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Abstract. Redundancy and parallelism make decentralized multi-robot
systems appealing solutions for the exploration of extreme environments.
However, effective cooperation can require team-wide connectivity and
a carefully designed communication. Several recently proposed decen-
tralized connectivity maintenance approaches exploit elegant algebraic
results drawn from spectral graph theory. Yet, these proposals are rarely
taken beyond simulations or laboratory implementations. The contribu-
tion of this work is two-fold: (i) we describe the full-stack implementation—
from hardware to software—of a decentralized control law for robust con-
nectivity maintenance; and (ii) we assess, in the field, our robots’ ability
to correctly exchange the information required to execute it.

1 Introduction

Multi-robot systems can be used to tackle complex problems that benefit
from physical parallelism and the inherent fault-tolerance provided by redundancy—
surveillance, disaster recovery, and planetary exploration being a few notable ex-
amples. Decentralized control strategies further improve the reliability of these
systems by partially relaxing communication bandwidth requirements and elim-
inating the risks posed by single points of failure.

For many multi-robot applications, an essential requirement for effective co-
operation is the enforcement of global connectivity. That is, the ability for every
robot to find a communication path to any other robot in the team. When only
limited-range communication is available, global connectivity can require inter-
mediate robots to also act as relays. Assessing and controlling the global connec-
tivity of a communication graph (where robots are nodes and radios create links)
in a decentralized fashion is not trivial [2]. Several recent approaches [11,15] ex-
ploit the spectral graph theory result stating that the second smallest eigenvalue
of the Laplacian matrix L of the communication graph (often referred to as λ2,
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λ, or algebraic connectivity), is non-zero if and only if the underlying commu-
nication graph is connected [4]. These proposals, however, are typically limited
to simulations [15] or controlled laboratory experiments [11].

In this work, we provide two contributions to the research on decentralized
assessment and control of algebraic connectivity (and, in general, multi-robot
connectivity maintenance). First, we present how to implement a decentral-
ized connectivity control law [5] in a team of quadcopters—from the computing
and communication hardware level, to the robotic middleware and control soft-
ware. Second, we report on the communication performance of field experiments
conducted using flying three quadcopters endowed with our hardware/software
stack.

2 Related Work

Fiedler wrote about the properties of the second smallest eigenvalue λ2—also
called Fiedler eigenvalue—of the unweighted Laplacian matrix of a graph in a
seminal paper [4] where he derives, from the Perron–Frobenius theorem, that λ2
“is zero if and only if the graph is not connected”. More recent research discusses
how to compute λ2 in decentralized fashion in ad-hoc networks. The work of
Sahai et al. [13] exploits wave propagation and fast Fourier transforms. Bertrand
and Moonen [2] propose a method based on the power iteration algorithm.

As networked multi-robot systems research [1] proliferated over the last
decade, many suggested to include algebraic connectivity in control laws aimed
at preserving the global connectivity of robotic teams. Ji and Egerstedt [6]
proposed—and evaluated in simulation—multiple feedback control laws ensur-
ing connectivity for the rendezvous and formation control problems based on
the weighted Laplacian matrix. Robuffo Giordano et al. [11] introduced a de-
centralized control law based on a potential function of algebraic connectivity.
Their work was tested with four quadrotors in a laboratory setting (using Wi-Fi
for communication and a commercial mo-cap solution for localization). Even so,
the authors observed discrepancies “due to the presence of noise and small com-
munication delays, and in general to all of those non-idealities and disturbances
affecting real conditions” [11]. Sabattini et al. [12] evaluated their decentralized
connectivity maintenance control law using four E-Puck robots. Solana et al. [15]
used λ2 for path planning in cluttered environments, yet only in simulation.

When aiming at field deployment in extreme areas (such as caves, plane-
tary surfaces, and regions hit by natural disasters), however, one has to make
sure that a control law’s performance is robust against hardware and commu-
nication failures. Approaches only controlling the Fielder eigenvalue might be
unsuccessful as they can be blind to certain pathological configurations with
highly vulnerable nodes. A combined control law—to simultaneously improve
algebraic connectivity and robustness of a network—was proposed and eval-
uated in simulation by Ghedini et al. [5]. We brought this approach to a real-
world implementation using eight K-Team Khepera IV robots and tested against
faulty communication—albeit only through emulation—in [9]. Finer tuning of
its hyper-parameterization and coverage approach were discussed in [8] and [14],
respectively. The work in this article advances previous research by investigating
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the challenges of transferring these approaches beyond the reality gap, in field
robotics.

