
applied
sciences

Article

Deep Learning Based Android Anomaly Detection Using a
Combination of Vulnerabilities Dataset

Zakeya Namrud 1,* , Sègla Kpodjedo 1, Chamseddine Talhi 1, Ahmed Bali 1 and Alvine Boaye Belle 2

����������
�������

Citation: Namrud, Z.; Kpodjedo, S.;

Talhi, C.; Bali, A.; Boaye Belle, A.

Deep Learning Based Android

Anomaly Detection Using a

Combination of Vulnerabilities

Dataset. Appl. Sci. 2021, 11, 7538.

https://doi.org/10.3390/

app11167538

Academic Editor: Giancarlo Mauri

Received: 14 July 2021

Accepted: 10 August 2021

Published: 17 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Software and IT Engineering, École de Technologie Supérieure,
Montreal, QC H3C 1K3, Canada; segla.kpodjedo@etsmtl.ca (S.K.); chamseddine.talhi@etsmtl.ca (C.T.);
ahmed.bali.1@ens.etsmtl.ca (A.B.)

2 Department of Electrical Engineering and Computer Science, York University, Toronto, ON M2J 4A6, Canada;
alvine.belle@lassonde.yorku.ca

* Correspondence: zakeya.namrud.1@ens.etsmtl.ca

Abstract: As the leading mobile phone operating system, Android is an attractive target for malicious
applications trying to exploit the system’s security vulnerabilities. Although several approaches
have been proposed in the research literature for the detection of Android malwares, many of them
suffer from issues such as small training datasets, there are few features (most studies are limited to
permissions) that ultimately affect their performance. In order to address these issues, we propose an
approach combining advanced machine learning techniques and Android vulnerabilities taken from
the AndroVul dataset, which contains a novel combination of features for three different vulnerability
levels, including dangerous permissions, code smells, and AndroBugs vulnerabilities. Our approach
relies on that dataset to train Deep Learning (DL) and Support Vector Machine (SVM) models for
the detection of Android malware. Our results show that both models are capable of detecting
malware encoded in Android APK files with about 99% accuracy, which is better than the current
state-of-the-art approaches.

Keywords: android security; deep neural network; machine learning; support vector machine

1. Introduction

The adoption of mobile applications in a wide range of domains has made many
activities, from banking to education or gaming, simpler, faster, or more convenient. The
dominant mobile operating system is Android, thanks in part, to the high number of freely
available apps accessible through its official market (Google Play Store [1]).

The reach of the Android system goes even beyond that official market since the open
source OS allows users to install unofficial (e.g., third-party) apps. A key security feature of
Android is its permission system; permissions sought by an Android application must be
granted manually by the user of the mobile device before the app is installed (on older OS
versions) or before the app can perform some operations (on newer OS versions). However,
users are generally uneducated about the risks of the permissions they can be asked to grant.
They may grant permissions allowing malicious apps to exploit security breaches [2] and to
monitor a mobile device without the user’s consent [3]. These malwares can cause severe
malfunction, steal sensitive personal information (e.g., banking information, passwords),
corrupt files, display unwanted advertisement, and even lock the device unless a ransom
is paid.

According to Haystack [4], 70% of mobile apps fetch users’ personal data and hand
it over to third-party companies. Furthermore, a report published by AV-TEST security
Institute [5] states that there is an exponential increase of new malicious program (malware)
samples every year. In 2020, Kaspersky [6] detected around 5.7 million malicious instal-
lation packages for mobile devices, which was an increase of 2.1 million over 2019 (see
Figure 1). Given this increasing influx of new malwares, typical signature-based malware

Appl. Sci. 2021, 11, 7538. https://doi.org/10.3390/app11167538 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-2528-0788
https://doi.org/10.3390/app11167538
https://doi.org/10.3390/app11167538
https://doi.org/10.3390/app11167538
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11167538
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11167538?type=check_update&version=1

Appl. Sci. 2021, 11, 7538 2 of 18

detection approaches, which, in short, rely on databases of specific characteristics of known
malwares are not up to the task of effectively safe-guarding Android devices from the
malware threats. Malwares may go undiscovered if their signature is not identified in the
database, and the databases must be continuously updated to stay relevant.

Figure 1. Installation of mobile malicious packages in Android from 2017 to 2020.

Research literature on malware detection (e.g., [2,7,8]) includes advanced proposals
using machine learning techniques to detect with a higher accuracy unknown Android mal-
ware embedded in APK files. Such work typically extracts features (e.g., permissions, and
API calls in the code) from known benign apps and malware, then uses machine learning
algorithms (e.g., decision tree, Random Forest) to uncover ways to detect malicious apps.

The present work builds on AndroVul [9], our previous research work centered on
the proposal of a dataset of vulnerability features of Android apps. Our current study,
not only adds around 6 K apps to that dataset, but most importantly explored the use of
advanced techniques such as Deep Learning (DL) and Support Vector Machine (SVM) to
achieve the highest possible malware classification performances. Overall, we started from
reverse-engineering an Android application APK file into a set of vulnerabilities features
that can be used to reflect the application’s behaviors. As a result, we obtain a dataset of
more than 18 K apps (about 6 K more than in the original paper) and 74 vulnerabilities
features, which we use to experiment on DL and SVM models. Thus, our contributions can
be summarized as follows:

1. We developed a malware detection model based on deep learning and we investi-
gated several node architectures in hidden layers in order to get the highest possible
performance. The proposed model outperforms the state-of-the-art.

2. We developed a malware detection model based on SVM and investigated different
parameter settings to identify which were the best for our malware detection task.

3. We provide comparison of the performance of our DL and SVM classifiers, with
respect to state-of-the-art approaches and even some commercial anti-viruses and
results show that our classifiers are the most effective in identifying malicious appli-
cations. As such, our models establish a new, important reference point in the current
state-of-the-art when it comes to malware detection.

The remainder of this paper is organized as follows: Section 2 introduces some
background concepts. Section 3 describes the overall design of our Android malware
detection system and how it operates. Section 4 shows the experimental results obtained
when assessing the performance of our models. Section 5 presents related work. Section 6
concludes the paper and outlines future work.

Appl. Sci. 2021, 11, 7538 3 of 18

2. Background

In this section, we define some concepts needed to better grasp our approach.

