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Abstract: Integrating the knowledge and experience of fabrication during the design phase can help
reduce the cost and duration of steel construction projects. Building Information Modeling (BIM) are
technologies and processes that reduce the cost and duration of construction projects by integrating
parametric digital models as support of information. These models can contain information about
the performance of previous projects and allow a classification by linear regression of design criteria
with a high impact on the duration of the fabrication. This paper proposes a quantitative approach
that applies linear regressions on previous projects’ BIM models to identify some design rules and
production improvement points. A case study applied on 55,444 BIM models of steel joists validates
this approach. This case study shows that the camber, the weight of the structure, and its reinforced
elements greatly influence the fabrication time of the joists. The approach developed in this article
is a practical case where machine learning and BIM models are used rather than interviews with
professionals to identify knowledge related to a given steel structure fabrication system.

Keywords: assembly time; BIM models; construction industry; design rules; machine learning;
Steel Joists

1. Introduction

The fabrication phase of structural steel projects represents 30 to 40% of the overall
building cost [1]. Yet, the decisions taken during the design phase affect 88% of the
steelworks’ costs and time of execution [2]. However, the highest interest of the designers
remains the compliance with standards [3] and the appropriate choice of structural elements
for the resistance of the structures [4]. Not much time, a few minutes to a few hours are
devoted to evaluating models for cost and time reduction and the search for alternative
solutions during the design phase [5]. These evaluations are made without considering
the particularities of the manufacturing plant where the work will be carried out [6].
This situation leads to a sub-optimal design [7–9]. In the traditional Design Bid Build
(DBB) procurement, where a project is carried out in a linear and fragmented process,
manufacturing specialists often intervene at the end of the design phase [10,11]. At this
moment, the modifications they make cause delays and additional costs in completing the
projects [12]. This situation is similar to the situation in Product Development Engineering
(PDE) in the 1990s.

In PDE, designers and manufacturers collaborate formally through different methods
and design rules, such as design for manufacturing and assembly (DFMA) [13]. These rules
provide designers with the essential knowledge to reduce the cost, the time, the tools, the
number of operations, the quantity of material, and the number of workers during projects
while improving quality during the manufacturing and assembly of parts from the design
phase [14], and for a specific workshop [15].

DFMA consists of identifying and considering manufacturing and assembly con-
straints during design. This process leads to design rules and tools, which help obtain
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simplified and standardized products suitable for the manufacturing and assembly pro-
cess [13,14]. The DFMA methodology also improves the manufacturing and assembly
process by integrating structural changes that promote essential design criteria [16]. A case
study from Douglas Commercial Airlines demonstrates the significant benefits of using
DFMA in a manufacturing process. Notably: 51% reduction in the number of parts, 37%
reduction in the cost of manufacturing parts, 50% faster time to market, 68% improvement
in the quality and reliability of the final product, 62% reduction in assembly time, and 57%
reduction in manufacturing time [17]

DFMA identifies design factors with a high impact on manufacturing and assembly
processes [18]. One approach in identifying these factors is to hold meetings with designers,
manufacturers, and assemblers with extensive knowledge and experience to assess the
design factors available for a designed product [11,13]. The identified factors help to estab-
lish criteria that will allow the evaluation of different product designs [19]. This approach,
which seems to be possible to implement in the PDE, is difficult to apply in the construction
industry because of the context of Design Bid Build (DBB), where there is real fragmentation
between project phases [6]. However, recent work in machine learning (ML) shows that
it is possible to extract knowledge from the digital data of a process. Therefore, Building
Information Modeling (BIM) offers relevant data for ML in the construction industry.

This paper addresses the research question: Is it possible to identify design rules such
as DFMA from BIM models of previous projects and machine learning algorithms? As an
answer to this question, this paper aims to propose an approach to identify design rules
from BIM models of previous projects and ML algorithms:

To achieve this goal, this paper proposes to validate the possibility of extracting design
factors from BIM models of steel structures and ML, the possibility of establishing some
design rules to reduce the fabrication time from the obtained design factors.

For that, this article suggests a literature review to justify the choice of methodology, a
methodology, and a case study with 55,444 BIM models of steel joists. The BIM models are
from a major North American steel structure manufacturer.

