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ARIES: Cylindrical Pendulum Actuated Explorer
Sphere

Bruno Belzile, Member, IEEE and David St-Onge, Member, IEEE

Abstract—Spherical rolling robots (SRR) have been a promis-
ing avenue for the exploration of unstructured environments with
variable topologies. The advantages include the ability to move
fast, robustness to collision and a lower number of actuators.
However, to finally be used in real missions and applications, they
need to have a high maneuverability and have sufficient inner
space to house a proper payload for the intended application,
such as cave and tunnel exploration, without compromising on
the performances. With barycentric spherical robot, adding mass
with a payload may become challenging, as the location of
the center-of-mass (CoM) is critical for the locomotion. In this
paper, we propose a novel barycentric spherical robot with two
degrees-of-freedom (DoF) named Autonomous Robotic Intelligent
Explorer Spheres (ARIES). The motion of this SRR is generated
by a cylindrical actuated joint acting like a 2-DoF pendulum. This
design allows us to have a nearly empty upper hemisphere inside
the spherical shell, which is dedicated to payloads adapted to the
application. The full kinematics and dynamics are presented, and
simulation results are included. The control scheme implemented
is detailed. We conducted an experimental evaluation of the
ARIES with different trajectories, as well as discussed practical
considerations and future improvements.

Index Terms—Mobile robot, kinematics, dynamics, control.

I. INTRODUCTION

THE modes of locomotion of mobile robots on the ground
can typically be classified in three main categories:

1) wheeled, 2) legged or 3) spherical. Ideally, a robot locomo-
tion system should be designed for a given set of tasks and
terrain topology. On the one hand, wheeled robots can generate
high velocities and accelerations, but they are not so good
when they encounter obstacles [1]. Indeed, with only one point
of contact on the ground, a spherical robot easily maneuver
around an obstacle, or even use the latter to orient itself.
On the other hand, spherical rolling robots (SRR) are more
stable than legged robots on unstructured terrains with various
topologies and are also particularly appropriate for harsh
environments, as the critical inner parts such as the electronics
are protected by an other shell [1]. In fact, this attribute makes
SSRs particularly interesting for underground and planetary
exploration [2], [3]. A wide range of inner mechanisms have
been developed for SRR actuation by many researchers, each
with its own advantages and disadvantages [4].

Extending previous work [5] with more theoretical and
experimental content, we propose in this paper a spherical
rolling robot actuated by a differential cylindrical drive named
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Fig. 1. Autonomous Robotic Intelligent Explorer Sphere (ARIES)

ARIES1, standing for Autonomous Robotic Intelligent Ex-
plorer Spheres. Contrary to most barycentric spherical robots,
which use the displacement of their center-of-mass (CoM)
to generate the motion, our robot does not use rotations as
degrees-of-freedom (DoF) inside the spherical shell, but a
cylindrical motion of the CoM. The implementation of an
actuated cylindrical joint makes it possible to use two identical
motors, as well as freeing the upper hemisphere of the robot
for a payload, such as instruments for simultaneous local-
ization and mapping (SLAM). As we previously shown [5],
the cylindrical pendulum has several advantages compared to
a more conventional 2-DoF tilting pendulum, notably with
respect to the curvature radius. Compared to the paper where
we initially presented the concept of the cylindrical-pendulum-
driven SRR, we developed here a full model of the kinematics
and dynamics of the system, rather than simplified (decoupled)
models which are often found in the literature [1]. Moreover,
we also included the heading kinematics, which were validated
experimentally with an inertial measurement unit (IMU) and
encoders. As further additional content, the control scheme
used on the prototype is presented. In the sequel, a review
of the relevant literature on similar spherical rolling robot
designs is first done in Section II. The concept and modeling
of the pendulum-based barycentric spherical robot are then
detailed in Section III. Our implementation of the actuated
cylindrical pendulum is then presented in Section IV, followed
by the complete prototype in Section V. Experimental data
acquired during various tests is finally presented and discussed
in Section VI.
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Fig. 2. Cylindrical surface representing the feasible locations of the CoM
(illustrated by a smaller red sphere), which is rigidly attached to a link (of
negligible mass) to a cylindrical joint on the central axis of the spherical shell

II. RELEVANT WORK

A large range of spherical rolling robots can be found in
the literature for various applications, ranging from child-
development studies [6] to agriculture [7]. Some are also
commercially available, commonly sold as toys to learn
robotics [8]. While there are as many spherical rolling robot
designs as there are specific sets of characteristics, their
locomotion systems can be summarized in three broad cate-
gories: 1) barycentric [9], [10]; 2) conservation of the angular
momentum [11], [12]; and 3) shell deformation [13], [14]. In
this paper, only barycentric spherical robots are considered,
as opposed to those based on the conservation of the angular
momentum and shell deformation, as well as spherical robots
using outer forces, such as the NASA/JPL Tumbleweed polar
rover [15], those with external limbs [16] and those meant for
underwater applications [17].

