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ABSTRACT 
 

 For heat transfer predictions using RANS simulations, 

turbulence models require adjustments for rough 

surfaces. The drawback of these adjustments is the 

tendency to over predict the heat transfers compared to 

experiments. These over predictions require the use of an 

additional thermal correction model to lower the heat 

transfers. Inputting in the correction model the numerical 

parameters giving the best fit with experimental results is 

non-trivial, since actual roughness patterns are often 

irregular. The objective of the paper is to develop a 

methodology to calibrate two thermal correction models 

for a rough curved channel test case. First, a design of 

experiments of heat transfers is built, then metamodels 

are generated. Finally, the metamodels are used by a 

Bayesian inversion procedure estimating the best set of 

input parameters allowing fitting the experimental 

results. This methodology allows obtaining less than 7% 

of average discrepancy between the RANS prediction 

and the experimental results.  

 

1. INTRODUCTION 

The numerical simulation of airflow on a rough surface 

is a challenge. The surface roughness creates a different 

near-wall behaviour, especially for the skin friction and 

the heat transfers, compared to a smooth surface. This led 

to the modification of the classical turbulence models to 

take into account the roughness elements, like in [1] for 

the Spalart-Allmaras model. The main feature of the 

rough extension of the Spalart-Allmaras model resides in 

setting a non-zero turbulence viscosity at the wall. 

Usually, these adapted models are designed to predict the 

correct skin friction coefficient based on experimental 

benchmark test cases. This focus on the skin friction 

coefficient alone has a drawback: the heat fluxes are 

overestimated compared to experimental results. An 

additional thermal correction model is thus required to 

adjust the heat flux. To correct the heat flux behaviour, 

[2] suggested increasing the turbulent Prandtl number 

close to the wall. Further thermal correction model 

developments carried out by [3] and recently by [4] kept 

aiming at a turbulent Prandtl increase.  

The thermal correction models take as input several 

parameters describing the roughness pattern of the 

surface. These parameters can be physical, such as the 

roughness height, or numerical, such as the equivalent 

roughness. The thermal correction of [3], called HAX in 

this paper, takes 3 input parameters and the 2-Parameter 

Prandtl correction (2PP) of [4], takes 2. The previous 

works highlighted that the heat flux is sensitive to those 

parameters and to the thermal correction model itself [5]. 

Therefore, the roughness parameters to input in the 

model to obtain the same heat flux prediction change 

depending on the thermal correction model. Usually, the 

link between the roughness height and the equivalent 

roughness is computed using classical empirical 

correlations such as [6]. Those correlations were built 

using manufactured regular roughness patterns, such as 

regularly spaced cones or hemispheres. In many practical 

situations, for example in aircraft icing [7], roughness 

patterns are irregular and present several uncertainty. 

Therefore, classical empirical correlations can fail to 

correctly describe an actual roughness pattern in such 

situations.  

To avoid the dependence to empirical correlations in 

rough heat transfer simulations, a data-driven approach 

can be used, ensuring that experimental data are 

available. Machine learning and data-driven techniques 

have already been successfully applied in CFD, for 

example for the calibration of turbulence model’s 

constants in [8], highlighting its potential.  

Usually, the data-driven approach and uncertainty 

quantification analysis use metamodels to represent a 
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complex model. In the CFD field, a metamodel can 

estimate an output of interest in a quick manner, without 

the need for running a complete, and time-consuming, 

CFD simulation. One of the most common metamodel 

families is the polynomial chaos expansion (PCE) [9]. 

PCE metamodels were successfully applied in CFD 

applications over the past decade, for example in [10]. 

The metamodels can also be useful to calibrate a model 

with uncertain parameters. The Bayesian inversion is a 

commonly used tool allowing model calibration and fine-

tuning of numerical parameters [11]. This calibration 

methodology was already used in CFD in the context of 

turbulence models’ constants tuning [12]. 

The objective of this paper is to set up a methodology to 

calibrate the roughness parameters to input in the HAX 

and 2PP thermal correction models to match 

experimental results of a given test case. More 

specifically, a rough curved channel geometry, inspired 

by [2], is used to set up a design of experiments (DOE) 

of heat transfers. Next, the DOE allows the generation of 

PCE metamodels. The next step is the sensitivity study, 

allowing through the Sobol indexes to identify the most 

sensitive parameters. Finally, the PCE metamodels are 

used in a Bayesian inversion calibration procedure to 

calibrate the roughness input parameters with the aim of 

retrieving the experimental heat transfer distribution in 

the curved channel.  