2.1. Android Vulnerabilities

Vulnerabilities, commonly referred to as security-sensitive defects, can be found
statically using rules that describe vulnerable code patterns. They are typically diverse
in terms of the components involved, the attack vector necessary for exploitation, and so
forth. We focus on common vulnerabilities that have a severity level that warrants their
inclusion in security reports and earlier Android security research in this study. We briefly
list the vulnerabilities that we have taken into consideration as features in our work.

2.1.1. Dangerous Permissions

The permission system in Android is a critical security feature since it regulates the
rights granted to apps, requiring them to request particular permissions in order to execute
specific operations. This approach necessitates the declaration by app developers of which
sensitive resources will be utilised by their applications. When installing or using the apps,
app users must consent to the requests made by the developers. According to Android,
there are several categories of permissions, among which are “dangerous” ones, which are
deemed more critical and privacy sensitive because they grant access to system features
such as cameras and internet access as well as personal contact information and SMS
messages, among other things [10].

2.1.2. AndroBugs Vulnerabilities

AndroBugs is a well-known security testing tool for Android applications, and it is
used to evaluate them for vulnerabilities and possibly critical security issues. APKs are
reverse engineered using the tool, which searches for a variety of concerns, ranging from a
lack of adherence to best practices to the usage of potentially dangerous shell commands
or the exposure to vulnerabilities via third-party libraries. It has a demonstrated track
record of uncovering security flaws in some of the most popular applications and software
development kits (SDKs). It is run as a command line utility and generates reports with four
severity levels. Critical: Confirmed vulnerability that should be solved (except for testing
code), Warning: Possible vulnerability that should be checked by developers, Notice: Low
priority issue, and Info: No security issue detected.

2.1.3. Code Smell

Code smells refer to code source items that may suggest more serious issues in the
code [11]. The term “security code smells” refers to “symptoms in the code that signal
the possibility of a security vulnerability” in Android applications, according to Ghafari
et al. [12]. Following a review of the literature, they identified 28 security code smells [12]
that they categorized into five categories, including Insufficient Attack Protection, Security
Invalidation, Broken Access control, Sensitive Data Exposure, and Lax Input Validation.

2.2. Machine Learning (ML)

Machine Learning (ML) refers to a class of methods for automatically creating models
from data. These methods allow solving complex problems such as anomaly detection,
classification, clustering, and regression [11]. As Verbraeken et al. [11] point out, a problem
can be solved with ML through two phases: training and prediction. The training phase
results in a trained model, after which the trained model is deployed in practice at the
prediction phase. During that phase, the trained model is fed with new data and generates
predictions by inferring these new data. Different ML algorithms (e.g., supervised, unsu-
pervised, classification, regression) have been proposed depending on the kind of feedback
that the algorithm receives while learning [11]. Machine learning techniques have been
deployed in related proposals by some other security researchers in articles such as [13,14].

Appl. Sci. 2021, 11, 7538 4 of 18

In the current work, we investigated two of the most powerful families of machine learning
techniques: Deep Learning (DL) and Support Vector Machines (SVM).

2.2.1. Deep Learning (DL)

Deep learning [15] is a subfield of Artificial Neural Networks (ANNs) and ML. The
DL approach is rapidly gaining traction and is widely utilised in computer vision, speech
recognition, and natural language processing. At the same time, DL-based malware
detection for Android has become a major trend. A typical DL model for data processing is
an extremely deep neural network with numerous hidden layers of many linked neurons.
Each layer consists of several different neurons, each with its own weights and likely
activation mechanism. When data are fed into a neural network, the loss function computes
the prediction error. The optimizer is used to progressively change the weights in order
to reduce the loss function error and increase the accuracy. It trains the data and assesses
its accuracy on the test set. One of the dominant models in deep learning is ANNs [16]
which have been widely used for image recognition and have shown promising results in
contextual categorization in DL. An ANN algorithm can learn hidden patterns from data
on its own, combine them, and create much more powerful decision rules [8]. Figure 2
shows the overall DL definition, which is composed of three layers, namely the input layer,
the hidden layer, and the output layer.

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
layer

Output
layer

Figure 2. General architecture of a Deep Learning model.

2.2.2. Support Vector Machines (SVM)

A Support Vector Machine (SVM) is a machine learning technique that, in its most
basic version, consists in finding a line that separates two classes of (training) data points,
in such a way that future data points can be accurately classified, depending on which
side of the line they end up on. In most cases, the line will be an hyperplane because
the data will often be in an N-dimensional (N denotes the number of features) space [17].
Additionally, among the possible hyperplanes that could separate the data into two classes,
the hyperplane which is the furthest from the two data classes it is separating is preferred
because it reduces risks of overfitting the model to the current training data. Furthermore,
it is not always possible (or even desirable) to neatly separate all the data into two perfectly
clean classes. A certain amount of mis-classification can be allowed in order to account
for outliers or erroneous data. Finally, the boundary between the two classes of data
may not be linear, in which case, there is a need to involve mathematical kernels that can
handle those situations. In our study, we use a nonlinear SVM with a Gaussian radial
basis function (rbf) kernel, which is a well established and robust version of SVM. When
constructing such a classifier, two parameters must be passed as arguments. The parameter
C accounts for the intolerance to mis-classification of the training data; the higher it is,
the more the training data points will have to be correctly classified. The other parameter
gamma can be understood as controlling the influence of a single training data point; the

Appl. Sci. 2021, 11, 7538 5 of 18

higher it is, the lower the reach of a single data point. The parameters C and gamma work
together and have to be carefully chosen.

3. Methodology

In this section, we present the sample of apps on which we performed our experiments,
the features we extract from a given apk, and information about the machine learning
techniques we selected.

3.1. Dataset

Our evaluation was carried out with the AndroVul [9] dataset, which core is a sample
of 18,780 Android apps collected from the AndroZoo [18] repository. The Androzoo project
proposes along with the apks of its apps, metadata that includes the number of antiviruses
from the website Virus Total [19], compiles a vast range of antivirus products and web
virus scanners. that flagged the app as a malware. For our study, and consistent with [9],
we considered as benign apps the apps with zero flags and as malicious apps, the apps
with two or more antivirus flags. To this core set of apps, we added malwares gathered
from VirusShare [20], a malware repository intended to help security analysts and malware
researchers. However, the VirusShare repository is not dedicated to Android malwares
and does not propose any mechanisms or metadata to quickly identify which programs are
apks and which are not. It simply hosts a variety of files without even a specified extension.
To recover the Android malwares in that repository, we had to download Giga Bytes worth
of potentially harmful files and figure out a simple procedure to identify which files were
Android apks. As seen in Algorithm 1, we renamed all the files by adding the extension
“.apk”, then tried to apply our reverse engineering scripts and tools. Files that return empty
folders after the reverse engineering are discarded; the others are saved as apks.

