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Design and Modeling of a Spherical Robot Actuated by a Cylindrical
Drive*

Bruno Belzile! and David St-Onge'

Abstract— Rolling spherical robots have been studied in the
past few years as an alternative to legged and wheeled robots
in unstructured environments. These systems are of uttermost
interest for space exploration: fast, robust to collision and able
to handle various terrain topologies. This paper introduces
a novel barycentric spherical robot, dubbed the Autonomous
Robotic Intelligent Explorer Sphere (ARIES). Equipped with
an actuated cylindrical joint acting as a pendulum with
two degrees-of-freedom (DoF), the ARIES has a continuous
differential transmission to allow simultaneous rolling and
steering. This mechanism allows an unprecedented mass al-
location optimization, notably to provide a low center of mass.
Kinematics and dynamics of this novel system are detailed.
An analysis of the steering mechanism proves that it is more
efficient than a more conventional 2-DoF tilting mechanism,
while also retaining more space for a payload, for instance to
host sensors for simultaneous localization and mapping, in the
upper part of the sphere. Moreover, the kinematic input/output
equations obtained significantly simplify the device’s control.
Finally, we present a first complete prototype with preliminary
experimental tests.

I. INTRODUCTION

Alternatives to traditional wheeled robots have been stud-
ied for space exploration, as they are not necessarily adapted
for the challenging terrain topology that can be found on the
Moon and on Mars. Instead of relying on a single highly
agile platform (i.e. legged robot), our approach suggests the
use of several spherical rolling robots dropped near a targeted
area by a lander unit to explore it. The spherical shape of
the robot grants it good maneuverability and is well suited
to protect its internal equipment (sensors and computer) and
actuators from potential collisions as well as to seal it off
from the harsh exterior environment.

A large range of spherical robots can be found in the litera-
ture for various applications, ranging from child-development
studies [1] to underwater exploration [2] and agriculture [3].
Some are also commercially available, commonly sold as
toys to learn robotics [4].

While there are as many spherical rolling robot designs
as there are specific sets of characteristics, their locomo-
tion systems can be summarized in three broad categories:
1) barycentric [5], [6], [7], [8], [9]; 2) conservation of the
angular momentum [10], [11], [12], [13], [14]; and 3) shell
deformation [15]. In this paper, only robots with internal ac-
tuation systems are considered, as oppose to spherical robots
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Fig. 1. Autonomous Robotic Intelligent Explorer Sphere (ARIES), with a
diameter of 40 cm

using outer forces, such as the NASA/JPL Tumbleweed polar
rover [16].

Barycentric spherical robots (BSR) are by far the most
common kind [17]. To drive the rolling motion, the center
of mass (CoM) of the robot is moved away from the center
of rotation (CoR). They can be classified in several subcate-
gories. First, pendulum-based BSRs, in which the pendulum
bob points in the direction of desired travel, are fairly
common. While only one bob is necessary, Li, Deng and Liu
proposed a BSR with two [18] and DeJong et al., four [9],
to increase their maneuverability, at the expense of more
complex control schemes. To steer its BSR, Schroll [19]
designed and patented a differential mechanism to tilt the
bob in a direction orthogonal to the rolling motion. Second,
some researchers have also built prototypes with a smaller
wheeled robot inside the sphere [20] or with an internal
drive unit (IDU) [21], [20], [22]. However, these systems are
known to suffer from slipping [17]. Finally, some BSRs use
sliding masses to control the location of the CoM [23], [24],
[25]. They are generally more difficult to control than the
two other subcategories described above. Similarly, Tafrishi
et al. proposed using masses moving inside pipes filled with
fluid to control the location of the CoM, thus generating
motion [26].