2. Literature Review
2.1. Choice of a Knowledge Extraction Method

The extraction of knowledge specific to construction processes is one of the main
motivations of industrial and scientific organizations related to the construction industry.
Among these organizations, the Construction Industry Institute (CII) [20] and the Indepen-
dent Project Analysis (IPA) [21] consider that the extraction of knowledge from processes is
essential for verifying constructability and seeking efficiency during projects.

Two classes of methods can be used to extract knowledge from an industrial process:
qualitative and quantitative.

The qualitative method analyzes speech and texts from experts, from their experiences,
from conferences or brainstorms [22]. The quantitative method provides knowledge based
on the statistical and historical characteristics of the available data. This method mainly
uses mathematical models in scientific logic to propose a probabilistic form, which may
occur in a given process with identified input data [23].

In the context of large amounts of data, one of the significant limitations of using
qualitative methods in knowledge extraction is the limit of analysis of the human brain [23].
Data has grown exponentially since the advent of BIM and machine controllers [1]. The
traditional nature of contracts in the construction industry forces a separation between
the design and construction phases [24]. This separation is accentuated by the increas-
ing complexity of projects and the growing level of client requirements, which requires
specialization of activities in the construction industry [25]. Another barrier to using the
qualitative method is the difference in academic training between design and construction
professionals. Indeed, the organization of brainstorming between professionals in these
two professions can lead to costly and unproductive discussions caused by the difference
in perception [26,27].
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Given these difficulties, this article proposes using a quantitative method based on
machine learning (ML) to bypass human limitations related to knowledge extraction.

2.2. Machine Learning to Identify and Extract Knowledge

The construction of steel structures requires complex fabrication and assembly op-
erations [1]. Complex fabrication systems require sophisticated and accurate prediction
systems, such as those proposed by machine learning (ML) [28]. ML is the science of giving
computers the ability to learn and act as humans do and improve their learning over time
autonomously by providing data and information from a real process. ML is also defined
as a process that extracts models automatically from historical data [29]. ML belongs to
the domain of Artificial Intelligence (AI). AI is a field of research that aims to reproduce,
through artificial systems, the different cognitive capacities of human beings [30]. One
of the most targeted objectives of AI use is its ability to solve complex problems that are
beyond human competence [28,30–32], as well as to develop programs capable of learn-
ing from data [33]. Numerous applications of ML are found in finance, insurance, and
medicine [28,34]. ML is also found in manufacturing production management [35], and in
construction [36–38]. The observed benefits of ML in construction are widely appreciated
in the industry [28,39]

2.3. Choice of the Type of Learning and the Type of Algorithm

ML’s two main approaches: supervised learning and unsupervised learning [31].
Supervised learning applies to processes with known output data. The objective here is
to understand the relationship between input and output data. Unsupervised learning is
applied to a series of data that is not understood. The goal is to find a natural link between
these data.

The study proposed in this article is a simple application case of ML. Supervised
learning with a regression algorithm is suitable for this study [31,40].

Regression algorithms consist of building a prediction model and training it with
available data to respond accurately to new data belonging to the process to be studied [29].
Several regression-based operating time prediction cases exist in the literature [28]. In each
of these cases, a comparison between algorithms identifies the algorithm that best fits the
study [28].

2.4. Ensemble Learning

In the field of prediction with regression algorithms, there is increasing interest in
Ensemble Learning (EL), a method that combines predictions from several algorithms and
aggregates their results to obtain a higher accuracy than any individual algorithm [41–44].
The two main methods used in EL are boosting and bagging [43].

In boosting, successive prediction trees make incremental contributions to improve the
predictions of previous trees. In the end, a weighted vote is taken for the final prediction.
One of the techniques used for boosting is the Gradient Boosting Regressor GBR.

In Bagging, prediction trees do not depend on previous prediction trees. All trees are
individually constructed. In the end, a simple majority vote is taken for the prediction [41].
The Random Forest Regressor (RFR) is one of the techniques used in Bagging. The GBR
and RFR are both used and compared in this article for knowledge extraction.

To better appreciate the performance of GBR and RFR techniques in knowledge
extraction, this study proposes to use another linear regression technique: Lasso (least
absolute shrinkage and selection operator).