3 Control Law

We consider the control law proposed in [5]. This law is intended to both (i)
preserve connectivity and (ii) strengthen the communication topology against
the failure of individual robots. This control law can be implemented in a fully de-
centralized fashion under the loose assumption of exploiting a situated communi-
cation model. That is, robots possess range and bearing information about their
1-hop neighbors (see Figure 1). Considering robots modeled as m-dimensional
single integrators5, and defining pi ∈ Rm as the position of the i-th robot, the
control law is defined as the linear combination of connectivity, robustness, and
(in this implementation) coverage contributions which, for robot i, can be writ-
ten as:

ṗi = ui = σuci + ψuri + ζuLJi (1)

The computation of uc, ur, uLJ ∈ Rm is detailed in the following subsections.
Offline and online schemes for the selection of hyper-parameters σ, ψ, ζ ∈ R were
presented in [8, 9] and not further discussed here.
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Fig. 1. In a multi-robot system with limited-range communication capabilities, we
define as direct (or 1-hop) neighbors of a robot those robots that are within such
range. We can then iteratively apply this notion to define 2-hop neighborhoods.

3.1 Connectivity Maintenance Contribution

The first component on the right side of (1), uci , is the one intended to main-
tain global connectivity, i.e., to prevent splits in the communication graph of

5 Even though this is a very simple model, by endowing a robot with a sufficiently good
Cartesian trajectory tracking controller, it can be used to represent the kinematic
behavior of several types of ground and flying mobile robots [7].
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the multi-robot system. Indeed, this is done through the control of λ2. Algebraic
connectivity is positive only when the graph is connected and also upper bounds
the sparsest cut in the network. Decentralized computation of λ2 in ad-hoc net-
works was demonstrated, among others, by [2] and [3]. Both of these approaches
rely on the power iteration (PI) algorithm: they compute the largest eigenvalue
(and associated eigenvector x) of a matrix M using the update rule:

xl+1 = Mxl (2)

Over communication graphs, the update in (2) can be computed in a decen-
tralized fashion for any shift operator (i.e., any matrix with the same sparsity
pattern of the graph). The adjacency A and Laplacian L matrices are two such
operators. For L the decentralized update rule becomes

xl+1
k = Lkk · xlk +

∑
j|j 6=k∧Lkj 6=0

Ljk · xlj

where xlk is the k-th robot’s estimate of the k-th entry of the eigenvector x, at
the l-th iteration, and Lkj is the element (k, j) of the Laplacian matrix L. Then,
using an energy function V (λ2) that is non-negative, non-increasing with respect
to λ2, and that goes to infinity for λ2 approaching zero (such as the one proposed
in [12]) , one can compute the connectivity contribution to (2) as follows

uci = −∂V (λ2)

∂pi
= −∂V (λ2)

∂λ2

∂λ2
∂pi

(3)

The main caveat is that a PI approach requires a “mean correction step” to
avoid numerical instability. In practice, this entails periodically broadcasting
information about each robot’s estimate of vector x entry across the team.

3.2 Robustness Improvement Contribution

Motivation for adding a robustness contribution uri to control law (1) was
given in [5]. A communication graph with a positive λ2 can be globally connected
but still very susceptible to the failures of nodes with high centrality scores (e.g.,
betweenness centrality) [5]. Robustness aims at mitigating this vulnerability—

critical for field experiments—quantified through the heuristic νki = |Pathi(k)|
|Πi|

where |Πi| is the number of 1- and 2-hops neighbors (see Figure 1) of i, and
|Pathi(k)| is the number of nodes that are exactly 2-hops away from node i and
relying on ≤ k 2-hops paths to communicate with i. Having defined qki ∈ R3 as
the barycentre of the robots in Pathi(k), we compute the control input as:

uri = ξr(ν
k
i )

qki − pi∥∥qki − pi∥∥ (4)

where ξr(·) evaluates as 0 or 1 depending on whether V ki surpasses threshold
r or not [5]. The decentralized computation of uri requires the robots to know
about their 2-hop neighbors, i.e., to be able to exchange information about all
their direct neighbors to all other members of this same neighborhood.
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3.3 Coverage Improvement Contribution

The role of coverage contribution uLJi in (1) is to homogeneously spread
robots over an area of interest as well as to provide simple collision avoidance by
introducing repulsive forces between nearby robots that grow quickly as robots
get closer. The Lennard-Jones potential is a simple, well-known inter-molecular
interaction model whose control contribution can be computed by deriving its
expression and accounting for multiple neighbors as follows:

uLJi =
∑

n∈N (i)

−ι
((

a·δa
(pn−pi)a+1

)a
− 2 ·

(
b·δ

(pn−pi)b+1

)b)
(5)

where a, b, δ, and ι are the potential’s parameters and N (i) is the direct neigh-
borhood of i. The decentralized computation of uLJi only requires the 1-hop
neighbors’ positions.