Algorithm 1: VirusShare Android apps collection.
Input: Execution files

1 for all files in folder do
2 f ile← rename(file.apk) .considering all files Android apps
3 APK f ile ← Open(file) .Reverse engineering APK with Android tools
4 Package← Get(files) if (Package← empty) then
5 Package← delete_it
6 else
7 Package← App_android
8 end
9 . App_android save it in Android folder

10 end

Table 1 contains a description of the datasets, and Figure 3 depicts a visualisation of
the datasets.

Figure 3. Dataset Visualization.

Appl. Sci. 2021, 11, 7538 6 of 18

Table 1. Dataset description.

App Samples

Benign 11,971
Flagged Malware 2831

VirusShare Malware 3978
Total 18,780

3.2. Feature Extraction

We introduced the AndroVul dataset in [9] and the interested reader can find full
details in that publication. In this section, we propose a brief overview of the feature extrac-
tion process and output as applied to an app. In short, we used well-known static analysis
tools (Apktool, AngroBugs) to extract three kinds of features, i.e., dangerous permissions
from the app’s manifest file, code smells from the app’s Smali code representation, and
AndroBugs vulnerabilities from the APK files. In Algorithm 2, we describe the general
process for extracting the vulnerability features from an apk file. It starts with the reverse
engineering process (line 2), followed by the extraction of the desired features from their
respective files (lines 3–5). The extracted vulnerabilities features are then mapped to values
and written into a single csv file. The values mapped to the features are determined as
shown in the equations below:

permissions→
{

Requested_permission 1
Other_permissions 0

CodeSmells→
{

Weight(security code smell)

AngroBugs_vulnerabilities→


Critical 1
Worning 0.5
Other 0

Algorithm 2: Feature Extraction Algorithm.
Input: Apk files; apps
Output: Dataset in CSV_file

1 for all apps in Dataset do
2 APK f ile ← Open(file) . Reverse engineering APK
3 Permissionslist ← Get_Distinct_Permissions(mani f estFile) . Extracting permissions from manifest file
4 Code_Smelllist ← Get_CodeSmell(SmaliFiles) . Extracting code smell from Smali files
5 AngroBugs_vulnerabilitieslist ← Get_AngroBugs_vulnerabilities(AndroBugs_report) . Extracting

AngroBugs_ vulnerabilities from AndroBugs_report
6 foreach app do
7 Permission← App[i].Permission . Mapping permissions
8 Code_Smell ← App[i].CodeSmell . Mapping code smells
9 AndroBugs_vulnerabilities← App[i].AngroBugsvulnerabilities . Mapping AndroBugs_

vulnerabilities
10 end
11 end
12 CSV(f ile) ← Append(CSV(f ile), Concat(Vector(Permission), Vector(Code_Smell), Vector(AngroBugs_vulnerabilities)))

. Concatenating all vulnerabilities features in CSV file
13 return (CSV(f ile))

Appl. Sci. 2021, 11, 7538 7 of 18

3.3. General Architecture of Our Machine Learning Approach

Figure 4 presents the general architecture of our Android malware detection approach,
which is divided into three stages: pre-processing, training, and detection.

In the preprocessing phase, the original feature dataset is standardized by reducing
the mean and scaling to unit variance. The following formula is used to compute the
standard score of sample x:

z = (x− u)/s (1)

where u denotes the mean of the training samples, and s denotes the standard deviation of
the training samples.

As for training and testing, we opted for K-fold cross-validation. This validation
approach consists in splitting, after random shuffling, the dataset into K groups, after
which each group is used as a test group, while the other K− 1 groups are used for training.
More specifically, we chose, in accordance to many similar studies (e.g., [21]), K = 20 for
a fold cross-validation study, in which 80% of the data is used for training and 20% for
testing (prediction).

Figure 4. Design Methodology for malware detection in Android.

3.4. Android Malware Detection Based on Deep Learning

Figure 5 presents our system architecture for Android malware detection using Deep
Learning.

In the training phase, the malware and benign behavior patterns are learned by the
ANN [22]. The DL model was designed for learning the pattern with four hidden layers,
a single input layer and a single output layer. Fully connected feed-forward deep neural
network architecture with four hidden layers was utilised to implement the suggested
approach. The rationale for limiting the number of hidden layers to four is the complexity
of the design. Figure 5 shows the architecture of the DL algorithm and the number of
nodes in each layer, and Figure 4 shows the overall model design. The description of
mapping layers is as follows. Seventy-four neurons are used in the input layer to read the
74 features. The neurons are then linked to the first hidden layer, known as the dense layer,
where a mathematical computation is performed using activation functions [22]. The ReLU
activation mechanism was used in this case. Another non-linear activation feature that has

Appl. Sci. 2021, 11, 7538 8 of 18

become common in the field of DL is the ReLU function. ReLU stands for Rectified Linear
Unit. The key benefit of using the ReLU mechanism is that it does not simultaneously
activate all neurons. The neurons are therefore disabled only if there is less than 0 in the
output of the linear transformation. In addition, the 74 features were also mapped into
74 dimensions, and 74 dimensions are mapped into 32 dimensions in the second hidden
layer. Thirty-two dimensions were mapped in 32 dimensions of the third hidden layer.
Finally, their values were mapped to a single-dimensional output layer. Equations (2) and
(3) define the activation function Y.

Y = max(0, x) + bias (2)

where Y denotes the output, x denotes the data, and bias is used to train the neural network
on malware and benign patterns.

Weightedsum = ∑
i

WiXi (3)

where Wi denotes the weight applied to each input node and Xi denotes the input applied
to each node.

At the final output layer, the sigmoid function is applied to provide output values
ranging from 0 to 1. A function of activation is defined by Equation (4).

Sigmoid =

(
1

1 + e−x

)
(4)

Binary Cross Entropy loss function was used to compile the neural network model.

BinaryCrossEntropy = Error(y, f (X)) (5)

where y = actual values, f (X) = predicted values. Furthermore, the weights are changed
using the gradient descent optimizer [23]. It changes the parameters in such a way that the
loss function can be reduced using Equation (6).