Lasso is a regression method that performs variable selection and regulation to im-
prove the accuracy of predictions and the interpretation of the statistical model it pro-
duces [45]. The method was popularized by Robert Tibshirani in 1996 and is widely used
today in ML, in the specific case of linear regressions. The objective of the method is to
minimize the prediction error. For that, the Lasso method imposes a constraint on the sum
of the absolute values of the model parameters. The sum must be less than a fixed value.
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The imposition of constraints is done by applying a process of narrowing (regulation), or it
penalizes the regression variable coefficients by reducing certain to zero [46].

The use of Lasso has many advantages, including the accuracy of predictions by
reducing the coefficients. This is particularly useful when the number of observations is
small, and the number of characteristics is large. Lasso also allows researchers to increase
the interpretation of the models by removing irrelevant variables [46].

2.5. Evaluation of Prediction Quality

It is essential to evaluate the quality of the prediction results. Lantz (2015) suggests
the use of Mean Absolutes errors (MAEs), and Relative Absolute Errors (RAEs).

MAEs consider how far, on average, the prediction is from the real value [31]

MAE =
1
N ∑n

i=1|xi − yi| (1)

RAE is a performance metric that compares the actual forecast error to a very simple
forecasting model [47].

RAE =
∑n

i=1|xi − yi|
∑n

i=1|yi − y| (2)

We add the Gap between predicted and real-time (GBP) to these measurements. This
measure represents the percentage difference between predicted and actual values.

GBP =

∣∣∣∣yi − xi
yi

× 100
∣∣∣∣ (3)

where:

xi is the predicted value for the individual sample i,
yi is the real value for the individual sample i,
x is a mean value of x, with x = 1

n ∑n
i=1 xi

y is a mean value of y, with y = 1
n ∑n

i=1 yi
n is the sample size.

As MAE and GBP get closer to 0 and RAE gets closer to 1, the quality of the prediction
improves.

2.6. BIM for Data Extraction

The success of a prediction depends on the quality of the data used [40]. It is es-
sential to pay special attention to the data quality coming from a process. BIM offers
dedicated technologies and processes for better information management in a construction
project [24].

BIM technology offers high-quality data through the BIM models [24], and makes it
possible to gather and classify information [48,49] specific to different disciplines in a single
3D model. In steel construction, the information extracted from these models can be used
for constructability and quantitative estimation [48,50]. This information can also be used
for cost and time estimation [51]. These data can be extracted automatically and reduce the
time extraction [52,53]. The method proposed by this article will use the BIM models as a
data source.

2.7. BIM Is an Asset for the Success of DFMA in the Construction Industry

Three main characteristics of DFMA are the component-based approach, modular-
ization, and standardization [54]. BIM can be used as an object-oriented collaborative
process to integrate information representing the fabrication and assembly phases of steel
structures. BIM application in the DFMA approach has allowed professionals to simulate
construction virtually to identify potential constraints that could increase project costs [54].
We believe that BIM can bring to the steel construction industry the benefits that Computer-
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Aided Design (CAD) has brought to DFMA. These include a more systematic analysis
of fabrication and assembly options to produce a structural design that is more suited
to the available processes [55] and fabrication process information to allow for multiple
fabrication and assembly simulations [56]. BIM is used in the construction industry as a
tool and process to improve the way buildings are designed and constructed [24].

3. Methodology

According to the Cross-Industry Standard Process for Data Mining (CRISP-DM), the
main steps in data prediction are system understanding, data understanding, data prepara-
tion, data modeling, and outcome evaluation [57]. This paper adds pattern identification
and design rules to these steps (Figure 1).
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Figure 1. Illustration of the proposed method.

The proposed research approach could be described as follows:

3.1. System Understanding

The objective of system understanding is to understand the goals of the prediction
and the requirements necessary to achieve these objectives. In construction projects, cost
and schedule are generally the performance criteria sought to realize the project. They can
be defined as prediction objectives. Costs and schedules depend on the geometrical and
functional decisions made during the design phase. These decisions will be identified to
serve as prediction criteria during system understanding. During this step, technologies
and tools are also identified for the prediction set.