First, the test case geometry and setup will be described. 

Second, the HAX and 2PP thermal correction models are 

detailed, highlighting the role of the roughness 

parameters in the simulation. Next, the DOE construction 

is depicted prior to the description of the PCE 

metamodeling, the sensitivity study and the Bayesian 

inversion procedures. Finally, the results are shown for 

both HAX and 2PP thermal correction models, with less 

than 7% of average discrepancy after calibration 

compared to the experimental results. 

 

2. TEST CASE GEOMETRY AND SETUP 

This section will give details about the geometry used in 

the present study, along with the RANS setup to perform 

the flow simulation. 

 

2.1.  Physical geometry and boundary conditions 
 
The geometry used to apply the calibration work 

discussed in this paper is a curved channel inspired by the 

study of [2]. More specifically, the zone of interest is the 

rough bottom floor of the channel where the heat transfer 

coefficient will be monitored. Fig. 1 illustrates the 

physical geometry. 

 

 
 

Figure 1. Geometry of the curved channel (out of scale 

figure for better visualization) 

 

The curved part of the channel’s floor, which curvilinear 

length is 0.398 m, is an arc of radius 1.200 m and angle 

19°. The freestream values are a velocity of 

magnitude 40 m/s, an inlet total pressure of 102 304 Pa 

and a total temperature of 288.95 K. The boundary 

conditions are also displayed on Fig. 1. The floor is 

divided into three main zones: an initial smooth and 

unheated wall, the rough and heated study zone 

(including the curved portion), and a downstream smooth 

unheated zone. The top wall is entirely smooth and 

adiabatic on the full length. The heated zones are 

isothermal at 303.15 K and their roughness parameters 

will vary all along the procedure, since they are the 

objective of the calibration. The roughness parameters’ 

distribution will be detailed in section 4.  

 

2.2. Mesh and numerical setup 

 
The geometry is discretized using quadrilateral elements 

in a structured mesh. The rough zone of interest is 

composed of 499 nodes in the stream-wise direction, 

while the canal height has 399 elements. Coarser meshes 

were tested, giving similar results on the benchmark test 

cases. The finest mesh was retained to cope with the 

various untested roughness patterns planned to be run 

during the sampling of the DOE. The entire 

computational grid has 274 512 quadrilaterals. The first 

cell height is about 3 µm, which allows a y+ below 1 for 

all the roughness ranges tested. The growth rate normal 

to the wall is 1.1. The flow simulation is performed using 

the compressible RANS solver SU2 [13]. The Reynolds 

number based on the total floor length is 3.2 million and 

the Mach number is 0.118. To accelerate the 

convergence, the CFL number is set to 10. Finally, the 

convective fluxes are discretized using a Roe scheme 

with MUSCL reconstruction. The solver used includes 

in-house implementations of the rough modification of 

the Spalart-Allmaras turbulence model [1] and the 

addition of the HAX [3] and 2PP [4] thermal correction 

models. The next section will detail the mathematical 

models making the thermal correction models. 
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3. THERMAL CORRECTION MODELS 

This section will give an overview of the equations of the 

thermal correction models. Both the HAX and 2PP 

thermal correction models were implemented into SU2, 

and aim at increasing the Prandtl number in the near-wall 

region to lower the heat flux when the rough version of 

the Spalart-Allmaras turbulence model is used. 

 

3.1.  HAX thermal correction model 

The HAX thermal correction model suggested by Aupoix 

increases the turbulent Prandtl number by a value ΔPrt 

and takes 3 input parameters describing the roughness 

pattern: the roughness height k, the equivalent roughness 

ks and a surface correction parameter Scorr. For recall, all 

these 3 parameters are the objective of the current 

calibration work. The value of ΔPrt is computed with Eq. 

1 as follows. 

 

∆𝑃𝑟𝑡 = (𝐴(∆𝑢+)2 + 𝐵∆𝑢+)exp⁡(−𝑑/𝑘) (1) 

 

In Eq. 1, the terms and symbols involved are given by 

Eqs. 2-4.  

