.032
(1920x1080) | B, ketballDrive 571 133 0,033
BQTerrace -46.9 0.42 -0.028
BQMall -51.8 0.61 -0.036
C PartyScene -37.6 0.27 -0.021
(832x480) RaceHorsesC -48.5 0.52 -0.038
BasketballDrill -50.3 0.90 -0.039
RaceHorses -43.6 0.65 -0.049
D BasketballPass -50.3 0.65 -0.042
(416x240) BlowingBubbles -42.9 0.27 -0.012
BQSquare -42.7 0.19 -0.020
E FourPeople -61.1 1.61 -0.078
Johnny -58.3 1.73 -0.088
(1280x720) | jistenAndSara -60.3 1.45 0.063
Average (with training sequence) -51.3 0.84 -0.041
Average (without training sequence) -51.7 0.85 -0.041

TABLE II: CU size decision methods comparison

TR (%) | BD-Rate (%)
Proposed method -51.3 0.84
[13] -31.0 0.70
[6] -55.5 1.01
[4] -50.3 1.41

VI. CONCLUSION

In this work, we have proposed a novel method for coding
unit size decision based on deep reinforcement learning. This
method takes advantage of two approaches to reduce the intra
coding complexity. In the first approach, the CU is early split
and the mode decision computations are excluded from the
current level. In the second approach, the CU splitting process
is early terminated and all computations for the next levels are
omitted which results in a considerable time reduction. In the
proposed method, we have considered the CU size decision
as a sequential decision making problem and formulate it
by reinforcement learning. To this end, we have deployed
a batch-mode RL to find a coding policy for coding unit
size decision in the context of HEVC intra coding. In our
problem, we aimed at finding a policy based on a finite set of
observed sample transitions. Moreover, we used new features
for CU size decision which are more relevant than features
proposed in the literature. In summary, the competitiveness of
the proposed method can be attributed to the fact that only
most discriminative features are computed at any given step,
resulting in a significant complexity reduction.

REFERENCES

[1] G.J. Sullivan, J. R. Ohm, W. J. Han, and T. Wiegand, “Overview of the
high efficiency video coding (HEVC) standard,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 22, no. 12, 2012.

[2] L. Shen, Z. Zhang, and Z. Liu, “Effective CU size decision for HEVC
intracoding,” IEEE Trans. on Image Processing, vol. 23, no. 10, 2014.

[3] M. Jamali and S. Coulombe, “Coding unit splitting early termination for
fast HEVC intra coding based on global and directional gradients,” in
2016 IEEE Workshop on Multimedia Signal Processing (MMSP), 2016.

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]
(18]

[19]

Y. Zhang, Z. Pan, N. Li, X. Wang, G. Jiang, and S. Kwong, “Effective
data driven coding unit size decision approaches for HEVC intra cod-
ing,” IEEE Transactions on Circuits and Systems for Video Technology,
vol. 28, no. 11, pp. 3208-3222, 2018.

A. Mercat, F. Arrestier, M. Pelcat, W. Hamidouche, and D. Menard,
“Machine learning based choice of characteristics for the one-shot
determination of the HEVC intra coding tree,” in Picture Coding
Symposium (PCS), pp. 263-267, June 2018.

D. Lee and J. Jeong, “Fast intra coding unit decision for high efficiency
video coding based on statistical information,” Signal Processing: Image
Communication, vol. 55, pp. 121-129, July 2017.

M. Jamali and S. Coulombe, “Fast HEVC intra mode decision based
on RDO cost prediction,” IEEE Transactions on Broadcasting, vol. 65,
pp. 109-122, March 2019.

M. Jamali, S. Coulombe, and F. Caron, “Method and system for
fast mode decision for high efficiency video coding,” US Patent,
US20160127725A1, Nov 2018.

D. Ruiz, G. Ferniandez-Escribano, J. L. Martinez, and P. Cuenca, “Fast
intra mode decision algorithm based on texture orientation detection in
HEVC,” Signal Processing: Image Communication, vol. 44, 2016.

M. Jamali and S. Coulombe, “RDO cost modeling for low-complexity
HEVC intra coding,” in 2016 IEEE Canadian Conference on Electrical
and Computer Engineering (CCECE), pp. 1-5, May 2016.

I. Marzuki, J. Ma, Y.-J. Ahn, and D. Sim, “A context-adaptive fast intra
coding algorithm of high-efficiency video coding (HEVC),” Journal of
Real-Time Image Processing, pp. 1-17, 2016.

M. Jamali, S. Coulombe, and F. Caron, “Fast HEVC intra mode decision
based on edge detection and SATD costs classification,” in 2015 Data
Compression Conference, pp. 43-52, April 2015.

A. BenHajyoussef, T. Ezzedine, and A. Bouallegue, “Gradient-based
pre-processing for intra prediction in high efficiency video coding,”
EURASIP Journal on Image and Video Processing, Dec. 2017.

W. Zhu, Y. Yi, H. Zhang, P. Chen, and H. Zhang, “Fast mode deci-
sion algorithm for HEVC intra coding based on texture partition and
direction,” Journal of Real-Time Image Processing, vol. 17, April 2018.
H. Shim, S. J. Hwang, and E. Yang, “Why pay more when you can
pay less: A joint learning framework for active feature acquisition and
classification,” CoRR, vol. abs/1709.05964, 2017.

F. Bossen, “Common test conditions and software reference configura-
tions,” Joint Collaborative Team on Video Coding (JCT-VC), JCTVC-
L1100, 2013.

R. Sutton and A. Barto, Reinforcement learning: An introduction.
Adaptive computation and machine learning, MIT Press, 1998.

D. Ernst, P. Geurts, and L. Wehenkel, “Tree-based batch mode rein-
forcement learning,” Journal of Machine Learning Research, 2005.

G. Bjgntegaard, “Calculation of average PSNR differences between RD-
curves,” VCEG-M33, 2001.