3.2. Data Understanding

Data understanding is the next step after system understanding. This step consists in
collecting and analyzing the data necessary for the prediction objectives. To do this, it is
necessary to group and classify the data related to the prediction criteria sought with data
analysis tools during the data understanding. The collection can be done with MS Excel
or Google sheet spreadsheets. After data collection, the next step is to explore the data to
ensure its quality. One method is to eliminate data that is either too large or too small to fit
the criteria being analyzed.
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3.3. Data Preparation

Data preparation consists of preparing the data for modeling. This is done in several
steps, including:

• data cleaning, which consists of removing, correcting, or deleting erroneous values,
• data construction which consists of determining additional attributes that will be

useful for data modeling, and
• data integration consists of combining data from various sources.

3.4. Data Modelling

Modeling consists of building and evaluating various models based on different
modeling techniques. Here we select the algorithms to try; we assess the competing models
based on the results obtained and the performance criteria sought.

The implementation of the approach proposed in this article requires the use of an
interpretive programming language and a programming package for the ML. In this article,
the tool proposed as an interpretive programming language is Python, and the package for
ML is Tensor Flow. The prepared data will be used in modeling with the RFR, GBR, and
Lasso techniques. The prediction results with these techniques are presented at the end of
the modeling.

3.5. Data Evaluation

This step compares the results of the three techniques used for modeling. The algorithm
with which MAE and GBP will be close to 0 and RAE get closer to 1 has the best performance.

3.6. Pattern Identification

This step consists of identifying the variables that have the most impact on steel
structure fabrication and assembly time.

3.7. Knowledge Learned & Design Rules:

This part consists of understanding the results of the pattern identification, estab-
lishing design rules, and formulating recommendations to improve the fabrication and
assembly line.

4. Case Study

The case study in this article concerns the assembly of steel joists for a major manufac-
turer of steel structures in North America

4.1. System Understanding

In the steel construction industry, steel joists are lightweight steel structures that
support roofs and floors and transfer the loads they receive directly to the steel structures
that support them.

Joists are mainly composed of top and bottom chords, webs, and seats. See Figure 2.
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The joist assembly operation consists of:

• Reading and understanding the plans,
• Identification of the steel elements that will build the joist,
• Identification of the positions of the elements on the joist,
• Lifting and placing the top and bottom chords on the assembly table,
• Lifting and positioning of joist components,
• Welding of joist elements,
• Final check,
• Removing the assembled joist.

An automatic device is installed on the joist assembly table to measure the assembly
time. Each time the beam elements arrive on the assembly table for the first time, the
automatic device starts counting the assembly time. The counting will stop when the
assembly table becomes empty again. This feature reduces human intervention in starting
the countdown. However, the device does not stop when, leaving the joists on the assembly
table, the workers go on a break or weekend.

4.2. Data Understanding

The data for this study come from the main variables that characterize the joists.

• Depth (mm) is the vertical distance between the axis of the top and bottom chords
• Span (mm) is the distance between the two positions of the joist seats
• Camber (mm) is the distance between the highest point before, and after bending; the

camber is imposed on the upper chords to keep the joist horizontal when loaded
• ComponentCount (qty) is the number of elements
• Memb_Lgth (mm) is the total length of all its elements
• weight (Weight(kg)) is the total mass of the features that make up the joist
• ChordsDis (binary) checks if the top and bottom chords are different in profile types

and dimensions
• ReinfWeight (mm) is the weight of the additional materials used to reinforce the

joist elements
• Tcs_Lgth_l (mm) is the extension length to the left of the top chord.
• Tcs_Lgth_r (mm) is the extension length to the right of its top chord
• Tcx_Depth_l (mm) is the depth of the profile used for the left extension of the top chord
• Tcx_Depth_r (mm) is the depth of the profile used for the extension to the right of the

top chord
• TcxType_x (from type1 to type 8) is the type of top chord used to manufacture the joist
• Dsg_type (from type 1 to type 4) is the type of joist design used

4.3. Data Preparation

Data cleaning: More than 170,000 assembly times were recorded, corresponding to
more than 170,000 joists. However, these data contain noise. The noise is mainly due to
inattention errors by workers, joists remaining on tables during breaks, weekends, and
holidays. To reduce the noise in the data set, this study proposes to obtain the maximum
and minimum time to assemble a joist on the assembly table. This technique consists
of excluding the study, the times too short or too much to correspond to the time for
assembling the beams. A maximum time of 25 min and a minimum time of 5 min is
obtained from professionals. These times will be retained as the minimum and maximum
limits of the assembly times retained for the study. This technique will reduce the data by
170,000 for 55,444 see Figure 3.