4 Field Experiments

The disconnect between theoretical research and field robotics is often re-
ferred to as the reality gap. The field deployment and experiments described
below are the major contributions of this paper. First, we developed the com-
puting hardware and software framework to support the control law presented in
Section 3 in a team of quadcopters. In particular, our software implementation
focuses on the message passing required by the decentralized algorithms behind
the three control contributions (3)–(5). The required middleware—in the form
of ROS nodes to interface with the flight controller and the XBee sub-1GHz RF
modules—was also developed by the MIST Laboratory. Field experiments were
conducted in Lanzarote, Spain during PANGAEA-X [16]6.

PANGAEA is the yearly geology training campaign organized by the Eu-
ropean Space Agency for its astronauts. PANGAEA-X is an extension of this
campaign giving the opportunity to universities and researchers to deploy and
test their technologies in “scenarios that mimic human and robotic operations
away from our planet”. Because of its stringent fault-tolerance requirements and
communication delays, space exploration beyond low Earth orbit is one of the
applications that could benefit from decentralized multi-robot systems.

4.1 Robotic and Computing Hardware

Our robotic platform is the Spiri, a small quadrotor designed by Pleiades
Robotics and intended for research and development. The Spiri is approximately
40×40×15 centimetres and weighs 1.5 kg. Its flight controller is the PixRacer R14
which interfaces to three additional modules: a compass and GPS/GLONASS
receiver, a range finder (to measure height) and a 2.4GHz RF module to inter-
act with its remote controller. The companion on-board computer is an NVIDIA
Jetson TX2 board with 8GB of LPDDR4 RAM, a hex-core ARMv8 CPU, and a

6 http://blogs.esa.int/caves/2018/12/04/a-swarm-of-drones/
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256-core Pascal GPU. As an operating system (OS), we use a stripped-down ver-
sion of the 64-bit release of Ubuntu 16.04.6 LTS Xenial Xerus, installed through
NVIDIA’s JetPack SDK. A separate laptop, also running a Debian-based OS,
acts as our ground station and interacts with the Spiris’ Jetson TX2 boards
through 5GHz 802.11n Wi-Fi (before flight) and a Digi XBee PRO900/SX868
sub-1GHz RF module (during flight). The ground station initiates take-off and
acts as a safeguard, offering backup control to the drone team. These RF modules
are also used on each Spiri for robot-to-robot communication.

4.2 Middleware and Software Implementation

For the software implementation of the decentralized control law in Sec-
tion 3—and the corresponding communication strategy described below—we
used the swarm-specific scripting language Buzz7 by Pinciroli and Beltrame [10].
Buzz includes primitives supporting the implementation of typical swarm robotics
operations such as polling from and broadcasting to all direct neighbors. The
language has a simple syntax and was designed to allow researchers to create
concise and composable programs. These can be executed in teams of (possi-
bly heterogeneous) robots thanks to a portable, C-based virtual machine (VM).
The VM allows to run Buzz scripts on multiple platforms such as the Khepera
IV, the Matrice 100, and the Spiri. The Jetson TX2 computers onboard each
Spiri run ROS Kinetic Kame and the MAVROS node to needed communicate
with the flight controller. We then add two custom ROS nodes89: ROSBuzz and
XBeeMav. The former is a node encapsulating the Buzz VM to interface it with
the PixRacer flight controller and other ROS nodes. ROSBuzz also supports RVO
collision avoidance. XBeeMav is a node interfacing ROSBuzz with the XBee RF
module for serializing Buzz messages into MAVlink standard payloads. Having
this infrastructure in place, we want to study the feasibility of implementing (1)
in a team of quadcopters. In particular, we want to evaluate the performance of
the information exchanges needed for the decentralized computation of each one
of the control contributions uc, ur, and uLJ .