X = X− α
(σ

dX
j(X)

)
(6)

where X is the new updated weight, α denotes the rate of learning, and f (X) denotes
the cost function, which is a quadratic equation based on the 74 features extracted from
Android applications. There are two primary hyperparameters that govern the network’s
architecture or topology, which are the number of layers and nodes found within each
hidden layer. Systematic experimentation allows configuring these hyperparameters when
solving a specific predictive modeling problem. We have increased the number of epochs
until the model was able to correctly classify the inputs. In the test phase, the DL model is
tested using 20% of the dataset. After training the model, we tested it using the remaining
3706 samples. The trained neural network model determines whether the provided APK
file is malicious or benign based on the pattern. In the first experiment, the training phase
results were significantly higher than the testing phase’s, causing overfitting in the model.
However, when we increased the number of samples in the dataset for both benign samples
and malware samples, the overfitting was solved and the performance in the training phase
was almost the same as that in the testing phase.

Appl. Sci. 2021, 11, 7538 9 of 18

Figure 5. The architecture of DL layers using Sequential neural network.

In Algorithm 3, we describe the general process of our classifier generation phases
namely, data processing (lines 1–3), model building (line 4), and model fitting (line 5) as
well as using the model for prediction (lines 6–13). For the complexity discussion, we
focus on the prediction phase because once the model is trained, it can be reused as much
as there is a need. The time and space complexity of the model’s prediction phase is
O(p× nl1 + ... + nli−1 × nli + ... + nln−1 × o), where p is the number of features, nli is the
number of neurons at layer i in a neural network, and o is the number of outputs. Therefore,
the complexity is asymptotically quadratic, O(max(nli−1 × nli)), in the size of the network
layers. The architecture and parameters of our DL model were determined experimentally
and tuned for best performance; they are described in Table 2 and Figure 6.

Algorithm 3: Deep Learning based Model.
Input: X : apps_ f eatures, Y : labels . label is benign or malware
Building_paramslist = (units, activation_ f unction, input_dim, dpoint)
f itting_paramslist = (Xtrain, Ytrain, batch_size, epochs)
dpoint : decision_point . 0.5 by default
Output: predicted_app .benign or malware app

1 Xtrain, Xtest, Ytrain, Ytest . Splitting the dataset
2 Xtrain = sc. f ittrans f orm(Xtrain)

.Feature Scaling using StandardScaler (sc)
3 Xtest = sc.trans f orm(Xtest)
4 Model = build_ANN_model_architecture(Building_params) .ANN model Building
5 Model ← ANN_model_ f it(f itting_params) .ANN model fitting
6 ypred = Model.predict(Xtest)

7 for app.pred ∈ ypred do
8 if (app.pred > dpoint) then
9 app← Malware ;

10 else
11 app← Benign ;
12 end
13 end

Appl. Sci. 2021, 11, 7538 10 of 18

Figure 6. Built DL model.

Table 2. Best hyper-parameters.

Parameters Value

Number of units 74-74-74-32-32-1
Number of layers one input, 4 hidden, one output

Activation function relu, sigmoid
Kernel initializer uniform

Dropout 0.2
optimizer adam

epochs 1000
batch_size 200

loss binary_crossentropy

3.5. Android Malware Detection Based on Support Vector Machine

We opted for a (non linear) Radial Basis Function (RBF) kernel SVM. In Algorithm 4,
we describe the general process of our SVM classifier, from the data processing (lines 1–3),
to the model building (line 4), the model fitting (line 5) as well as the prediction phase
(lines 6–9). The complexity of the training phase is polynomial, O(n2

sv × p + p3), in the size
of the model parameters, where p is number of features and nsv is the number of support
vectors). That relatively high complexity of the training model is compensated by the
low complexity of the prediction model, which is of only O(nsv × p) and can be reused
several times once the model is well trained. Table 3 shows the best hyper-parameters for
SVM model.

Table 3. The experimental results for SVM parameters showing the best hyper-parameters for
SVM model.

C Gamma Accuracy F1 AUC_score

10 0.1 93.98% 91.4% 94%

100 0.1 94.7% 92.4% 94.75%

1000 0.1 95.1% 93% 95.2%

10 0.01 97.95% 96.95% 97.4%

100 0.01 98.38% 97.6% 97.97%

1000 0.01 98.76% 98.2% 98.5%

Appl. Sci. 2021, 11, 7538 11 of 18

Algorithm 4: Support Vector Machine based Model.
Input: X : apps_ f eatures; Y : labels; . label is benign or malware
Building_paramslist = (C, kernel, gamma)
f itting_paramslist = (Xtrain, Ytrain) dpoint : decision_point . 0.5 by default
Output: predicted_app .benign or malware app

1 Xtrain, Xtest, Ytrain, Ytest . Splitting the dataset
2 Xtrain = sc. f ittrans f orm(Xtrain)

.Feature Scaling using StandardScaler (sc)
3 Xtest = sc.trans f orm(Xtest)
4 Model = build_SVM_model_architecture(Building_params) .SVM model Building
5 Model ← SVM_model_ f it(f itting_params) .SVM model fitting
6 ypred = Model.predict(Xtest)

7 for app.pred ∈ ypred do
8 if (app.pred > dpoint) then
9 app← Malware ;

10 else
11 app← Benign ;
12 end
13 end

4. Experiments
4.1. Performance Indicators

As it relates to the detection of malwares, we refer to True Positive (TP) as the number
of malwares actually classified as such, True Negative (TN) as the number of benign apps
classified as such, False Positive (FP) as the number of benign apps wrongly classified as
malwares, and finally False Negative (FN) as the number of malwares wrongly classified
as benign. More informative measures, widely used in malware detection analysis work,
are derived from these simple measures, such as:

• Precision: The ratio of actual malwares in the set of apps classified as such: TP/(TP+FP)
• Recall: The ratio of malwares that were detected as such: TP/(TP+FN)
• Accuracy: The percentage of applications that have been appropriately categorised:

(TP+TN)/(TP+TN+FP+FN)
• F1-Measure: A performance indicator that takes into account both the precision and

recall of the obtained classification: 2 × (Recall × Precision)/(Recall + Precision)
• Area under ROC Curve (AUC): A measure of the predictive power of the classifier

that basically informs on how well the model can distinguish between classes (here,
benign apps vs. malwares).