By far the most common type of spherical robots [4],
barycentric spherical robots (BSR) are driven by a displace-
ment of their center of mass (CoM). Indeed, destabilizing the
system by moving the CoM away from its point of lowest
potential energy (typically directly underneath the center of
rotation (CoR) of the sphere) allows the shell to start rolling.
The BSRs can be classified in several subcategories: 1) pen-
dulum-based; 2) internal drive unit (IDU); 3) sliding masses.

First, in a pendulum-based BSRs, the pendulum bob points
in the direction of desired travel; these are fairly common. The
pendulum typically, but not necessarily, rotates about a shaft
passing through the center of the sphere. While only one bob
is needed, Li, Deng and Liu proposed a BSR with two [18]
and DeJong et al., four [10] to increase their maneuverability,
at the expense of more complex control schemes. Moreover,
multiple pendulums do not need to be fully independent from
each other. Asiri et al. [1] added a second, smaller, pendulum
orthogonal to the main pendulum rotating about their spherical
shell’s main axis. Otherwise, to steer its single-pendulum BSR,
Schroll [19] designed and patented a differential mechanism
to tilt the bob in a direction orthogonal to the rolling motion.

Second, some researchers have also built prototypes with
a smaller wheeled robot inside the sphere [20] or with an
internal drive unit (IDU) [21]. However, these systems are
known to suffer from slipping between the internal drive
and the spherical shell [4], limiting their robustness. Finally,
some BSRs use sliding masses to control the location of the
CoM [22], [23]. They are generally more difficult to control

than the two other subcategories described above.

III. BARYCENTRIC SPHERICAL ROBOT WITH A
CYLINDRICAL PENDULUM

As mentioned above, the proposed barycentric spherical
robot rolls on the ground with a motion induced by a dis-
placement of the center-of-mass, which is done by an actuated
pendulum. To be able to steer the sphere as well, and not
only roll forward and backward in one single direction, two
controlled DoFs are required. In the design we propose, the
CoM can be displaced over a cylinder inside the sphere, as
shown in Fig. 2. If the cylindrical joint is not located at the
center of the sphere, i.e. it underwent a translation from its
original position, the ARIES will tilt on one side, as illustrated
in Fig. 3. Then, with a simple rotation of the pendulum about
the axis of the cylindrical joint, the robot will roll and steer at
the same time. Because of the nature of the cylindrical joint,
namely independent translation and rotation, the steering angle
can be changed as it rolls. The cylindrical actuated joint is
therefore a differential transmission. Our implementation of
an actuated cylindrical joint, visible in Fig. 3, is presented in
Section IV, but first, to derive the SRR model, we will use
the simplified representation of Fig. 2.

A. Mobility

The Chebychev-Grübler-Kutzbach (CGK) formula [24] con-
firms that this cylindrical actuated joint mechanism has two
DoFs, namely,

f = d(l − 1)−
p∑

i=1

ri = 2(4− 1)− 4× 1 = 2 (1)

where d, l, p and ri are respectively the dimension of the
simplest subgroup containing all the Lie subgroups of the
joints involved, the number of links, the number of kinematic
pairs (joints) and the degree of constraint of each joint.

B. Kinematics

This section presents the equations relating the translational
and angular displacement of the cylindrical drive to the spher-
ical motion. Five frames are required for this derivation:

1) the inertial reference frame F ;
2) the frame Fo that is rotated by the angle ψ about the

z-axis of F ;
3) the moving reference frame Fm attached to the center of

the sphere, only allowed to translate with respect to Fo;
4) the frame attached to the center of the shell Fs, with

its x-axis aligned with the main rotation axis of the
mechanism;

5) the frame attached to the CoM of the pendulum Fp, which
is obtained after applying a translation u and a rotation
α about the x-axis of Fs (axis of the cylindrical joint).

All five frames are illustrated in Fig. 4. The orientation of
the ARIES, namely the angles defining Fs with respect to
F , can be computed with the three Euler angles ψ, θ and
φ using the following sequence of rotations: 1) a rotation ψ
about the z-axis of F , resulting in frame Fm; 2) a rotation
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Fig. 3. Locomotion with a cylindrical pendulum; the CoM (red dot) is moved away from the central plane (yellow dashed line) to steer the robot; if the CoM
is on the central plane, a rotation of the pendulum shaft will generate a forward/backward motion

θ about the x-axis of Fm, resulting in the intermediate frame
F ′; 3) a rotation φ about the y-axis of F ′, resulting in the
frame Fs. The resulting (4× 4) homogeneous transformation
matrix defining the orientation and position of the ARIES in
the reference frame F is thus

Hs = Ho(x, y)HZ(ψ)HX(θ)HY (φ) (2a)

with

Ho(xs, ys) =

[
Ro ds
0T 1

]
=


1 0 0 xs
0 1 0 ys
0 0 1 0
0 0 0 1

 (2b)

HZ(ψ) =

[
RZ 0
0T 1

]
=


cosψ − sinψ 0 0
sinψ cosψ 0 0

0 0 1 0
0 0 0 1

 (2c)