4.3 Inter-robot Communication with Buzz

The connectivity improvement contribution uc (Subsection 3.1) requires the
estimation of λ2. Executing the decentralized PI update, as explained in [2],
needs a mean correction step. To make this possible, all robots are required to
re-broadcast information so that it can be spread over multiple communication
hops. In Buzz, this can be done with a broadcast call within a listen call. This
entails having information traveling possibly as many hops as the diameter of
the communication graph. The mean correction step only needs to be performed
periodically, for numerical stability. The coverage control contribution uLJ (Sub-
section 3.3) is the simplest to compute as it only requires information about the
positions of 1-hop neighbors. This information in natively available within the

7 https://github.com/MISTLab/Buzz
8 https://github.com/MISTLab/ROSBuzz
9 https://github.com/MISTLab/XbeeMav
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runtime of Buzz (in a global neighbor structure). In this case, messaging does
not have to be dealt with explicitly because it is managed by the virtual ma-
chine. Finally, the robustness improvement contribution ur (Subsection 3.2) is
computed from the position information of 1- and 2-hop neighbors. As Buzz
makes 1-hop information readily available , to diffuse 2-hop information, robots
only need to further broadcast it once and listen to the corresponding messages
from direct neighbors.

5 Results and Discussion

Our experiments were conducted using three Spiri quadcopters christened
Mars, Pluto, and Valmiki. The flight area was set on the island of Lanzarote
approximately 5 kilometres north-east of PANGAEA’s main site in a 300×300
metres open field around coordinates 29.067◦N, 13.662◦W. After two preliminary
flights, all three drones were flown for about 350 seconds (roughly 50% of their
ideal maximum flight time using 1600mAh battery packs) under manual control
while, at the same time, running the infrastructure and Buzz implementation
described in Section 4. These experiments were meant to selectively stress-test
the communication by forcing the drones to reach—large and small—inter-robot
distances from which they would not have interacted, had they been solely con-
trolled by (1). The data collection process was aimed at verifying that our field
setup could achieve the communication performance required to compute all
three contributions of the law in (1). Figure 2 presents the drones’ trajectories,
coordinates and inter-robot distances.

5.1 Timing Performance

Both Ubuntu and ROS are best-effort rather than real-time operating sys-
tems. Hence, a first step in assessing the relevance of our experimental results
required to verify the synchronization between by the operations of ROS, the
Buzz VM, and the actual passing of time. Figure 3 compares the evolution of the
latitude and longitude logs—within Buzz, ROS, and with respect to the elapsed
time—for two drones (Pluto and Valmiki). We observe that Buzz deviates by
1% or less from its ideal frequency of 10Hz. Thus, our implementation, albeit
not strictly real-time, provides a timely best effort execution. In the plots of this
section, we use Buzz iterations as the abscissae.

5.2 Connectivity

Figure 4 presents the results associated to the message passing required to
compute uc. The three charts in the left column present, for each one of the
robots, the number of received messages originating from different robots per
every line of a textual log (these logs have ∼5000 entries as they can be written
more than once in a single Buzz iteration, if multiple messages were queued). In
an idealized, synchronous world, the number of such messages would steadily be
2. In practice, we observe that the plots constantly oscillate between 1 and 2.
Yet, they are never 0, suggesting that the exchanges never broke down (at least,
not until the end of the experiments, when robots were turned off).
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Fig. 2. From top to bottom: (i) the quadcopters’ trajectories; their (ii) latitude and (iii)
longitude; (iv) the inter-robot distances and the discrepancies in position ∆p between
the information stored in Buzz’s logs and rosbag due to imperfect synchronization.

The charts in the right column of Figure 4 present the evolution of the Buzz
iteration of origin of each of these messages. For each robot, the two lines (teal
and magenta) in the three plots refer to different senders (the two neighbors).
We can observe that, as time goes by, the received information stays current,
i.e., originates in more recent Buzz iterations. Once again, in an ideal world,
these trends would be perfectly linear and monotone, with constant positive
slopes. In reality, we notice the presence of non-linear trends and very small
oscillations (whose detail is magnified) caused by the recursive way in which we
relay messages, making it possible for slightly older information to bounce over
multiple hops and to reach a robot after the most up-to-date one. Thus, rapidly
changing topologies will lead to inexact mean corrections for (2).

Table 1. Buzz iterations (ratios) missing any of the 2-hop information messages. Cor-
relations are computed until the 3000-th iteration, from the data in Figure 5.

