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Abstract: This paper deals with a continuously degrading turbine runner due to cavitation that is
inspected at fixed time intervals. The degradation of the system is modelled with a gamma process.
This paper is focused on comparing the influence of maintenance parameters with the long-time
cost criterion. A case study, based on simulated degradation paths, shows that there exists a set of
parameters that minimize maintenance costs.

Keywords: maintenance; cavitation; hydraulic runner; gamma process; degradation simulation

1. Introduction

With a steadily growing range of new renewable energy sources (such as wind or solar
power), energy operators are facing new challenges forcing them to constantly adapt their
production processes. Because these sources generate intermittent power and variations in
the network demand, fluctuations need to be mitigated with more steady utilities. To this
end, hydroelectric plants offer both great availability and responsiveness [1]. Meanwhile,
to ensure power stability, hydraulic runners are often operated in off-design regions,
which places them under increasing pressure and causes severe degradation. To stay
competitive, electric power plant operators need to maintain their assets on a “just-in-
time” basis. Because of the complexity of such systems and the regulatory policies in
place, the maintenance of hydroelectric turbines is mainly performed after periodic and
planned inspections [2]. There is thus the need for an optimal maintenance planning,
considering both the system state and economic constraints. In this regard, analysts may
evaluate how different factors may affect the system’s long-term operating costs. Currently,
inspection intervals are mainly determined by regulatory policies or previous knowledge
of electric turbines. Meanwhile, depending on operation conditions and the resulting
system degradation, performing early or late inspections (followed by repair operations)
may be beneficial from an economic perspective.

The main objective of this paper is to present a generic methodology to study and
optimize preventive maintenance schedules. To this end, a stochastic process is used to
model component degradation. The influence of different maintenance rules, such as the
time between two inspections or the degradation levels triggering a repair, is studied using
financial criterion. Finally, the severity of the component degradation is incorporated in a
case study through different stochastic process sets of parameters.

The remainder of this paper is organized as follows. Firstly, Section 2 introduces the
degradation phenomenon, along with modelling based on stochastic process. In Section 3,
a maintenance model is proposed. Section 4 provides an industrial case study to compare
different maintenance strategies. Results are summarized and discussed in Section 5.
Section 6 draws the main conclusions.
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2. Degradation
2.1. Degradation Description

Although Francis turbines are designed to exhibit relatively no cavitation in nominal
conditions [3,4], energy producers may need to operate them in off-design regions to
accommodate electricity network, resulting in possible early wear of materials. After
electric turbines are in use for years, erosive cavitation can deteriorate runner blades,
leading to perforation in some severe cases. This phenomenon consists of the formation
of vapour bubbles in the liquid, and occurs where the vapour pressure is greater than
the water static pressure [5]. Cavitation may lead to erosion when bubbles reach higher-
pressure regions and collapse on solid surfaces [6]. With time, these surfaces can suffer
from erosion (material loss), along with modifications of their hydraulic profile, which
may have several undesirable consequences: reduced efficiency, vibration, noise, and
operational instabilities [7]. The observed degradation, manifested through a material loss,
is progressive and cumulative in time. Degradation is evaluated during inspections (at
fixed time intervals) when the eroded volume of material, and thus, the equivalent mass
of lost material, is measured. Along with cracking, erosive cavitation is one of the most
common degradation phenomena observed on Francis runners.

When a repair is mandatory, the eroded runner blade materials must be replaced by
new ones. For this, welding techniques are used to rebuild the affected regions, which
create a new raw surface. Then, grinding operations are performed to recreate the original
hydraulic profile of the blades.

2.2. Degradation Model

Erosive cavitation can be considered as the action of several tiny shocks impacting
the material surface. Moreover, as this degradation phenomenon is highly influenced by
hydraulic and operation conditions, the resulting material loss may vary significantly over
time. For these reasons, the use of stochastic processes was prioritized herein for modelling
the erosive cavitation observed on hydraulic turbines, similarly to what is proposed in
previous papers [8,9]. Stochastic processes are well-suited for modelling the temporal
variability of degradation, and they allow analysts to incorporate both measurement uncer-
tainties and the natural variability of the degradation phenomenon into the process [10]. In
particular, the gamma process, with its non-negative increments over time, is considered to
be a good candidate for modelling monotonic and cumulative degradations such as corro-
sion or erosion [11]. Consequently, the gamma process is used to model the degradation
behaviour in the remainder of this paper.

We now present certain notations used in the present work. The gamma process
X(t)t≥0, with nondecreasing shape function v with v(t) > 0 ∀t ∈ R and rate parameter
u > 0, has the following properties:

• X(0) = 0—material exhibits no degradation at t = 0,
• X(δ)− X(t) ∼ Ga((v(δ)− v(t)), u) for all δ > t > 0—degradation increments follow

gamma distribution with probability density function expressed in Equation (1),
• X(t)t≥0 has independent, nonoverlapping increments. The future degradation is

independent of the past degradation.