Sustainability 2022, 14, 288 8 of 16

Sustainability 2022, 14, x FOR PEER REVIEW 8 of 16 
 

inattention errors by workers, joists remaining on tables during breaks, weekends, and 
holidays. To reduce the noise in the data set, this study proposes to obtain the maximum 
and minimum time to assemble a joist on the assembly table. This technique consists of 
excluding the study, the times too short or too much to correspond to the time for assem-
bling the beams. A maximum time of 25 min and a minimum time of 5 min is obtained 
from professionals. These times will be retained as the minimum and maximum limits of 
the assembly times retained for the study. This technique will reduce the data by 170,000 
for 55,444 see Figure 3. 

 
Figure 3. Data distribution for the study. 

Data splitting for a better balance in prediction, the data were divided into four equiv-
alent groups with similar statistical characteristics. Tables 1–4 present the organization of 
the configured groups with their respective features. The features were considered ac-
cording to the prediction criteria Depth, Span, Camber1 ComponentCount Memb_Lgth 
Weight, and RealTime. These criteria were organized according to the mean, the mini-
mum (min), the first quartile (25%), the median (50%), the third quartile (75%), the maxi-
mum (max), and the standard deviation (std), as seen in Tables 1–4. These measures en-
sure that the data is well distributed among the four groups. Three of these groups were 
used for training the learning algorithms and the fourth for testing them. 

Table 1. Statistical characteristics of the first quarter of data. 

 Depth Span Camber1 ComponentCount Memb_Lgth Weight RealTime 
count 13861.0 13,861.0 13861.0 13861.0 13,861.0 13,861.0 13,861.0 
mean 634.8 9084.4 16.2 22.0 53,595.9 152.3 13.1 

std 145.8 2803.9 7.2 5.3 18,161.9 84.4 4.4 
min 400.0 2120.0 0.0 8.0 12,045.5 25.8 5.0 
25% 508.0 7080.0 11.5 17.0 40,344.6 92.7 9.7 
50% 609.6 8737.6 15.9 23.0 51,156.2 129.9 12.4 
75% 750.0 10,845.8 20.8 26.0 65,284.1 189.7 15.8 
max 915.0 18,694.4 114.6 68.0 218,027.3 1063.8 25.0 

Table 2. Statistical characteristics of the second quarter of data. 

 Depth Span Camber1 ComponentCount Memb_Lgth Weight RealTime 
count 13,861.0 13,861.0 13,861.0 13,861.0 13,861.0 13,861.0 13,861.0 
mean 634.8 9088.5 16.2 22.0 53,596.5 152.5 13.1 

std 145.6 2763.4 7.0 5.2 17,795.0 82.0 4.4 
min 355.6 1917.7 0.0 8.0 11,600.9 22.5 5.1 
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Data splitting for a better balance in prediction, the data were divided into four equiva-
lent groups with similar statistical characteristics. Tables 1–4 present the organization of the
configured groups with their respective features. The features were considered according
to the prediction criteria Depth, Span, Camber1 ComponentCount Memb_Lgth Weight,
and RealTime. These criteria were organized according to the mean, the minimum (min),
the first quartile (25%), the median (50%), the third quartile (75%), the maximum (max),
and the standard deviation (std), as seen in Tables 1–4. These measures ensure that the data
is well distributed among the four groups. Three of these groups were used for training the
learning algorithms and the fourth for testing them.

Table 1. Statistical characteristics of the first quarter of data.

Depth Span Camber1 ComponentCount Memb_Lgth Weight RealTime

count 13,861.0 13,861.0 13,861.0 13,861.0 13,861.0 13,861.0 13,861.0
mean 634.8 9084.4 16.2 22.0 53,595.9 152.3 13.1

std 145.8 2803.9 7.2 5.3 18,161.9 84.4 4.4
min 400.0 2120.0 0.0 8.0 12,045.5 25.8 5.0
25% 508.0 7080.0 11.5 17.0 40,344.6 92.7 9.7
50% 609.6 8737.6 15.9 23.0 51,156.2 129.9 12.4
75% 750.0 10,845.8 20.8 26.0 65,284.1 189.7 15.8
max 915.0 18,694.4 114.6 68.0 218,027.3 1063.8 25.0

Table 2. Statistical characteristics of the second quarter of data.