For all these measures, the higher, the better, with 1 being the perfect value.

4.2. Experimental Setup

We conducted experiments with both DL and SVM models. All the experiments were
carried out using the same dataset. The experiments are done using the Python programming
language, and the following are the characteristics of the computer used for the experiments;
Windows 10(64 bit), Intel(R) Core(TM)i7-2600 CPU@ 3.40 GHZ, and 16 GB RAM.

4.3. Results

In this section, we present obtained results. The factors below explain why our
approach was able to outperform other approaches. These include hyper-parameters
tuning as well as the combination of vulnerability features in our dataset.

• Performance of DL model:
Initially, we used 11,814 apps; in this experiment, an app which has 0 flag labelled
as benign, whereas an app which has two or more flags labelled as malware, and an
app with one flag are excluded. The training phase performance results were higher
than the testing phase, which caused over-fitting in the model. To solve this situation,

Appl. Sci. 2021, 11, 7538 12 of 18

we increased the size of the dataset by adding the malware apps from VirusShare
and apps with one flag as benign. Experimentally, we observe that the performance
improved. From Table 4, we can observe that the size of the dataset has increased
from 11,814 to 18,780 to avoid over-fitting and improve the performance.

Table 4. Comparison between the results of datasets with 11,814 samples, and 18,780 samples.

Size of Dataset Accuracy F1 AUC_score

11,814 samples 89% 90% 88%

18,780 samples 99.33% 99% 99.15%

Figures 7 and 8 illustrate the history model’s accuracy and loss for 11,814 and 18,526
samples, respectively. From the figures, it is clear that when we increase the size of the
dataset, the accuracy and loss curve lines in the training phase are very close to the accuracy
and loss curve lines in the testing phase. In the previous experiment, the difference between
the accuracy and loss curve lines was huge. The performance improved when we increased
the size of the dataset and the over-fitting problem was solved. If the output layer’s
Sigmoid result was greater than or equal to 0.5, the application was categorised as malware.
Values below 0.5 were considered benign.

(a) (b)
Figure 7. Comparison between history models Accuracy for 11,814 samples and 18,526 samples. (a) Accuracy for 11,814
samples. (b) Accuracy for 18,526.

(a) (b)
Figure 8. Comparison between history models loss for 11,814 samples and 18,526 samples. (a) Loss for 11,814 samples.
(b) Loss for 18,526.

As Table 5 indicates, the performance improved when we increased the size of the
dataset and the over-fitting problem was solved. If the output layer’s Sigmoid result
was greater than or equal to 0.5, the application was categorised as malware. Values
below 0.5 were considered benign. Table 5 thus shows that the confusion matrix correctly

Appl. Sci. 2021, 11, 7538 13 of 18

classifies the 2406 benign samples as benign and 1275 malware samples as malware. Out
of 3706 app samples, 3681 samples were predicted accurately and only 25 samples were
wrongly predicted.

Table 5. DL Confusion matrix.

3706
Predicted Class

Benign Malware

Sensitivity B (99.71%) 2406 7

Specificity M (98.61%) 18 1275

• Performance of the SVM model:
Table 3 illustrates the experimental results. When we were tuning the hyperplane
parameters, we noticed that when gamma is smaller than 0.01 and C is higher than
1000, the results improve, i.e., both parameters increase the values of AUC, F1, and the
accuracy. With such parameter values, we can therefore get the correctly separating
hyperplane and improve the performance of the model. Table 6 shows that the confu-
sion matrix correctly classifies the 2425 benign samples as benign and 1235 malware
samples as malware. Out of 3706 app samples, 3660 were predicted accurately and
only 46 were wrongly predicted.

• Challenges and discussion
Improving the performance of the SVM classifier was challenging and involved some
fine tuning with respect to the two parameters: C and gamma. Our results showed that
tuning C correctly is a vital step in the use of SVMs for structural risk minimization
In RBF kernel, both C and gamma parameters need to be optimized simultaneously.
If gamma is large, the effect of C becomes negligible.. When gamma gets smaller, the
results improve.
As for the DL, the configuration of the hyperparameters (the number of layers and
nodes in each hidden layer) for our specific predictive modeling problem was done
via systematic experimentation. It is worth noting that the time complexity of the DL
algorithm is higher than the time complexity of the SVM algorithm.

Table 6. SVM Confusion matrix.

3706 Predicted Class

Benign Malware

Sensitivity B (99.26%) 2425 18

Specificity M (97.78%) 28 1235

Table 7 shows the results (accuracy, F1 and AUC_score) obtained with our DL and
SVM classifiers. It also compares these results to the ones obtained by the best state-of-the-
art approach i.e., [24]. The highest accuracy for related work is 95.31%, but our models
show better performances in both DL and SVM classifiers. Their accuracies are 99.33% and
98.76% respectively.

Table 7. Comparison between DL, SVM classifiers and the Related work.

The Classifier Accuracy F1 AUC_score

Deep Learning 99.33% 99.03% 99.15%

SVM 98.76% 98.2% 98.5%

Best result for State of Art 95.31% 95.31 N/A

Appl. Sci. 2021, 11, 7538 14 of 18

4.4. Comparison with Well-Known Anti-Virus Tool

As we mentioned previously, the dataset has two kinds of malwares: the flagged
malware apps and the malware apps collected from the VirusShare repository. This
repository provides access to live malware and day one malware, motivating us to upload
the VirusShare malware apps to the Virus Total tool to scan them. We compared the
obtained results using our model to detect VirusShare malware apps, and the obtained
results using Virus Total tool to detect VirusShare malware apps (the same samples used in
our approach). We observed that our model was able to detect 99.33% of the VirusShare
malware apps, while Virus Total tool was able to detect only 75%. Table 8 shows a
comparison with a well-known anti-virus tool (Virus Total).

Table 8. Comparison with well known anti-virus tool.

Malware Detection Accuracy

Our approach 99.33%
Virus Total 75%

5. Related Work

Over the last few years, considerable effort has been devoted to the development of
novel methodologies for detecting Android malware anomalies using machine learning
techniques (e.g., [25–27]). In the current section, we propose an overview of the different
proposals through the lens of the kind of analyses performed to obtain the features used in
training the machine learnique: static analysis, dynamic analysis, hybrid analysis.