The probability density function of degradation increments is given by the follow-
ing expression:

fX(x|u, v(t)) = Ga(x|u, v(t)) =
uv(t)

Γ(v(t))
xv(t)−1e−ux IR∗+(x) (1)

where IA(x) = 1 for x ∈ A and IA(x) = 0 for x /∈ A, and Γ(a) =
∫ +∞

z=0 za−1e−zdz is the
gamma function for a > 0.

The expectation, representing the mean degradation speed, and the variance of gamma
process are given respectively in the following equation.
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E(X(t)) =
v(t)

u
, V(X(t)) =

v(t)
u2 (2)

In order to model the acceleration behaviour of cavitation erosion, the shape function
was chosen such as v(t) = ctb, called power law function, with c, b > 0. Parameters u, c and
b allow analysts to represent different degradation behaviours of the component. Figure 1
shows degradation increments organized in paths for a gamma process. Each dot denotes a
realization of a gamma process with shape function v(t) and rate parameter u representing
the cumulative behaviour of cavitation erosion. To estimate gamma process parameters,
maximum likelihood methods can be used with degradation data. These estimations can
be easily compared to physical observations using the expectation and variance of gamma
process introduced in Equation (2).

3. Maintenance Model

In this paper, we consider that the hydraulic runner has “failed” and needs to be
repaired as soon its degradation level reaches a certain threshold. Beyond this degradation
threshold, the component is still running, but its performance (i.e., efficiency) can be
significantly altered.

In the following case study, we introduced two degradation thresholds representing
moderate and severe erosion levels, denoted by ρ1 and ρ2 respectively, with ρ1 < ρ2. It
is considered that if the degradation level exceeds ρ2, it is more likely that one or several
blades might exhibit severe material erosion, such as perforation. In such a case, the repair
process is more time-consuming and involves higher maintenance costs.

Inspections are performed at fixed time intervals and are noted τ with an associated
cost Ci. For each inspection, the production unit is stopped for 1 day to perform an
evaluation of material loss. Figure 1 represents the two previous degradation thresholds ρ1
and ρ2, along with τ for a given gamma process path.

After an inspection, 3 outcomes are possible:

• X(τ) < ρ1, the material is returned to production until a new inspection occurs.
• ρ1 ≤ X(τ) ≤ ρ2. The resulting degradation is considered as “moderate” and generates

a repair operation with cost Cr(t) and duration Tr. After a repair, the component is
considered as good as new with X(τ + Tr) = 0.

• X(τ) ≥ ρ2. The resulting degradation is considered as “severe” and generates a repair
operation with cost Cr(t). After a repair, the component is considered as good as new
with X(τ + T′r) = 0.

These 3 outcomes are presented in Figure 1. On the left, for the first inspection t = τ,
X(t) is greater than ρ2, which triggers a repair, resulting in X(τ + Tr) = 0. On the right,
the first inspection t = τ′ shows a degradation smaller than threshold ρ1. Only on the next
inspection t = 2τ′ is a repair needed with X(2τ′) ≥ ρ1. For the remainder of this paper,
S is the first time the component is repaired (as good as new) and Ni is the number of
inspections performed before the first repair (or during a repair cycle).
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Figure 1. Gamma process degradation path with different inspection intervals (a) τ and (b) τ′, with τ > τ′.

In this study, the following assumptions are deemed satisfied:

• the component remains in working order even if its degradation level exceeds thresh-
old ρ2,

• the repair cost Cr(·) is a function only of the time Tr needed to repair the component.
Tr is evaluated using the maintenance function m(·),

• m(·) depends on both the degradation level X(t) and thresholds ρ1 and ρ2,
• during repair, the operating loss, denoted COL(Tr) ≥ 0, is evaluated using Tr. COL

may vary depending on the electricity producer’s needs.

The maintenance efficiency, the function m(·) is given in the following expression:

m(X(t)) =
{

α1X(t) if ρ1 ≤ X(t) < ρ2,
α2X(t) if X(t) ≥ ρ2,

(3)

with 0 < α1 < α2. For a degradation level X(t) ≥ ρ2, we consider that the time to repair Tr
will be greater due to possible perforation of one or several blades requiring more complex
repair operations. In Figure 1a, because a severe degradation (orange zone) is observed
after an inspection, we have : T′r > Tr.