Buzz iterations with 1
robustness message

A-B
correlation

Buzz iterations without
robustness messages

From A From B

mars 0.240 0.266 −0.115 0.088
pluto 0.265 0.255 +0.129 0.051

valmiki 0.236 0.308 +0.131 0.052
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Fig. 3. Comparison of the evolution of latitude and longitude (from the experiment in
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log, and the absolute elapsed time when using a best-effort operating system.

5.3 Robustness

The decentralized computation of the robustness improvement input ur in
(4) requires the relative positions of both 1- and 2-hop neighbors. The commu-
nication performance of its implementation is presented in Figure 5 for all three
drones (top six plots) versus the evolution the inter-robot distances (bottom
plot). Table 1 summarizes, for each robot, the percentages of Buzz iterations in
which either one or both messages coming from direct neighbors were not re-
ceived, as well as the correlations between the omission of these message. We can
see in Figure 5 that, for all three robots, the number of direct neighbors varies
and so does the number of indirect (2-hop) neighbors. More frequent drops in
1- and 2-hop neighbors in Figure 5 coincide with periods of greater inter-robot
distances and the very end of our experiments, after the robots have landed.
(This latter phenomenon is likely explained by the ground plane obstructing the
radio antennas.) The very low correlations between the lack of messages from
1-hop neighbors in Table 1 also suggest that these drops are more likely ascribed
to external, independent causes (e.g., inter-robot distances) rather than intrinsic
ones (e.g., a computational bottleneck).

5.4 Coverage

As we explained in Subsection 4.2, the coverage improvement contribution
uLJ in (5) is the simplest to compute in a decentralized fashion as it only re-
quires information about the relative positions of all direct neighbors of a drone.
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Fig. 4. Performance results of the message passing required for the decentralized com-
putation of the connectivity maintenance contribution uc(Subsection 3.1) of the control
law in (1). The left column shows the number of messages received by each robot while
the right column displays their recentness (the magenta and teal lines representing the
two different neighbors of origin).

mars

0
1
2

1
-h
o
p

0
2
4

2
-h
o
p

pluto

0
1
2

1
-h
o
p

0
2
4

2
-h
o
p

valmiki

0
1
2

1
-h
o
p

0
2
4

2
-h
o
p

0 500 1,000 1,500 2,000 2,500 3,000 3,500
0

100

200

Buzz iterations

D
is
t.

(m
)

mars-pluto dist. mars-valmiki dist. pluto-valmiki dist.

Fig. 5. Performance results of the message passing required for the decentralized com-
putation of the robustness improvement contribution ur(Subsection 3.2). The number
of 1- and 2-hop neighbors (including themselves) known to each robot are plotted
against the inter-robot distances.

Figure 6 shows how this information evolves over time on-board each robot. We
do so by plotting each robot’s on-board, presumed inter-robot distances against
the GPS-given ground truth—the bottom chart. We observe an almost perfect
match: the robots only sporadically lose track of their neighbors for fractions of
seconds (the zoomed-in bubbles), meaning that they can reliably compute uLJ .
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Fig. 6. Performance results of the message passing required for the decentralized com-
putation of the coverage improvement contribution uLJ(Subsection 3.3) of the control
law in (1). The estimated inter-robot distances onboard each robot are compared with
the ground truth (the bottom plot). The brown lines show the number of entries stored
within Buzz’s neighbor structure.

6 Conclusions

In this paper, we tackled the reality gaps associated to decentralized, robust,
global connectivity control laws in a multi-robot system using three quadcopters
communicating with sub-1GHz RF modules. Prior to this work, most of the
research in the area had only focused on numerical simulations and indoor ex-
periments. Our first contribution was the creation of the hardware and software
stack implementing the control law proposed in [5]. Then, we brought this stack
to a team of quadcopters and performed field tests (in the context of ESA’s
PANAGEA-X training campaign) to assess the performance of our implementa-
tion, especially with respect to information exchanges. Our results indicate that
the information required to compute all three components of the decentralized
control law in Equation 1 can be transmitted across multiple robots even when
flying hundreds of meters apart. Yet, these tests also show that the reality gap—
with respect to assumptions on communication made by previous simulation [5]
and laboratory [9] studies—is still remarkable as, oftentimes, only part of the
total information is available to each robot. The takeaway message is that theo-
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retical research in multi-robot systems should not shy away from the nitty-gritty
of implementation and field experiments as, behind their inconvenience, might
lie the more practical insights.
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