5.1. Static Analysis

Static analysis is the easiest and least expensive method for obtaining the features that
will characterise an application. Permissions are the most commonly used features but
some other elements such as intent filters, api calls, etc. have been investigated as well.

Sirisha et al. [2] focused solely on permissions and proposed a a deep neural network
model which attained an accuracy of 85%, on a dataset of 398 apps (benign and malware)
and 331 features (permissions). Also focused on permissions, Rehman et al. [28] proposed
a framework that is both signature- and heuristic-based. They performed experiments
using various classifiers such as SVM, Decision Tree, J48 and KNN, and used an existing
dataset containing 401 apps and permissions as features. The accuracy of their approach is
85%.

Differently, Kumaran and Li [7] applied different ML algorithms to features extracted
from permissions and intent filters found in an app’s manifest. They found that permissions
performed much better than intent filters but that using both sources yielded a detection
accuracy of 91.7% percent (SVM) and 91.4% percent (KNN), which outperforms the classifi-
cation performance of either feature set individually. More recently, Zhu et al. [29] proposed
DroidDet, an Android malware classification approach built on Random Forest. It utilizes
various static features derived from permissions and API calls and attained an accuracy
of 88.26% on a dataset of 2130 apps. Similarly, Li et al. [8] proposed a Deep Learning
algorithm that achieved 90% accuracy on a dataset of 2800 apps (benign and malware)
and 237 features (permissions, API calls, and URLs). Also using deep learning, Naway
et al. [24] investigated static features (permissions, Intents, API calls, Invalid certificates)
on a dataset of 1200 apps and attained an accuracy of 95.31%.

In our previous work [9], we proposed the AndroVul dataset and a preliminary
investigation of the dataset as it relates to the detection of malwares. More precisely,
we used the well-known machine learning software Weka and selected NaiveBayes (NB)
from its bayes category, RBF classifier from its function category, JRip from its rules
category, and J48 from its tree category. The selected machine learning approaches were
applied under identical settings and with default parameters. The objective of that paper
was to demonstrate the potential of the proposed features for the detection of malwares.

Appl. Sci. 2021, 11, 7538 15 of 18

In contrast to that work, our key objective in this research work is to propose a finely
tuned machine learning appproach able to outperform existing approaches and anti-virus
products. The additional work required involved tuning the hyper-parameters of the
machine learning approaches, increasing the amount of malware apps, and conducting
additional experiments and comparisons with existing literature and antiviruses.

5.2. Dynamic Analysis

Dynamic analysis takes interest into an app’s behavior at run-time and may detect
malicious activity on an actual execution path. As such, it is resistant to code obfuscation
but on the other hand may have minimal code coverage, depending on how extensive and
complete are the execution scenarios it considers.

Mas’ud et al. [30] proposed a malware detection system that uses dynamic analysis
based on five different sets of features obtained through dynamic analysis. It employs five
separate ML classifiers in order to find the optimal combination for efficiently classifying
Android malware. The experimental results showed that a multilayer perceptron classifier
yielded the highest accuracy 83%. Martinelli et al. [31] developed a method that utilizes
a network of neural convolution implemented through dynamic analysis of system calls
occurrences. Their work is based on a recent dataset composed of 7100 apps. They created
a number of user interface interactions and system events during the duration of the
application’s execution. The accuracy is 90%.

5.3. Hybrid Analysis

Hybrid analysis techniques (e.g., [15,32]) entails the use of both static and dynamic
elements. This dual perspective improve the identification’s accuracy but may come with
more resource consumption, especially when the analysis is done on a mobile device.

Yuan at al. [33] presented a machine learning-based method for malware detection that
makes use of over 200 features collected from both static and dynamic analysis of Android
apps. The comparison of modelling results reveals that the deep learning technique is
particularly well-suited for Android malware detection, with a high level of 96% accuracy
when applied to real-world Android application collections. their dataset contains 250
malware samples from Contagio Mobile and 250 benign apps from Google Play Store.

In a subsequent work, Yuan at al. [34] developed another model based on the DBN:
the Droid Detector. The proposed method was validated against a broad unbalanced
dataset containing 20,000 benign and malicious samples. The results showed that DBN
performed well, with an accuracy of 96.76%. Around the same time, L. Xu et al. [35]
proposed an approach for identifying Android malware that relies on autoencoders to
analyse the app’s features. It then uses an SVM classifier to classify the apps as malicious
or trustworthy. They conducted experiments on a dataset of 5888 benign and malware
apps, analysing static and dynamic elements separately and found that static features
outperformed dynamic features.

Some other security researchers deployed machine learning techniques to propose
related approaches. For instance, in [13], authors were mostly concerned with metamorphic
malware. The primary objective of this research is to provide a mechanism for classifying
malware based on its behaviour. They began their investigation by building a dataset of
API calls performed on the Windows operating system that reflects malicious software
behaviour. LSTM was utilised to classify the data in this investigation. (Long Short-Term
Memory), The classifier’s result indicates an accuracy of up to 95% with an F1-score of 0.83.
The use of machine learning to handle security vulnerabilities is similar to their approach.
However, we have chosen to concentrate on Android platform security issues rather than
other platforms.

Table 9 presents the feature, dataset, and classifier used in each related work as well
as our approach. In particular, this table allows us to conclude that: (1) our work has
been tested on a dataset that includes more sort of features than the ones used by other
approaches; and (2) it outperforms existing approaches.

Appl. Sci. 2021, 11, 7538 16 of 18

Table 9. Comparison between state of the art research and our approach.

References Feature Used Dataset Used Used Classifier Accuracy

Paper [2] permissions 398 samples
331 features Deep Learning 85%

Paper [8] permissions, APIs, URLs 2800 samples
237 features Deep Learning 90%

Paper [24] permissions, APIs,
Invalid certificate 1200 samples Deep Learning 95.31%

Paper [29] permissions, APIs 2130 samples Random Forest 88.26%

Paper [28] permissions 401 samples SVM 85%

Paper [36] permissions, APIs 2130 samples Random Forest 89.91%.