 

𝐴 = (0.0155 − 0.0035𝑆𝑐𝑜𝑟𝑟)(1 − 𝑒−12(𝑆𝑐𝑜𝑟𝑟−1)) (2) 

  

𝐵 =⁡−0.08 + 0.25𝑒−10(𝑆𝑐𝑜𝑟𝑟−1) (3) 

 

∆𝑢+ =⁡
1

𝜅 · log⁡(1 +
𝑘𝑠 · 𝑢𝜏

𝜈 · exp(1.3325)
)
 

(4) 

Finally, d is the distance to the wall, κ is the Von Kármán 

constant, ν is the kinematic viscosity of air and 𝑢𝜏 is the 

friction velocity.  

 

3.2.  2PP thermal correction model 

The 2PP thermal correction model achieves the same 

goal of increasing the turbulent Prandtl number by ΔPrt. 

This time, the model takes only 2 roughness input 

parameters: the roughness height k, the equivalent 

roughness ks. Eq. 5 allows the computation of ΔPrt. 

 

∆𝑃𝑟𝑡 = ⁡𝑔 × 0.07083 × 𝑅𝑒𝑠
0.45 × 𝑃𝑟0.8 × 𝑒𝑥𝑝 (−

𝑑

𝑘
) 

(5) 

 

The roughness Reynolds number and the parameter g in 

Eq. 5 are detailed in Eqs. 6-7. 

 

𝑅𝑒𝑆 =
𝑢𝜏𝑘𝑠
𝜈

 

 

(6) 

𝑔 = 1⁡⁡if 𝑅𝑒𝑠 ≥ 70 

(7) 

 

 

𝑔 =
ln(𝑅𝑒𝑠)−ln⁡(5)

ln(70)−ln⁡(5)
⁡⁡if 5⁡ < 𝑅𝑒𝑠 < 70 

 

𝑔 = 0⁡⁡if 𝑅𝑒𝑠 ≤ 5 

 

Finally, Eq. 1 and Eq. 5 highlighted that the roughness 

parameters have a direct impact on the Prandtl number 

correction, and thus on the predicted heat flux.  

 

4. PCE METAMODELING 

This section will depict the metamodeling process 

retained, using polynomial chaos expansion (PCE) 

models. This step allows creating metamodels to predict 

the heat flux behaviour above any roughness pattern 

without the need for a complete CFD run. The first step 

of the metamodeling task is the creation of a numerical 

DOE. The PCE metamodels are then generated, and 

finally their accuracy is checked to ensure they are 

reliable enough for the study.  

 

4.1.  Design of Experiment (DOE) 

 

To prepare the metamodeling and Bayesian inversion 

steps, a numerical DOE of heat transfers for various 

roughness patterns is needed. First, the distribution of the 

input parameters k, ks/k and Scorr are defined to set the 

limits of the sampling. Note that the ratio ks/k is used 

instead of ks alone, since it will allow to directly evaluate 

the link between the roughness height and the equivalent 

roughness. The present work is included in the broader 

scope of aircraft icing. Therefore, the typical ranges of 

variation of k and ks/k are obtained from the icing 

literature [14, 15]. Finally, the distribution of the Scorr 

parameter, only used for the HAX thermal correction 

model, is obtained from [3]. The compilation of the 

distribution of all the input parameters is given in Tab. 1. 

 

Table 1. Distribution of the input parameters 

Parameter Minimum Maximum Distribution 

k (mm) 0.41 4.32 Uniform 

Ratio ks/k 0.2 6.5 Uniform 

Scorr 1 2.5 Uniform 

 

Following the distributions of Tab. 1, a sampling is done 

(one for 2PP and one for HAX) using the Latin hypercube 

sampling [16]. The sample size is defined according to 

the literature [17] for a response surface and gives, with 

an oversampling factor, 120 samples for the 2-parameters 

2PP thermal correction and 190 samples for the three 

parameters HAX thermal correction. 

Following the sampling, 120 CFD simulations of the 

curved channel are run with the 2PP thermal correction 

model, and 190 with the HAX thermal correction model. 

This allows the construction of a numerical heat transfer 

database, needed for the next metamodeling step. 

 

4.2.  Metamodels generation 
 

Once the heat transfer DOE is set up, the metamodeling 

tool uses it to estimate a mathematical relation between 

the roughness parameters inputs and the heat flux output. 
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For this study, polynomial chaos expansion (PCE) 

metamodels are chosen [9]. The choice of this type of 

metamodel is motivated by its wide use in uncertainty 

quantification, including in CFD and aerodynamic 

applications [18]. The general form of a PCE metamodel 

is given by Eq. 8. 