In this paper, a pendulum-based barycentric spherical
robot is proposed. To be able to steer the device, nick-
named the Autonomous Robotic Intelligent Explorer Sphere
(ARIES)', depicted in Fig. 1, we designed a novel differential
mechanism based on the concept of the actuated cylindrical
joint. The main advantages of our concept is that we obtain
a more robust internal mechanism, we optimize the mass
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allocation (no dead weight), we provide a really low CoM
and we have a nearly completely empty upper half of
the sphere, which is ideal to house a payload. Moreover,
as this paper will show, the 2-degrees-of-freedom (DoF)
output of the cylindrical joint can be computed with a
linear combination of the motors’ angular position and the
curvature radius while steering is inversely proportional to
the linear displacement of the cylindrical joint. This two
elements greatly simplify the control of the ARIES. In the
sequel, the governing principle of the proposed differential
drive is explained. Then, the kinematics and dynamics are
detailed alongside a comparison with a more conventional
tilting mechanism. Finally, we present a prototype of the
ARIES as well as some preliminary experiments.

II. BARYCENTRIC SPHERICAL ROBOT WITH A
CYLINDRICAL DRIVE

To be able to generate the rolling motion and steer a
barycentric spherical robot, the CoM must be able to move
in at least two directions relative to the outer shell. The idea
behind ARIES is to control the position of the CoM over
a virtual cylinder located inside the sphere. The center of
the latter is located on the axis of the former. To obtain this
type of motion of the CoM, a cylindrical actuated joint is
needed: a differential mechanism with two DoFs, a rotation
and a translation, about the same axis (in our case passing
through the center of the sphere). Harada et al. designed one
example of this kind of mechanisms, dubbed the C-drive,
with a RHHR? kinematic chain [27]. Karimi, Eskandary and
Angeles later improved the device with belts and pulleys
shaped into a translating II-joint [28] that was used to drive
a two-limb isostatic pick-and-place robot [29].

Inspired by this work, our design, shown in Fig. 2,
transforms the concept into a novel implementation. In both
applications, two identical revolute motors are used to reduce
the complexity and two lead screws with the same pitch,
one righthand, the other lefthand, support the linear motion.
In their implementation, Karimi, Eskandary and Angeles
attached the motors of the C-drive to the base and the output
shaft was connected to the proximal link of a manipulator. In
our approach however, the motors are rigidly attached to the
mobile platform (pendulum), as shown in Fig. 3. Therefore,
in our application, the motors are moving inside the spherical
shell by translating about the rolling axis of the robot,
as depicted in Fig. 3. The output of this cylindrical drive
generates the rotation required for the sphere to roll plus the
translation needed for it to steer. The mechanical concept was
fundamentally redesigned for this different output as well as
to minimize its mass.

As can be seen in Figs. 2 and 3, the three pulleys are on
the same plane, the latter passing through the center of the
sphere. The upper pulley, i.e. the output of the cylindrical
drive, is rigidly attached to the rolling axis of the sphere.
The two motors are rigidly attached to the same body,

2R, H and C stand for revolute, helical (screw) and cylindrical joint
respectively.
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Fig. 2. Rendering of the cylindrical drive only (mobile platform not shown)

W

Fig. 3. Steering of the sphere by tilting it with translation of the CoM
(illustrated by the red dot, median plane by the dashed yellow line)

the latter translating as a function of the output of the
motors. If both motors turn at the same rate in the same
direction, they generate a pure rotation about the output shaft;
one resulting into a forward-only motion of the sphere. If
they turn in opposite direction, again with the same rate,
they generate a pure translation. The sphere then tilts in
the plane orthogonal to the rolling motion. This motion
is limited, as the translation component of the cylindrical
drive is physically bounded inside the shell. Any cylindrical
motion can be generated by a linear combination of the two
foregoing motions.

We define the joint variables® of the cylindrical drive
(input) as ¥ = [¢r wR]T. The output of the cylindrical
drive, defined by the variables «’' and 6, respectively for
translation and rotation, is arrayed in the vector d. The matrix
relation between the output and the input is derived in the
next section.

TABLE I
PARAMETERS AND VARIABLES

R radius of the sphere

- distance between center of the sphere and CoM of the
pendulum

Mg mass of the shell

myp mass of the pendulum

Is moment of inertia of the shell

Ip moment of inertia of the pendulum

0 rolling angle of the sphere about x-axis of frame F,

) rolling angle of the sphere about y-axis of frame F,

& rolling angle of the sphere about z-axis of frame F

« rotational output of the cylindrical joint

u’ translational output of the cylindrical joint

U translation of the CoM of cylindrical pendulum

kp mass ratio between the pendulum’s translating parts and m

p pitch of the lead screws

G reduction ratio of the cylindrical joint

g gravitational acceleration

Te curvature radius while steering

Ps Cartesian position of the center of the sphere in F

3Subscripts I and R stand for the left and the right motors.