The total cost C(S) of a repair cycle is given by the following expression:

C(S) = Cr(Tr) + NiCi + COL(Tr) (4)

with Cr(Tr) = σTr and COL(Tr) = βTr (σ, β ≥ 0).
As shown in Figure 1, we note that the process describing the component degradation

in conjunction with the previous maintenance model, is a renewal process with renewal
times being the dates of repair [12]. Indeed, after a repair occurs, the degradation state of
components is equal to 0 and its evolution after the maintenance operation does not depend
on its past. This renewal property allows us to use the so-called renewal theorems [13],
which show that the expected cost of the component per unit of time is equal to the ratio of
the expected cost incurred in a repair cycle divided by the expected length of a repair cycle:

lim
t→∞

E(C(t))
t

=
E(C(S))
E(S) , (5)

with C(·) being the cumulative cost function and S the first repair (as good as new) date.
This expression can be approximated using Equation (6):

lim
t→∞

C(t)
t
∼ R =

C(S)
S

(6)
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This result allows us to use a Monte Carlo simulation representing the degradation
evolution to approximate with ratio R the expected cost of the component per time unit
[k$/day]. With a large enough number B of simulation replications, a convergence of
Equation (6) is reached, allowing to compare different maintenance scenarios. The variabil-
ity of C(t)/t can be evaluated using the following equation:

V = var

(
C(S)− C(S)S

S

)
(7)

4. Case Study

In this section, we study the influence of maintenance strategies on the component
cost per unit of time over an infinite horizon. The main objective is to find a combination
of both inspection intervals τ and maintenance thresholds ρ1 minimizing the ratio R in
Equation (6). To this end, we assume that cost parameters α1, α2, σ, Ci are fixed, except for
those associated with operation losses β. Indeed, depending on the electricity producer’s
needs (e.g., over a year), the unavailability of the component may have different financial
impacts. To reflect these situations, 3 values of parameter β are considered, as detailed in
Table 1. Parameters allowing to evaluate repair costs are summarized in the same table.
Degradation level thresholds are presented in Table 1. Threshold ρ2 = 42 kg represents a
material loss level exhibiting a perforation. Thus, for a given threshold set [ρ1, ρ2], only the
first threshold ρ1 may vary from one case to another. Note that degradation thresholds ρ1
and ρ2 are determined based on internal maintenance procedures and for a specific runner.
Cavitation erosion is usually evaluated (during an inspection) by measuring the area and
the depth of the affected regions [14]. In this case study, we considered that if material loss
reaches 42 kg, it is more likely that the erosion depth will be equal to the blade thickness,
resulting in perforation.

Table 1. Simulation parameters.

Parameter Comments

β
0 No operation loss
50 Moderate operation losses
100 High operation losses

α1 0.20 ρ1 ≤ X(t) < ρ2
α2 0.25 X(t) ≥ ρ2

σ 0.42 Repair cost per unit of time

Ci 0.42 Cost of inspection

ρ1

15 More conservative
24 Moderately conservative
33 Less conservative

ρ2 42 Perforation limit

During operation, evaluating the cavitation intensity and the resulting erosion is
a difficult task because this phenomenon is influenced by several operating conditions
(suction head, head, discharge, etc.) [15]. For this purpose, different detection methods
were developed and are used in industry [16] in conjunction with CFD models. For the
sake of simplicity, the present case study considers a turbine subject to constant and steady
operation conditions. To reflect various degradation conditions, 3 sets of gamma process
parameters are proposed: from low to high degradation (with various dispersions) and are
presented in Table 2. For a better physical understanding, the expectation and variance
associated with previous sets of parameters are given at t = 12 months. Moderate erosion
parameters were obtained from a study conducted on a real Francis turbine in [17]. These
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data were collected from erosive cavitation monitoring system running over a 5-year span.
Other parameters were derived to illustrate the methodology proposed in this paper.

Table 2. Gamma process parameters with associated expectation and variance given at t = 12 months.

GP Parameters (u, c, b) E(X(12)) V(X(12)) Comments

(1.29, 0.1, 1.13) 1.3 1 Low erosion
(5, 0.75, 1.13) 2.5 0.5 Moderate erosion
(4, 0.81, 1.2) 4 1 High erosion

A convergence study on the ratio R and the associated variance V of simulated
maintenance cycles was performed to determine the minimum number B of cycles needed
to reach an asymptotic behaviour. The study showed that an asymptotic behaviour is
reached for more than B = 8.103 cycles (see Figure 2). For the remainder of the case study,
we generate B = 104 cycles.

Figure 2. Convergence analysis to determine number B of simulated cycles.