 

𝑌𝑖 = 𝑀𝑖(𝑋) = ⁡∑𝑦𝛼 × 𝜓𝛼(𝑋)

𝛼

 
(8) 

 

In Eq. 8, Yi is the output of interest, Mi is its 

corresponding PCE metamodel defined by its 

coefficients 𝑦𝛼 and the polynomials 𝜓𝛼 of the 

decomposition. For this study, the PCE metamodels 

obtained have an order typically between 7 and 10. Two 

metamodels are generated, as listed in Tab. 2 where hc is 

the heat transfer coefficient.  

 

Table 2. Metamodels created 

Metamodel Input parameters Output of interest 
 HAX 2PP  

M1 
k, ks/k, 

Scorr 
k, ks/k 

hc at the starting point 

of the rough zone 

(W/m²K) 

M2 
k, ks/k, 

Scorr 
k, ks/k 

Mean relative error 

with experimental hc 

(%) 

 

The first metamodel M1 uses the DOE to give a PCE 

prediction of the value of the heat transfer coefficient at 

the very beginning of the rough zone of study. The 

second metamodel, M2, predicts the mean relative error 

compared to the experimental results of [2]. For M2, the 

absolute relative error is computed on each mesh point 

(where the experimental value is interpolated) and an 

average is computed.  

Once a metamodel is created, its evaluation on the inputs 

of the DOE allows comparing its prediction with the 

actual CFD prediction obtained when setting up the 

DOE. Doing a linear regression between the PCE 

prediction and the CFD output allows computing the R² 

coefficient (Eq. 9).  

 

𝑅2 = 1 −⁡
∑(𝑌𝐶𝐹𝐷 − 𝑌𝑃𝐶𝐸)²

∑(𝑌𝐶𝐹𝐷 − 𝑌̅𝐶𝐹𝐷)²
 

(9) 

 

In Eq. 9, YCFD, and YPCE are the CFD and PCE 

predictions, respectively. 𝑌̅𝐶𝐹𝐷 is the mean value of the 

output of interest (CFD). An R² coefficient close to 1 

ensures a PCE metamodel with a good accuracy, since it 

predicts outputs close to what the full CFD simulation 

has given. Once the metamodels are established, the next 

step is to use them for the sensitivity study and calibration 

purposes.  

 

5. SENSITIVITY STUDY 

The sensitivity study allows identifying the most 

sensitive parameter(s) in the model. Using the previously 

described PCE metamodels, the sensitivity analysis 

computes the Sobol indexes, described in [19]. These 

indexes allow classifying the input parameters from the 

most to the least sensitive. For input parameters i and j, 

the first and second order Sobol indexes are defined by 

Eq. 10 and Eq. 11, respectively. 

 

𝑆𝑖 =⁡
𝑉(𝑌) − 𝐸(𝑉(𝑌|𝑋𝑖))

𝑉(𝑌)
 (10) 

𝑆𝑖,𝑗 =⁡
𝑉(𝑌) − 𝐸(𝑉(𝑌|𝑋𝑖 , 𝑋𝑗⁡))

𝑉(𝑌)
 (11) 

 

 

 

In Eqs. 10-11, Y is the output of interest, V is the variance, 

E the mean value, and the notation Y|Xi denotes the 

output of interest when the ith input parameter is fixed. 

Finally, the total Sobol index, which is monitored in the 

present study, for the ith input parameter for a generic 

three parameters study is given by Eq. 12.  

 

𝑆𝑇𝑖 = 1 − (𝑆𝑗 + 𝑆𝑘 + 𝑆𝑗,𝑘) (15) 

The greater is the total Sobol index value, the most 

sensitive to the output of interest is the corresponding 

input parameter. 

 

6. BAYESIAN INVERSION CALIBRATION 

Observing experimental results without an a priori 

knowledge of the roughness pattern is not helpful to 

precisely extract the roughness parameters. This task is 

even more non-trivial since the roughness parameters to 

input in the model vary depending on the thermal 

correction model chosen. The calibration is intended to 

estimate those roughness parameters by working on the 

PCE metamodels previously created.  