In the following derivations, we simplify the model. The
interactions between rolling motions about the transversal
and longitudinal axes are neglected, leading to a decoupled
model. Similar decoupled approaches have been applied
successfully to wheeled vehicles [30], unicyle/bicycles [31]
and other spherical rolling robots [32]. Moreover, consid-
ering that a spherical robot generates only one of the two
motions (translation for steering, rotation for rolling) at every
time step (infinitesimal) is not constraining. Furthermore, the
kinetic energy of the tilting motion will be significantly lower
than the one related to the rolling motion during simultaneous
rolling and steering; thus the decoupled model assumption
is adequate.

A. Kinematics

1) Spherical Robot: This section presents the equations
relating the translational and angular displacement of the
cylindrical drive to the spherical motion. Five frames are
required for this derivation: 1) the inertial reference frame
F; 2) the frame F, that is rotated by the angle & about the
z-axis of F, where ¢ is the heading of the robot; 3) the
moving reference frame J,, attached to the center of the
sphere and only allowed to translate with respect to F,; 4) the
frame attached to the center of the shell F,, with its x-axis
aligned with the main rotation axis of the mechanism; 5) the
frame attached to the CoM of the pendulum F,, which is
obtained after applying a translation u and a rotation o about
the x-axis of F; (which is the axis of the cylindrical joint).
All five frames are illustrated in Fig. 4. While it is possible
to use a generic 3-DoF rotation matrix (i.e. defined from an
Euler convention) between F,,, and F;, our decoupled model
allows us to use a single rotation angle at the time. For the
rolling motion, the xz-axes of F,,, and F; are assumed to be
parallel. The rotation angle about this shared axis is therefore
0. For the steering/tilting motion, it is y-axes of F,, and
Fs that are assumed to be parallel, and the angle between
their respective x-axes is ¢. The position of the CoM of the
cylindrical pendulum with respect to frame Fj is

s . T

r, = [u 7 sin o —rcosa] (D
where r is the distance between the axis of the cylindrical
drive and the center of the sphere. Variables v’ and «
are, respectively, the translational and rotational output of
the cylindrical joint, both illustrated in Fig. 2. Because
some parts of the cylindrical pendulum do not translate, the
translation applied to the CoM of the pendulum is u = kpu/,
where k,, a scalar, is the ratio between the mass that does
not translate (eg. the central pulleys) and the total mass of
the pendulum.

In order to achieve a decoupled model of the dynamics,
velocities corresponding to the forward rolling (subscript )
and steering motions (subscript ) of the robot are separated.
Since the angular velocity £ (cf. Fig. 4) can be neglected
because it is significantly lower than the other angular ve-
locities, the kinematics and dynamics analyses are conducted
with respect to F, and not F. Therefore, linear and angular

Fig. 4. Frames: F and F, attached to the ground, F,, and F; attached
to the center of the sphere, F), attached to the CoM of the pendulum

velocities of the shell, respectively v, and ws, in F,, are
ove=1[0 RO 0T, %ws=1[0 0 07 ()
ve=[Rp 0 0, fw.=[0 ¢ 07 (b

where R, 6 and ¢ are the radius of the sphere, its rolling angle

and its tilting angle, respectively. Similarly, expression (1)
can be split in

’r, =[0 rsina —rcosa]T

]T

(3a)

frp:[u 0 —r (3b)

The angular velocity of the pendulum, i.e. the cylindrical
drive, defined in F,, is

wp=1[a 0 07 €

and then in frame F,,

m
T

wp = ;' ws + Ry pjwy,
0
= | RO +rcos(a —0)(a —0)

rsin(a — 0) (& — 0)

where R, ¢ is the rotation matrix between frames F, and F,
with respect to the rolling motion. It should be noted that the
translational motion of the cylindrical drive used to steer the
robot, does not, by definition, generate any angular velocity
in F;. Thus, {w, is equal to the three-dimensional null vector
and ["w,, is equal to ;"w,. Finally, the linear velocity of the
pendulum can be computed, in frame F,, with