Depth Span Camber1 ComponentCount Memb_Lgth Weight RealTime

count 13,861.0 13,861.0 13,861.0 13,861.0 13,861.0 13,861.0 13,861.0
mean 634.8 9088.5 16.2 22.0 53,596.5 152.5 13.1

std 145.6 2763.4 7.0 5.2 17,795.0 82.0 4.4
min 355.6 1917.7 0.0 8.0 11,600.9 22.5 5.1
25% 508.0 7112.0 11.5 17.0 40,427.4 93.6 9.7
50% 609.6 8763.0 15.9 23.0 51,228.6 131.9 12.4
75% 750.0 10,850.0 20.7 26.0 65,255.6 190.8 16.0
max 915.0 18,694.4 87.3 68.0 218,027.3 1042.0 25.0
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Table 3. Statistical characteristics of the third quarter of data.

Depth Span Camber1 ComponentCount Memb_Lgth Weight RealTime

count 13,861.0 13,861.0 13,861.0 13,861.0 13,861.0 13,861.0 13,861.0
mean 634.0 9089.9 16.1 22.0 53,613.5 153.0 13.1

std 146.8 2798.6 7.2 5.3 18,165.2 84.0 4.4
min 400.0 2104.0 0.0 8.0 12,638.5 23.7 5.0
25% 508.0 7061.2 11.5 17.0 40,132.6 93.0 9.7
50% 609.6 8755.0 16.0 23.0 51,191.5 130.8 12.3
75% 750.0 10,782.0 20.6 26.0 65,156.9 192.3 15.9
max 915.0 18,694.4 127.0 56.0 181,796.0 1137.5 25.0

Table 4. Statistical characteristics of the fourth quarter of data.

Depth Span Camber1 ComponentCount Memb_Lgth Weight RealTime

count 13,861.0 13,861.0 13,861.0 13,861.0 13,861.0 13,861.0 13,861.0
mean 634.3 9097.5 16.2 22.1 53,640.2 152.9 13.1

std 145.8 2788.6 7.1 5.3 17,969.3 83.6 4.4
min 400.0 2105.0 0.0 8.0 11,707.6 23.5 5.0
25% 508.0 7105.7 11.5 17.0 40,469.4 93.1 9.7
50% 609.6 8790.0 15.9 23.0 51,380.4 131.4 12.4
75% 750.0 10,750.0 20.5 26.0 64,843.2 190.9 15.9
max 915.0 18,440.4 90.0 56.0 181,796.0 786.0 25.0

4.4. Modeling

Three algorithms (GBR, RFR, and Lasso) are used to predict the manufacturing time.
The results of this modeling are as illustrated in Tables 5–7.

Table 5. Prediction results with GRB.

Categories Number of Items Real-Time Prediction GBP Rae Mae

0–15 1502 16,153 16,073 0.5% 0.94 3.14
15–20 5672 61,873 62,109 −0.4% 0.92 2.89
20–25 11,129 127,439 127,217 0.2% 0.93 2.97
25–30 12,827 157,715 158,419 −0.4% 0.92 2.97
30–35 9650 129,735 129,484 0.2% 0.92 2.97
35–40 6212 91,654 91,743 −0.1% 0.93 2.85
40–45 4726 73,934 73,734 0.3% 0.93 2.71
45–50 2159 37,050 36,993 0.2% 0.94 2.57
50–55 1172 21,542 21,411 0.6% 0.92 2.44
55–60 322 6507 6433 1.1% 1.01 2.30

Table 6. Prediction results with RFR.

Categories Number of Items Real-Time Prediction GBP Rae Mae

0–15 1502 16,153 16,258 −0.7% 0.98 3.27
15–20 5672 61,873 62,136 −0.4% 0.94 2.96
20–25 11,129 127,439 127,970 −0.4% 0.95 3.06
25–30 12,827 157,715 158,221 −0.3% 0.94 3.02
30–35 9650 129,735 129,902 −0.1% 0.94 3.03
35–40 6212 91,654 91,731 −0.1% 0.96 2.95
40–45 4726 73,934 73,700 0.3% 0.95 2.77
45–50 2159 37,050 37,057 0.0% 0.96 2.62
50–55 1172 21,542 21,423 0.6% 0.94 2.49
55–60 322 6507 6438 1.1% 1.06 2.40
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Table 7. Prediction results with Lasso.