For this purpose, the Bayesian inversion technique is 

used [11]. By inputting the experimental observation 

(i.e., starting value of hc for metamodel M1 or zero for the 

metamodel M2), the roughness parameters that best fit the 

observations are computed. The distribution of the 

roughness parameters is the same as the one used to 

generate the CFD DOE (Tab. 1). The framework for this 

Bayesian inversion is the UQLab tool. The Bayesian 

module of UQLab uses a Markov chain Monte-Carlo 

(MCMC). The samplers used in the study are the affine 

invariant ensemble algorithm (AIES) or the Metropolis-

Hastings (MH) algorithm. For the purposes of the work, 

the MCMC solver is tuned to perform 70 000 iterations 

and generates 15 chains. When using the PCE 

metamodels, the error between the metamodel output and 

the true CFD response is called the discrepancy. The 

discrepancies of the metamodels being a priori unknown, 
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their distributions are assumed to be uniform. The range 

of discrepancy for the metamodel M1 is from 0 W/m²K to 

15 W/m²K and from 0% to 5% for metamodel M2.  

The Bayesian inversion step outputs the calibrated 

roughness parameters, which are then run into the full 

CFD solver. The results are then compared with the 

experimental literature, to assess the success of the 

calibration.   

 

7. RESULTS 

This section will display the results obtain all through the 

process described in the previous sections. First, the CFD 

results obtained initially before calibration are shown to 

illustrate the baseline results. Next, the set of heat transfer 

coefficients composing the sampling DOE is plotted. The 

precision of the metamodels is then assessed prior to the 

display of the final calibrated results.  

 

7.1.  CFD results before calibration 

 

Prior to the metamodeling and calibration process, the 

curved channel test case, as described in section 2.1, is 

run alone to verify the CFD settings and mesh. A mesh 

convergence study, not presented in this paper for 

concision, was carried out successfully to validate the 

choice of the mesh. These initial simulations, called here 

the baseline simulations, are run once with the 2PP 

thermal correction and once with the HAX thermal 

correction. The experimental roughness pattern being a 

priori unknown, generic usual roughness parameters are 

set in the solver for these baseline simulations. The link 

between the roughness height and the equivalent 

roughness is done with the Dirling correlation. These 

assumptions give k = 0.5 mm, ks = 1.55 mm and for the 

HAX thermal correction, Scorr = 1.05. The heat transfer 

results obtained with these settings are plotted on Fig. 2.  

 

 
Figure 2. Baseline results before calibration 

 

From Fig. 2, it is possible to notice a relatively poor 

agreement with the literature. Actually, finding the best 

roughness parameters is non-trivial, and it legitimates the 

use of the data-driven calibration approach.  

 

7.2.  Visualization of the DOE outputs 
 

After a sampling of the roughness parameters with the 

Latin hypercube method, 120 CFD simulations with the 

2PP thermal correction and 190 with the HAX thermal 

correction are run. The heat transfer databases obtained 

from the DOE are plotted in Fig. 3 for the 2PP correction 

and in Fig.4 for the HAX correction. On both Figs. 2-3, 

the experimental data from the literature are shown.  

 

 
Figure 3. Database of heat transfer coefficients for 2PP 

correction obtained with the DOE 

 

 

 
Figure 4. Database of heat transfer coefficients for HAX 

correction obtained with the DOE 

 

Figs 3-4 show that the target experimental results are 

included in the envelopes defined by the sampling CFD 

simulations. This observation shows that the initial range 

of roughness parameters chosen contains the 

experimental (a priori unknown) values. By comparing 

Fig. 3 and Fig. 4, it is possible to see that the HAX 

thermal correction model predicts overall higher heat 
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transfer coefficients than the 2PP thermal correction. The 

envelope of values for HAX is between 150 W/m²K and 

450 W/m²K at the beginning of the zone, while it is 

between 140 W/m²K and 330 W/m²K for the 2PP 

thermal correction. 

 

7.3.  Accuracy of the metamodels 
 

The previous DOE is used as a basis for the PCE 

metamodel generation. Two metamodels are generated: 

one to predict the initial value of hc along the rough zone, 

and one to predict the mean relative error with 

experimental results (see Tab. 2). For each metamodel 

and each thermal correction model, the R² coefficient is 

calculated (see Eq. 9). The R² values obtained are 

gathered in Tab. 3. 