(5a)

o
T

Vp = Vst Jwp X Ty
= Vs + wp X (Rygrrp)
0 (6a)
= | RO+ rcos(a— 0)(a—0)
rsin(a — 0)(a — 0)
and
§Vp ={Vs + {Vpss +{Vp +{wp X {1y
= ?Vs + Ry,<¢>§vp/s + gwp X (Ry@frp)
R¢ — usin ¢p¢ — ¢rcos ¢ + i cos ¢
= 0
—ug cos ¢ + ¢rsin ¢ — i sin ¢

(7a)



where R, 4 is the rotation matrix between the same frames
with respect to the steering/tilting motion.

2) Cylindrical Joint: As mentioned above, the pulleys
can only rotate about their axis, but cannot translate inside
the sphere. Vector d, the output of the cylindrical joint, is
mapped by the (2 x 2) Jacobian matrix J, into the joint
variables 1):

Y =17J,d (8a)
with
_1]2n/k pG _ T
Jp = ; |:27T/£p D G:| s d= [U Oé] (8b)

where u and «, as mentioned above, are the translational
and rotational output of the cylindical joint, G and p are,
respectively, the gear-reduction ratio of the mechanism and
the pitch of the lead screws (taken as the same for symme-
try). The ARIES has two independent control variables: the
rotation and the translation of the pendulum corresponding
respectively to the rolling and the steering motion of the
sphere.

B. Dynamics

With the kinematics of the robot, we can now derive its
decoupled dynamics model. We refer the reader to the work
of Kayacan et al. [32] for the underlying assumptions and
their validity. Similarly to other spherical rolling robots, we
chose a decoupled approach to simplify the highly nonlinear
dynamics of the system. First, some common assumptions
are required to formulate the dynamics model with a pen-
dulum, i.e. the system is rolling, without slipping, over a
perfectly horizontal surface and the internal dynamics of the
actuated cylindrical joint can be neglected with respect to
the resulting forces and torques. The Lagrangian approach
is chosen to obtain the equations of motion. The decoupled
expressions of the kinetic energy are

1
K, = sllovs 2 1| [ws 2
U AN o

+ mpH:Vp”Q + rIpngpHQ)
1 o o o
Ky =5 (ms|[7vsll* + (Ls + oI [fws I + my [ [7v][*)
(9b)
where ,.I, and I, are, respectively, the moment of inertia of
the shell and the pendulum with respect to the plane parallel
to the pulleys and passing through the center of the sphere.
With the CoM of the shell located at the geometrical center

of the sphere (no effect), the decoupled expression of the
potential energy are

(10a)
(10b)

+Ep = —mygrcos(a — 0)
tFp = — mpgusing — rcos ¢
From Ej and E,, two decoupled Langragian functions are

obtained: L, with only rotational terms about the transversal
axis, and L; about the longitudinal axis.

For translation along the y-axis of frame F,,, i.e. the
forward rolling motion, the Euler-Lagrangian equations are
therefore

d (9L,\ L. d (LN 0L
dat \ o0 00~ at \oa da @

It should be noted here that 79 = 7, = 7 is the torque com-
ponent of the output of the cylindrical joint. When a torque is
applied on the sphere, a reaction torque to the pendulum axis
occurs in the opposite direction [33]. For translation along
the x-axis of frame F,,, i.e. the tilting/steering motion, the
Euler-Lagrangian equations are

d L L d L L
4 & ,Q:()’ ol & ,@:f (12)
dt \ 9¢ ¢ dt \ ou ou
where f is the force output of the cylindrical joint. The last
four equations can be written in matrix form:

M(a(t)a(t) + V(a(t), a(t)) =£(t)

(13a)
with
q=100 a ¢

where M is the inertia tensor and V is an array containing
the other wrenches acting on the system, such as internal
and external friction forces and the cross-influence of the
velocity components (alike coriolis).

ut, f=[r 1 0 fIF (13b)

C. Curvature Radius

The distance between the cylindrical drive axis and the
center of the sphere is 7/, which, as a function of the
pendulum’s angle, can be expressed as

r’ =rcos(a+6) (14)