5. Results

To facilitate the understanding of the results, Figure 3 shows a simulation of 1000
degradation paths over 14 years in the case of a moderate degradation. Note that mainte-
nance operations are not considered in this figure. The different degradation thresholds
are represented along with the four inspection intervals considered in this study. If we
consider the inspection interval τ = 6 years, the first inspection generates mostly no repair
operations for the cases where ρ1 = 24 or 33 kg (X(τ) < ρ1). Conversely, for ρ1 = 15 kg,
most of the simulated paths show X(τ) ≥ ρ1, generating a repair (after this repair, we
observe a similar behaviour at t = 12 years). Then, the next inspection occurs 6 years later
at t = 12 years. This time, for ρ1 = 24 or 33 kg, we have about 50% of the degradation paths
with X(2τ) ≥ ρ1 and the rest with X(2τ) ≥ ρ2. This observation explains the results shown
in Figure 4 for GP parameters = [5, 0.75, 1.13] and τ = 6 years: the case with ρ1 = 15 kg
shows the lower cost ratio R (at the first inspection, a repair is mandatory in most sim-
ulations). Similarly, for ρ1 = 22 or 33 kg, R tends to be higher than for ρ1 = 15 kg (two
inspections are needed before a repair is performed). Also, because the degradation level
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X(t = 12 years) is distributed around ρ2, the dispersion of R will be higher for ρ1 = 23 or
33 kg than for ρ1 = 15 kg. The same logic applies for the results presented in Figure 4.
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Figure 3. Gamma process degradation paths with different inspection intervals τ and thresholds
ρ1—moderate degradation.

Figure 4. Comparison of maintenance strategies based on ratio R (Equation (6)) and associated variability (β = 100).
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Figure 4 shows the influence of maintenance parameters on ratio R and its associated
variance V. Note that while it is possible to have an approximation of the expected cost
by unit of time with R for an infinite number of replications, we do not have a consistent
approximation for confidence intervals. Hence, the variability is assessed using V to
provide an idea of the dispersion of the results. In this graph, we considered β = 100 to
model operation losses due to turbine downtime. From left to right, we have different
degradation intensities, ranging from moderate to severe. As expected, the most intense
degradation exhibits the highest long-term cost per unit of time, expressed by ratio R.
From the case study results, it appears that the degradation severity influences the optimal
time interval τ between two inspections. For the low degradation, the larger time interval,
τ = 12 years, gives the best results in terms of ratio R. Conversely, R is the lowest in the
case τ = 6 years, for the moderate and most severe degradation. These results show that
care should be taken in assessing the degradation intensity to determine the best time
interval between inspections. For a low degradation, except for ρ1 = 24 kg, the larger
the value or τ, the less the maintenance cost per unit of time. In every case presented,
inspecting the system every 3 years does not represent an optimal choice.

For the three degradation intensities, the most conservative threshold set (with
ρ1 = 15 kg) shows the best results in terms of both ratio R and dispersion. Conversely,
poorer results are observed for the highest value of ρ1. In this case, being conservative on
the degradation threshold and performing maintenance operations more often seems to
represent the best repair strategy in terms of economics.

Results for other values of parameter β are not presented in the figures as the overall
behaviour observed is similar to the case of β = 100. Although modelling operation losses
may impact the values of R and V, that does not change the optimum or the results pattern,
and thus, the same conclusions can be drawn.

6. Conclusions

In this paper, we studied the influence of inspection parameters on the long-term cost
of operating a hydraulic runner subject to cavitation. To reflect the degradation variability
phenomenon, a gamma process was used with different sets of parameters to represent
various degradation severities.

For the case study presented, we showed that performing inspections at too close
intervals (τ = 3 years) is never an optimal maintenance strategy. In our study, the best τ
depends on the degradation severity. We showed that the most conservative degradation
threshold exhibits the best results on both ratio R and its associated dispersion. The variance
reflects how the cost to repair may vary for the same maintenance strategy. Different
operation loss values did not impact the overall behaviour of maintenance strategies.

We highlight that from an industrial point of view, considering that only one cause of
degradation or failure is not enough to represent the full complexity of the entire system
considered in the study. The main objective of this paper was to propose a methodology
that can be used in different contexts. A more intensive study should be conducted to
incorporate the different causes of failure experienced with hydraulic turbines. Similarly,
for the sake of simplicity, we considered only three levels of operation loss costs in the
maintenance model. For more complete results, the analyst should put in extra effort
to identify all costs associated with the maintenance operation and point out time of
years exhibiting better conditions to perform a repair. Similarly, a drop in efficiency is
expected when the turbine runner faces degradation [18]. On a practical level, for a highly
accumulated degradation, the cost to operate the power unit is higher. This economic
aspect should be incorporated in a future study to better reflect this reality. Even though
loss of efficiency is difficult to track in practice, we believe that this should be accounted
for in maintenance strategies.
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