 

Table 3. R² coefficient for each metamodel 

Metamodel Output of interest R² coefficient 

  HAX 2PP 

M1 

hc at the starting 

point of the rough 

zone (W/m²K) 

0.99949 0.99994 

M2 

Mean relative 

error with 

experimental hc 

(%) 

0.99673 0.99962 

 

Tab. 3 shows that all regression coefficients are above 

99.6%, meaning an excellent agreement between the 

CFD results and the PCE-predicted results on the same 

sample. For comparison, [20] performed the same type of 

uncertainty quantification analysis with R² coefficients as 

low as 94.6%. For graphical visualization, the worst 

regression (M2/HAX, with R² of 99.673%) is plotted on 

Fig. 5 where YPCE and YCFD are the mean errors in 

percentage with the literature, as predicted by PCE and 

CFD respectively.  

 

 
Figure 5. Regression between PCE and CFD predictions 

(M2/HAX) 

Fig. 5 shows that the results are close to the identity line, 

visually confirming the good value of the R² regression 

coefficient. This R² assessment shows that the 

metamodels generated are accurate and reliable enough 

to be used in the present application. 

 

7.4. Sensitivity study 

Using the PCE metamodels, the sensitivity allows 

computing the Sobol sensitivity indexes. Tab. 4 gathers 

the total Sobol index values for each metamodel and 

thermal correction model. 

 

Table 4. Total Sobol indexes 

Metamodel Total Sobol index 

 HAX 2PP 

M1 

k: 0.1570 

ks/k: 0.4337 

Scorr: 0.4608 

k: 0.1445 

ks/k: 0.8868 

 

M2 

k: 0.2196 

ks/k: 0.4955 

Scorr: 0.6172 

k: 0.3061 

ks/k: 0.9772 

 

 

Tab. 4 shows that the roughness height k is the least 

sensitive parameter in each case, with a total index 

between 14% and 30%. For the 2PP thermal correction 

model, the ratio ks/k is the most dominant parameter of 

influence, with 88% to 97% of sensitivity. For the HAX 

thermal correction model, the Scorr parameter has the 

biggest influence for all metamodel, with an index 

between 46% and 61%. According to the classification 

made by [21], a parameter with a Sobol index above 80% 

is considered as “very important”, while it is ‘irrelevant” 

under 30%. Therefore, for the 2PP thermal correction 

model, the ratio ks/k is a very important parameter in the 

sensitivity of the model.  

 

7.5.  Bayesian inversion calibration 

The metamodels built serve as a foundation for the 

Bayesian inversion module of UQLab. The target of the 

calibrations is to retrieve the features of the experimental 

results by estimating the best roughness parameters. The 

calibrations carried out are listed in Tab. 5. Each 

calibration is performed once for the 2PP thermal 

correction and once for the HAX thermal correction. 

 

Table 5. Calibrations carried out 

Calibration 
Metamodel 

used 

Target of the 

calibration 

#1 M1 

Obtain the same 

starting hc value 

(255.1 W/m²K) 

#2 M2 

Mean relative 

error with the 

experiment equal 

to zero 
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The target values (3rd column of Tab. 5) are inputted into 

the Bayesian module and the computation is carried out 

on the corresponding metamodel for each thermal 

correction. The calibrated roughness parameters obtained 

by taking the mean values given by the Bayesian solver 

are listed in Tab. 6. The mean values of the posterior 

distribution produce better results all along the channel 

compared to the maximum a posteriori (MAP) values. 

The MAP values give interesting local predictions but 

fails on the entire domain, as illustrated later in this 

section. The mean values represents a compromise to 

obtain satisfactory results on average on the channel’s 

floor.  

 

Table 6. Calibrated roughness parameters 

Calibration 

Calibrated parameters and 

MCMC sampler used* 

HAX 2PP 

#1 

k =2.1 mm 

ks = 4.6 mm 

Scorr = 1.3 

MH 

k =2.2 mm 

ks = 6.4 mm 

AIES 

#2 

k = 1.8 mm 

ks = 5.0 mm 

Scorr = 1.3 

AIES 

k = 1.6 mm 

ks = 4.2 mm 

AIES 

*AIES: Affine invariant ensemble algorithm;  

 MH: Metropolis-Hastings algorithm.  

 

The values in Tab. 6 are different from the ones tested in 

the baseline simulations, what explains the poor 

agreement with the literature prior to the calibration. 

These calibrated roughness parameters are inputted into 

the CFD solver and the simulation is run to verify the new 

heat transfer obtained after calibration. Fig. 6 shows the 

heat transfer after calibration for the 2PP thermal 

correction model, and Fig. 7 for the HAX thermal 

correction model.  