Our previous
work [9]

Permissions, Code smell,
AndroBugs vulnerabilities

1600 samples
74 features

Weka (RBF)
provides best result 83%

Our approach Permissions, Code smell,
AndroBugs vulnerabilities

18,526 samples
74 features

Deep learning
& SVM

99.3% & 98.76%
Respectively

6. Conclusions

Android is the most popular smartphone operating system, accounting for 85 percent
of the market. However, Android’s widespread acceptance and openness make it an
ideal target for malicious applications that take advantage of the system’s security flaws.
Signature-based malware detection present in most antiviruses is vulnerable to new mal-
ware, so advanced technologies such as machine learning approaches have been proposed
to tackle malware detection. Our current work builds on and extends a previous work
in which we collected vulnerability features (e.g., code smells, dangerous permissions,
and vulnerabilities identified by the tool AndroBugs) from Android apks and proposed a
dataset of almost 12K apps from the AndroZoo repository. A first important contribution
was the addition (and reverse engineering of the features) of thousands of malwares from
VirusShare, a well-known virus repository. In general, the more data points, the better the
prediction models, so it was important and beneficial to our experiments and the research
community in general to improve the size of the dataset. The focus of the current paper is
on proposing highly efficient machine learning models able to fully leverage the potential
of the features we collected. To achieve that goal, we used two different advanced classifiers
(Deep Learning and SVM) to learn the malware and benign patterns. We implemented
these algorithms and experimented with them to get the best hyper parameters for malware
detection using the features we collected. Both of our classifiers achieve an accuracy of
around 99% and these results significantly outperform the state-of-art and a collection of
antivirus, as proposed on the site VirusTotal.

Short term future work involves the investigation of possible trends in Android
malware development (and thus detection); we plan to investigate the data on a multiple
year basis to identify whether some features become more relevant in the newest malware.
This is especially interesting, considering the relatively rapid pace at which the Android
OS changes. Longer term, we plan to apply the lessons learned while experimenting with
DL and SVM parameters on an expanded dataset of apps and features. More specifically,
we plan to investigate the potential of other features, especially those that can be obtained
from an app’s manifest file (intent filters, xml data, etc.). Additionnally, we would like to
investigate whether the category assigned to an app by a developer (whether a malicious
actor or not) should be a factor in the patterns learned by advanced techniques.

Author Contributions: Designing, implementing, investigation, writing the manuscript, Z.N.; re-
viewing, editing, supervision, S.K.; supervision, C.T.; proposing, reviewing and editing, A.B.; review-
ing, A.B.B. All authors have read and agreed to the published version of the manuscript.

Appl. Sci. 2021, 11, 7538 17 of 18

Funding: The Libyan-North American Scholarship Program, Canadian Bureau for International
Education, provided funding for the work mentioned in this article (CBIE).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: https://github.com/Zakeya/AndroVul (accessed on 14 July 2021).

Acknowledgments: The authors thank the Libyan Ministry of Education, and Canadian Bureau for
International Education (CBIE).

Conflicts of Interest: We wish to confirm that there are no known conflict of interest associated with
this publication and there has been no significant financial support for this work that could have
influenced its outcome.

References
1. Google Play Store. Android Official Store. Available online: https://play.google.com/store/apps (accessed on 27 January 2021).
2. Sirisha, P.; Anuradha, T. Detection of Permission Driven Malware in Android Using Deep Learning Techniques. In Proceedings

of the 2019 3rd International conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India,
12 June 2019; pp. 941–945.

3. Sabhadiya, S.; Barad, J.; Gheewala, J. Android Malware Detection using Deep Learning. In Proceedings of the 2019 3rd
International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India, 23 April 2019; pp. 1254–1260.

4. Haystack. Mobile Issues. Available online: https://safeguarde.com/mobile-apps-stealing-your-information/ (accessed on 14
March 2021).

5. AV-TEST. Security Institute. Available online: https://www.av-test.org/en/statistics/malware/ (accessed on 12 November
2021).

6. Chebyshev, V. Mobile Malware Evolution 2020. Available online: https://securelist.com/mobile-malware-evolution-2020/101029/
(accessed on 1 March 2021).

7. Kumaran, M.; Li, W. Lightweight malware detection based on machine learning algorithms and the android manifest file. In Pro-
ceedings of the 2016 IEEE MIT Undergraduate Research Technology Conference (URTC), Cambridge, MA, USA, 4 November 2016;
pp. 1–3.

8. Li, W.; Wang, Z.; Cai, J.; Cheng, S. An android malware detection approach using weight-adjusted deep learning. In Proceedings
of the 2018 International Conference on Computing, Networking and Communications (ICNC), Maui, HI, USA, 5 Mar 2018;
pp. 437–441.

9. Namrud, Z.; Kpodjedo, S.; Talhi, C. AndroVul: A repository for Android security vulnerabilities. In Proceedings of the 29th
Annual International Conference on Computer Science and Software Engineering, Markham, ON, Canada, 4 November 2019;
pp. 64–71.

10. Tchakounté, F.; Hayata, F. Supervised learning based detection of malware on android. In Mobile Security and Privacy; Elsevier:
Amsterdam, The Netherlands, 2017; pp. 101–154.

11. Verbraeken, J.; Wolting, M.; Katzy, J.; Kloppenburg, J.; Verbelen, T.; Rellermeyer, J.S. A Survey on Distributed Machine Learning.
ACM Comput. Surv. (CSUR) 2020, 53, 1–33. [CrossRef]

12. Gadient, P.; Nierstrasz, O.; Ghafari, M. Security in Android Applications; University of Bern: Bern, Switzerland, 2017.
13. Catak, F.O.; Yazı, A.F.; Elezaj, O.; Ahmed, J. Deep learning based Sequential model for malware analysis using Windows exe API

Calls. PeerJ Comput. Sci. 2020, 6, e285. [CrossRef] [PubMed]
14. Catak, F.O.; Ahmed, J.; Sahinbas, K.; Khand, Z.H. Data augmentation based malware detection using convolutional neural

networks. PeerJ Comput. Sci. 2021, 7, e346. [CrossRef] [PubMed]
15. Naway, A.; Li, Y. A review on the use of deep learning in android malware detection. arXiv 2018, arXiv:1812.10360.
16. Li, Y.; Wang, G.; Nie, L.; Wang, Q.; Tan, W. Distance metric optimization driven convolutional neural network for age invariant

face recognition. Pattern Recognit. 2018, 75, 51–62. [CrossRef]
17. Verma, S.; Sharan, A. Enhancing the performance of SVM based document classifier by selecting good class representative

using fuzzy membership criteria. In Proceedings of the 2017 3rd International Conference on Computational Intelligence &
Communication Technology (CICT), Ghaziabad, India, 9 February 2017; pp. 1–6.