Categories Number of Items Real-Time Prediction GBP Rae Mae

0–15 1502 16,153 19,644 −22% 1.27 4.27
15–20 5672 61,873 74,182 −20% 1.26 3.96
20–25 11,129 127,439 145,548 −14% 1.16 3.74
25–30 12,827 157,715 167,755 −6% 1.06 3.40
30–35 9650 129,735 126,209 3% 0.99 3.19
35–40 6212 91,654 81,243 11% 1.03 3.17
40–45 4726 73,934 61,807 16% 1.16 3.38
45–50 2159 37,050 28,236 24% 1.60 4.35
50–55 1172 21,542 15,328 29% 2.05 5.46
55–60 322 6507 4211 35% 3.20 7.28

For Tables 5–7,

• Categories represent the range of lengths in feet to which the items belong.
• The number of items represents the number of registered joists belonging to a category
• Real-time is the sum of the recorded assembly times of the joists corresponding to a

given category.
• Prediction is the sum of the predicted times of the beams corresponding to a given category.
• The GBP, Rae, and Mae measurements are the measures that allow the evaluation of

the joists by category according to the prediction technique used.

The data resulting from Tables 5–7 give the difference of the values GBP, Rae, and Mae
of the algorithms Lasso, GBR, and RFR. Indeed, the order of magnitude of the GBP, Rae,
and Mae values are very close for the GBR and RFR algorithms. However, these values are
more significant for the Lasso algorithm.

4.5. Evaluation

The following observations are made from Tables 5–7 and Figures 4–6.
For the choice of the best algorithm.

• The GBP obtained from the prediction results with the Lasso algorithm range from
−22% to 35%, while the GBP obtained from the prediction results with the RFR and
GBR algorithms range from −0.7% to 1.1% for the RFR and −0.4% to 1.1% for the
GBR respectively, see Tables 5–7, and Figure 4. Considering that the GBP of ideal
prediction results is very close to 0%. Thus, from the GBP point of view, the GBR and
RFR algorithms provide more accurate prediction results than the Lasso algorithm.

• The Rae obtained from the prediction results with the Lasso algorithm range from
0.99 to 3.20, while the Rae obtained from the prediction results with the RFR and GBR
algorithms range from 0.94 to 1.06 for RFR and 0.92 to 1.01 for GBR respectively, see
Tables 5–7, and Figure 5. Considering that the Rae of the ideal prediction results is
very close to 1. Thus, from Rae’s point of view, the GBR and RFR algorithms provide
more accurate prediction results than the Lasso algorithm.

• Finally, the Mae obtained from the prediction results with the Lasso algorithm vary
between 3.17 and 7.28, while the Mae obtained from the prediction results with the
RFR and GBR algorithms vary between 2.40 and 3.27 for the RFR and 2.30 and 3.14
for the GBR, respectively see Tables 5–7, and Figure 6. Considering that the Mae
of the results of an ideal prediction is very close to 0. Thus, from Mae’s point of
view, the GBR and RFR algorithms provide more accurate prediction results than the
Lasso algorithm.

• The GBR and the RFR present results with almost identical GBP, Rae, and Mae.
• The prediction times from the GBR and RFR are so close to real-time that their repre-

sentative lines are overlayed see Figure 7.

Thus, The Lasso shows poor results compared to the other algorithms used in this
article. The GBR and the RFR will be used in this article for pattern identification.
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• For the RFR, below 1502 items, the GBP are higher than 0.65%, while for the GBR, GBP
greater than 0.61 are observed below 1172 items. This may indicate that prediction with
the GBR technique does not require large amounts of data to provide accurate results.

The highest RAEs (−1.05 for RBR and−1.14 for GBR) correspond to the lowest number
of items category. This can be explained by ML prediction results being more accurate
when more data are available [31,32].
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4.6. Pattern Identification

Once the modeling is done, GBR and RFR allow for processing the pattern identifi-
cation. Pattern identification proposes to identify variables that substantially impact the
prediction results. This functionality is available on both the GBR and the RFR see Figure 8.
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According to Figure 5, the following remarks are made:

• For both prediction techniques, the variables Weight, ReinfWeight, Camber, Span,
Memb_lgth, Tcx_Lgth_r, and Depth, are the variables that have the most impact on
the joist assembly time.