 

 
Figure 6. Heat transfer coefficient after calibration 

(2PP) 

 

 
Figure 7. Heat transfer coefficient after calibration 

(HAX) 

 

Fig. 6 shows that the calibrated results have a better 

agreement with the experimental results compared to the 

baseline simulation of Fig. 2. The calibration #1 for the 

2PP thermal correction allows obtaining an average 

relative error with the experimental data of 4.7%. The 

calibration #2 presents similar errors with the 

experimental data with 4.8% of relative mean error. 

Globally, both calibrations for the 2PP thermal correction 

model are successful, showing less than 5% of error on 

average compared to the experimental results.   

Fig. 7 shows that the calibrations for the HAX thermal 

correction don’t give heat transfers as close to the 

experiments as the 2PP gave. Nevertheless, the 

calibration #1 for HAX presents a relative error of 7.1% 

with the experimental data, which is acceptable. On the 

other hand, the calibration #2 gives a relative error of 

6.1%. Tab. 7 summarizes the relative errors obtained for 

each calibration. In Tab. 7, the relative errors are 

computed as the average for the entire rough zone among 

all the grid points.  

 

Table 7. Errors with experimental data after calibration 

Calibration 
Average relative errors 

HAX 2PP 

#1 7.1% 4.7% 

#2 6.1% 4.8% 

 

Despite these good average results, the initial starting 

value of hc for the calibration #1 is about 10% higher than 

the experimental one, despite being the target of the 

calibration. This discrepancy for the starting hc is due to 

the choice of the mean value of the posterior distribution 

instead of the MAP for the calibrated roughness 

parameters. The results obtained with the calibration #1 

using the MAP values are displayed on Fig. 8. For the 

HAX thermal correction, the MAP parameters for 

calibration #1 are k = 1.7 mm, ks = 1.7 mm and Scorr = 1.3. 
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For the 2PP thermal correction, these MAP parameters 

are k = 3.8 mm and ks = 4.56 mm. 

 

 
Figure 8. Calibration #1 using MAP values 

 

Fig. 8 shows that the MAP values of the roughness 

parameters computed by the Bayesian solver allow 

recovering the correct initial value of hc once used in the 

CFD solver. Nevertheless, these simulations exhibit local 

relative errors at the end of the channel reaching 18% for 

the HAX thermal correction and 16% for the 2PP 

correction. This shows that having the correct initial 

value of hc does not guarantee a good fit all along the 

domain. Additionally, the experimental results 

uncertainty is not taken into account. The fluctuations 

observed on the experimental curve (in Fig. 8 for 

instance) indicate an uncertainty of about 6% to 10% on 

the experimental values. This means that the initial target 

value ranges roughly between 235 W/m²K and 

275 W/m²K. Strictly calibrating on the plotted initial 

value (255.1 W/m²K) is then too restrictive and assumes 

there is no uncertainty on the experimental data. Thus, 

taking the mean values of the posterior distribution 

(Tab. 6) instead of the MAP is a better compromise, 

smoothing out the experimental errors, to obtain 

acceptable results in the entire domain.  

Globally, the calibration procedure highlighted its 

suitability for the present study by allowing improving 

the agreement between the numerical results and the 

experimental data.  

 

8. CONCLUSION 

The objective of establishing a methodology to perform 

a calibration of roughness parameters aiming at 

approaching experimental heat transfers was reached. 

Furthermore, this methodology was applied to a curved 

channel test case to illustrate its capacity. Starting with 

an unknown experimental roughness pattern, the 

procedure allowed recovering roughness parameters 

giving less than 7.1% of discrepancies with the 

experimental heat transfer for the HAX thermal 

correction model, and less than 5% for the 2PP thermal 

correction model. This goal was achieved by combining 

the polynomial chaos expansion metamodeling with a 

Bayesian inversion. In the meantime, the sensitivity 

analysis using the Sobol sensitivity indexes highlighted 

that for this test case, the relation between the roughness 

height and the equivalent roughness plays a bigger role 

than the roughness height alone. Globally, the data-

driven approach showed its suitability in CFD 

applications. In the case of unknown roughness patterns, 

it allows to finely select the numerical parameters to 

input in a CFD simulation to retrieve the experimental 

data. The next steps are the fine-tuning of the Bayesian 

approach, especially for the HAX thermal correction 

model, and the testing of other methodologies such as the 

calibration using a genetic algorithm.  
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