18. AndroZoo. Android Apps Repository. Available online: https://AndroZoo.uni.lu/ (accessed on 1 March 2018).
19. VirusTotal. Antiviruses Website Scanners. Available online: https://www.virustotal.com/gui/ (accessed on 11 March 2018).
20. VirusShare. Malware Repository. Available online: https://virusshare.com/ (accessed on 25 August 2019).
21. Bhattacharya, A.; Goswami, R.T. DMDAM: Data mining based detection of android malware. In Proceedings of the First

International Conference on Intelligent Computing and Communication, Kalyani, West Bengal, India, 2 August 2017; pp. 187–194.
22. Xu, J.; Rahmatizadeh, R.; Bölöni, L.; Turgut, D. A sequence learning model with recurrent neural networks for taxi demand

prediction. In Proceedings of the 2017 IEEE 42nd Conference on Local Computer Networks (LCN), Singapore, 9 October 2017;
pp. 261–268E.

https://github.com/Zakeya/AndroVul
https://play.google.com/store/apps
https://safeguarde.com/mobile-apps-stealing-your-information/
https://www.av-test.org/en/statistics/malware/
https://securelist.com/mobile-malware-evolution-2020/101029/
http://doi.org/10.1145/3377454
http://dx.doi.org/10.7717/peerj-cs.285
http://www.ncbi.nlm.nih.gov/pubmed/33816936
http://dx.doi.org/10.7717/peerj-cs.346
http://www.ncbi.nlm.nih.gov/pubmed/33816996
http://dx.doi.org/10.1016/j.patcog.2017.10.015
https://AndroZoo.uni.lu/
https://www.virustotal.com/gui/
https://virusshare.com/

Appl. Sci. 2021, 11, 7538 18 of 18

23. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.

24. Naway, A.; Li, Y. Using Deep Neural Network for Android Malware Detection. arXiv 2019, arXiv:1904.00736.
25. Baskaran, B.; Ralescu, A. A Study of Android Malware Detection Techniques and Machine Learning. In Proceedings of the 27th

Modern Artificial Intelligence and Cognitive Science Conference 2016, Dayton, OH, USA, 22–23 April 2016; pp 15–23.
26. Yerima, S.Y.; Sezer, S.; Muttik, I. Android malware detection using parallel machine learning classifiers. In Proceedings of the

2014 Eighth International Conference on Next Generation Mobile Apps, Services and Technologies, Oxford, UK, 10 September
2014; pp. 37–42.

27. Al Ali, M.; Svetinovic, D.; Aung, Z.; Lukman, S. Malware detection in android mobile platform using machine learning algorithms.
In Proceedings of the 2017 International Conference on Infocom Technologies and Unmanned Systems (Trends and Future
Directions) (ICTUS), Dubai, United Arab Emirates, 18 December 2017; pp. 763–768.

28. Rehman, Z.U.; Khan, S.N.; Muhammad, K.; Lee, J.W.; Lv, Z.; Baik, S.W.; Shah, P.A.; Awan, K.; Mehmood, I. Machine learning-
assisted signature and heuristic-based detection of malwares in Android devices. Comput. Electr. Eng. 2018, 69, 828–841.
[CrossRef]

29. Zhu, H.J.; You, Z.H.; Zhu, Z.X.; Shi, W.L.; Chen, X.; Cheng, L. DroidDet: Effective and robust detection of android malware using
static analysis along with rotation forest model. Neurocomputing 2018, 272, 638–646. [CrossRef]

30. Masud, M.Z.; Sahib, S.; Abdollah, M.F.; Selamat, S.R.; Yusof, R. Analysis of features selection and machine learning classifier in
android malware detection. In Proceedings of the 2014 International Conference on Information Science & Applications (ICISA),
Seoul, Korea, 6 May 2014; pp. 1–5.

31. Martinelli, F.; Marulli, F.; Mercaldo, F. Evaluating convolutional neural network for effective mobile malware detection. Procedia
Comput. Sci. 2017, 112, 2372–2381. [CrossRef]

32. Muttoo, S.K.; Badhani, S. Android malware detection: state of the art. Int. J. Inf. Technol. 2017, 9, 111–117. [CrossRef]
33. Yuan, Z.; Lu, Y.; Wang, Z.; Xue, Y. Droid-sec: Deep learning in android malware detection. In Proceedings of the 2014 ACM

Conference on SIGCOMM, Chicago, IL, USA, 17 August 2014; pp. 371–372.
34. Yuan, Z.; Lu, Y.; Xue, Y. Droiddetector: Android malware characterization and detection using deep learning. Tsinghua Sci.

Technol. 2016, 21, 114–123. [CrossRef]
35. Xu, L.; Zhang, D.; Jayasena, N.; Cavazos, J. Hadm: Hybrid analysis for detection of malware. In Proceedings of the SAI Intelligent

Systems Conference, London, UK, 21–22 September 2016; pp. 702–724.
36. Zhu, H.J.; Jiang, T.H.; Ma, B.; You, Z.H.; Shi, W.L.; Cheng, L. HEMD: A highly efficient random forest-based malware detection

framework for Android. Neural Comput. Appl. 2018, 30, 3353–3361. [CrossRef]

http://dx.doi.org/10.1016/j.compeleceng.2017.11.028
http://dx.doi.org/10.1016/j.neucom.2017.07.030
http://dx.doi.org/10.1016/j.procs.2017.08.216
http://dx.doi.org/10.1007/s41870-017-0010-2
http://dx.doi.org/10.1109/TST.2016.7399288
http://dx.doi.org/10.1007/s00521-017-2914-y

	Introduction
	Background
	Android Vulnerabilities
	Dangerous Permissions
	AndroBugs Vulnerabilities
	Code Smell

	Machine Learning (ML)
	Deep Learning (DL)
	Support Vector Machines (SVM)

	Methodology
	Dataset
	Feature Extraction
	General Architecture of Our Machine Learning Approach
	Android Malware Detection Based on Deep Learning
	Android Malware Detection Based on Support Vector Machine

	Experiments
	Performance Indicators
	Experimental Setup
	Results
	Comparison with Well-Known Anti-Virus Tool

	Related Work
	Static Analysis
	Dynamic Analysis
	Hybrid Analysis

	Conclusions
	References