Moreover, regardless of the steering mechanism chosen, the
angular velocity of the spherical robot about the vertical axis
of the reference frame F is

Q=—R0/r. (15)

where R, 6 and r. are, respectively, the radius of the sphere,
the rolling angular velocity of the sphere and the radius
of curvature while steering. Therefore, since none of the
first two are affected by the steering mechanism, tilting and
cylindrical mechanisms must be compare over how the radius
of curvature r. is generated. For the cylindrical pendulum,
the magnitude of the friction force between the ground and
the sphere is computed with the following expression:

||ffH :HfC,SH + ||fc,p||

=msr.0% + My (e + ucos QS)QQ (16)

~(ms + mp)rCQ2

where f. ;, i = {s,p} are the centrifugal forces acting on the
sphere and the pendulum and 2 is the angular velocity of the
sphere about the z-axis in F. As can be seen, the translation
component of the cylindrical pendulum is neglected, as r.
is assumed significantly larger than u. Then, the magnitude
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Fig. 5.
curves for the tilting pendulum

of the torque acting about the transversal axis of the sphere,
i.e. the y-axis of frame Fj, is computed with
T, = — R||ff|| — mpg(r' sin ¢ + ucos ¢)
+ | pl| (7 cos ¢ — usin @)
— R(mg 4+ m,)r.0% — myg(r’ sin ¢ + u cos ¢)

+ myr Q% (1 cos ¢ — usin @)

a7

~
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Knowing that the angular velocity of the sphere, in F,, is

w=[-fcosp —¢ Q—0sing]” (18)

and that its angular momentum is defined as (the moment of
inertia of the shell is assumed to be the same regardless of
the plane, i.e. I, =I5 = I)

L=1Ilw=[-I0cosp —I¢ I,(Q-0sing) (19

then the total torque applied on the sphere, which is the time
derivative of L, can also be obtained as L = € x L since
the sphere is undergoing uniform circular motion®, i.e.

T=[.Q¢% —I.00cos¢ 0T (20)

Therefore, the second component of T must be equal to
T,. After some simplifications and using a small-angle
assumption for ¢, we obtain

—myr' R20% + I,RO? + R®(m, + m,,)0>
uUMpg

21

Te,eyl =

III. COMPARISON: TILTING VS TRANSLATING

Using the same set of parameters (mass, moment of inertia,
location of the CoM, etc.), we compare our mechanism
with a more conventional 2-DoF tilting mechanism. A pure
rolling motion will result in the same behavior, since they
are both based on the same principle. However, the steering
mechanisms differ: ours generates a translation, while the
more conventional 2-DoF tilting mechanism generates a
rotation. In both cases, steering is a function of the deviation
of the CoM with respect to the center plane of the sphere, as
shown in Fig. 5. The original location of the CoM is assumed
to be the same for both steering systems.

4Here, Q is the angular velocity vector defining the uniform circular
motion, i.e. @ =[0 0 €] and should not be confused with w.

Steering motion: (a) geometrical model; (b) lateral forces and moments; (c) steering comparison:

solid curves for cylindrical pendulum, dashed

A. Curvature Radius

The curvature radius r. is not computed the same way
depending on the steering mechanism implemented. As ob-
tained by Kayacan et al. [32], an equivalent expression exists
for a 2-DoF tilting pendulum (again assuming that ¢ remains
small), i.e.

RO(I, — myRr' cos B) + R*6%(my + my)
mpgr’ sin

Tetilt ~ (22)
We can therefore see that both eqs. (21&22) above have a
similar structure, i.e.

re = C(A—=B()/n (23)

where
R6?
B=m,'R, C=— (24a)

A:IS+R2(ms+mp)a mpg
P

Neire = 7' sin B
(24b)

We can see that the curvature radius is a function of the
rolling angular velocity 6 and u for the cylindrical mecha-
nism or § for the tilting mechanism. The slower the sphere
rolls, the smaller is the curvature radius. We perform a
numerical comparison using these parameters values: Iy =
0.25 kgm?, I, = 02 kgm?, my = 1 kg, m, = 5 kg,
R = 0.2 m and » = 0.1 m. Moreover, since the curvature
radius for one mechanism is function of an angle (3) and the
other of a length u, the former is normalized with respect
to 30° and the latter to 0.058 m (realistic maximum values
with regards to the scale of our prototype discussed in the
next section), resulting in the variable w. Furthermore, if the
cylindrical joint makes a translation of v = 0.058, the line
between the CoM of the pendulum and the center of the
sphere makes an angle of 30° with the z-axis of F),.