• For both prediction techniques, joist weight is the variable with the most significant
effect on assembly time.

4.7. Knowledge Learned and Design Rules

After the pattern identification, the following information is retained:

• The joist weight greatly influences the joist assembly time. This may indicate dif-
ficulty lifting and handling heavy elements on the assembly table. Improving the
assembly line by installing additional lifting equipment could considerably reduce
joist assembly time.

• The length of the members and the height of the joists also significantly impact the
assembly time of the joists. This may indicate difficulty in maneuvering the long bars
on the assembly table. A system for handling thin bars can considerably reduce joist
assembly time.

• Extensions on the right side of the joist top chords have a more significant impact on
joist assembly time than on the left side. This may indicate a difficulty in symmetrical
work on the joist assembly table. Symmetrically equipping the assembly table can
reduce joist assembly time.

Some design rules can be derived from this pattern identification:

• The ReinfWeight (the weight of the additional materials used to reinforce the joists
elements) has a significant impact on the assembly time of the joists. For example,
avoiding the use of reinforced bars by replacing them with larger profiles can signifi-
cantly reduce joist assembly time.

• Joist length impacts joist assembly time, but the number of joist components does.
Designing joists that can be assembled in subassemblies will undoubtedly increase the
number of components but may reduce joist assembly time.

• The length of joist members has a considerable impact on assembly time. Fragmenting
the length of joist parts such as top and bottom chords during design can reduce joist
assembly time.

Top chord extensions to the right have more impact on joist assembly time than
extensions to the left. Matching joists to make top chord extensions to the left during joist
assembly before being flipped to the right can reduce joist assembly time.

5. Discussion and Interpretation of Results

The objective of this paper was to propose an approach to identify design rules such
as DFMA from BIM models and ML algorithms. Thus:

Quantitative analysis of 55,444 BIM models by ML algorithms identified that the factors
“steel component weight”, “number of cambers”, “component lengths”, and “component
depth” are the factors with the most significant impact on the fabrication time of steel
structures. Thus, the analysis of BIM models can identify the factors with high impact on
the fabrication time of steel structure components.

Quantitative analysis of BIM models by ML algorithms can provide information on
the knowledge of the limits of the equipment available in fabrication and assembly plants.
Indeed, the factors “weight of steel components”, “number of cambers”, “component
lengths”, and “component depth” are related to the capabilities of the equipment available
in the fabrication and assembly plants.

The “weight of steel components” factor is more significant than the “number of bends”
factor, which in turn is greater than the “depth of components” factor. Thus, quantitative
analysis of BIM models by ML algorithms can enable the classification of the weight of
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fabrication factors on the assembly time of steel structures. This can allow the formulation
of design rules and the judicious selection of which rules to apply in case of rule conflicts.

Quantitative analysis of BIM models by ML algorithms can allow steel structure com-
ponent manufacturers to identify deficiencies in the equipment available in the production
facilities. Consideration of these deficiencies can allow fabricators to initiate modifications
in a way that considers the limitations of their equipment.

6. Conclusions

This work proposes an approach to identify design rules from BIM models of previous
projects and ML algorithms. To achieve this, this research suggests extracting and classi-
fying data from BIM models of joists and using a predictive regression model to predict
assembly time. Ensemble learning algorithms (RFR and GBR) proved to be better predic-
tors than non-ensemble learning (Lasso). Furthermore, both ensemble learning algorithms
were able to identify the most input variables. Based on these variables, it was possible to
formulate recommendations concerning the assembly line and formulate design rules. A
case study with 55,444 steel Joists demonstrates the feasibility of this method. Variables
are classified according to their impact on the fabrication time. The study also proposes
a series of relevant variables that could inspire future work in predicting manufacturing
duration in steel joists projects in a specific workshop. The methodology proposed in this
study can also be adapted to other productive construction industry sectors, such as steel
structures installation, glass fabrication, and installation. For each of these applications, it
will be necessary to get BIM models of previous projects and the duration of operations
of these projects. The data must also come from a single production unit. A practical
perspective for this study will be to apply the design rules developed on the design of new
joists to be realized in these same workshops to appreciate the impact of these rules on the
manufacturing time of the structures.
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