Figure 5(c) shows that the curvature radius is generally
smaller with the cylindrical pendulum with respect to w. We
can argue that our mechanism performs better regarding the
steering motion.

Ccyl = 1; Ctilt = COS Ba TNeyl = U,

B. Torque

Without the torque from the motors, the cylindrical drive
is only statically balanced in three positions: the central
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Fig. 6. Torque needed for a typical tilting motion; solid curve for cylindrical
pendulum (7 = pf), dashed curves for the tilting pendulum

position v = 0 and when it is in contact with its mechanical
limits (4 = Umin < 0 OF U = Upmqe > 0). Indeed, the
distance between the center of the sphere and the CoM
of the pendulum increases if |u| > 0. The conventional
tilting mechanism, however, is stable at every value of f.
In practice, considering friction and the high gear-reduction
ratio of the drive, a stable position exists for any value of
u in a real-life scenario. This observation leads to a neat
advantage: it reduces the motor torque needed to tilt the
robot with a cylindrical drive. The phenomenon is illustrated
in Fig. 6, where a similar tilting motion of the sphere
(v = 0.058 m for the cylindrical drive, 5 = 30° for the 2-
DoF tilting mechanism) is conducted with both mechanisms
with the dynamics model detailed in Section II-B.

C. Other considerations

There are, however, other advantages for the cylindrical
pendulum over the tilting mechanism. For instance, the
former leaves the upper part of the sphere mostly empty,
which can be useful to host a payload like sensors such
as a LiDAR. Moreover, the conventional tilting mechanism
requires a lot more internal workspace (empty space for
the pendulum motion) than ours. It should also be noted
that, as illustrated in Fig. 5(a), the CoM of the pendulum is
further away from the center of the sphere with a cylindrical
mechanism while steering. Therefore, the maximum torque
output of the pendulum is greater.

IV. PROTOTYPE AND PRELIMINARY TESTS

The prototype was shown in Figs. 1&7. As can be seen in
the latter, only the cylindrical coupler, highlighted in blue,
and the output shaft can translate relative to the mobile
platform. Two identical Maxon EC 45 flat 30 W brushless
motors with a 26:1 gear are required to power the cylindrical
drive.

The curvature radius was determined experimentally to
validate the concept of the actuated cylindrical pendulum
and the model of the system. As shown in Fig. 8, the
experimental data approach the curvature estimated by the
model for the tested velocity. The noticeable discrepancies
can be explained by friction in the mechanism, assumptions

guiding ¥ \\mobile platform

rail e~ §
output ’ — \

gear train

Fig. 7. Inside of the cylindrical drive (all parts that can translate relative
to the mobile platform are highlighted in blue)
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Fig. 8. Experimental curvature radius for 6 = 4.26 rad/s; dashed curves
for estimation from the model, circles for experimental data

made in the model and inertial parameters that do not
perfectly fit reality. Nevertheless, this shows that the ARIES
can be steered with a relatively small curvature radius at a
reasonable speed and that it can be controlled.

V. CONCLUSION

In this paper, a novel spherical rolling robot driven by a
cylindrical actuated joint was proposed. This 2-DoF differ-
ential mechanism allows simultaneous rolling and steering
with a robust mechanism based only on two identical motors.
Kinematics and dynamics of this mechanism were first
presented and its characteristics were compared to a more
conventional tilting system. The cylindrical pendulum was
found to be more efficient than tilting counterparts regarding
to steering, while also enabling more free space in the upper
half of the sphere for payloads. Moreover, the kinematics and
dynamics models show that simple input/output equations
can be used to control the robot. A complete design was
finally detailed and a prototype was built. Some preliminary
experimental data are discussed. Future work will include
optimum control, a more thorough experimental validation
on various terrains and the analysis of the impact of their
topology on the locomotion, as well as the use of the ARIES
for simultaneous localization and mapping.
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