HX(θ) =

[
RX 0
0T 1

]
=


1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1

 (2d)

HY (φ) =

[
RY 0
0T 1

]
=


cosφ 0 sinφ 0

0 1 0 0
− sinφ 0 cosφ 0

0 0 0 1

 (2e)

where (xs, ys) are the coordinates of the origin of frame Fm

in F and Ri is the rotation submatrix of Hi. A gimbal lock
is in theory possible with this Euler angle convention, but it
is not problematic since the system only has two DoFs, and
in the end it is the position of the CoM or of the robot that
is controlled, not the orientation. In the following, the left
superscript of a variable refers to its frame, e.g. srp in Fs. On
the one hand, the Cartesian position of the center of the sphere
with respect to the reference frame F is ps = [xs ys R]T ,
where R is the radius of the shell. On the other hand, the
position of the CoM of the cylindrical pendulum with respect
to frame Fs is

srp =
[
u r sinα −r cosα

]T
(3)

where r is the distance between the axis of the cylindrical joint
passing through the center of the sphere and the CoM of the
pendulum. Variables u and α are, respectively, the translational
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Fig. 4. Frames: F and Fo attached to the ground, Fm and Fs attached to
the center of the sphere, Fp attached to the CoM of the pendulum

and rotational output of the cylindrical joint. The homogeneous
transformation matrix representing the orientation and trans-
lation of the cylindrical pendulum in Fs is therefore

sHp =


1 0 0 u
0 cosφ − sinφ r sinα
0 sinφ cosφ −r cosα
0 0 0 1

 (4)

The homogeneous transformation matrix representing the ori-
entation and position of the CoM of the cylindrical pendulum
is thus, in F ,

Hp = Hs
sHp (5)

The angular velocity of the sphere in Fs is computed with the
following expression:

sωωωs =

θ̇ cosφ− ψ̇ cos θ sinφ

φ̇+ ψ̇ sin θ

ψ̇ cos θ cosφ+ θ̇ sinφ

 (6)

Similarly, the expression of the angular velocity of the pendu-
lum in frame Fp is obtained, i.e.

pωωωp =
[
α̇ 0 0

]T
(7)

Using the (3 × 3) rotation submatrix of the homogeneous
transformation matrix given in (4) and expression (6), the
pendulum’s angular velocity in frame Fs is defined as

sωωωp = sRp
pωωωp + sωωωs (8)
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Finally, we must consider the kinematics related to the non-
slipping condition. Indeed, this creates a constraint between
the angular and linear velocities of the spherical shell. First,
we define the angular velocity in frame F , i.e.

ωωωs = RZ(ψ)RX(θ)RY (φ)sωωωs = Rs
sωωωs (9)

Therefore, we have the two following constraint equations,
which are non-holonomic (preventing skidding and rotating
on itself without rolling on the ground):

C1 = ẋs −Rωs,y = 0, C2 = ẏs +Rωs,x = 0 (10)

The non-slipping assumption has obviously some limita-
tions. While internal slipping is not an issue with a pendulum-
driven system, external slipping between the ground and the
shell can still happen under some circumstances, including
high torque and granular soil. Continuous slipping can sig-
nificantly limit the maneuverability of any spherical robot,
while momentary slipping can affect localization based on
some sensors such as encoders. The location of the CoM
with respect to the mass of the system is therefore crucial
to minimize the risk.

C. Heading

Assuming that the orientation of the pendulum in frame F
is known, for instance with an IMU, the heading of the robot
can be computed with the inverse kinematics. Indeed, only
considering the orientation part of eq. (5), we have

Rs = Rp
sRT

p (11)

where Rp and sRp are known with the measurements of
the IMU and the position sensors in cylindrical joint (to be
determined later), respectively. Moreover, the angular velocity
vector of the sphere in frame Fs, namely (6), being easily
computed from the angular velocities measured in frame Fp

and the angular velocity of the cylindrical joint, we can
thus compute ωωωs from (9) with eq. (11). With the constraint
equations defined in (10), we can finally compute the heading
of the robot, i.e.

ζ = atan2(ẏs, ẋs) = atan2(−ωs,x, ωs,y) (12)

This expression can be computed in real time with the sensors
mentioned above.

D. Dynamics

With the kinematics of the robot, we can now derive its
dynamics model. Similar to other spherical rolling robots, the
equations of motion of the ARIES are highly nonlinear [11].
First, some common assumptions are required to formulate the
dynamics model with a pendulum:

1) at static equilibrium, the pendulum is in a vertical down-
ward position and is located at the center of the main
rotating axis, i.e. the z-axis of Fp passes through the
origin of Fs and is parallel to the z-axis of F ;

2) the system is rolling, without slipping, over a perfectly
horizontal surface;

3) the internal dynamics of the actuated cylindrical joint
(which is presented in Section IV) can be neglected with
respect to the resulting forces and torques.

Concerning the second assumption, it is not a requirement,
but a hypothesis to simplify the dynamic equations derived in
this paper, as we do not consider other external forces applied
on the system than the reaction from the ground. This model,
however, can be generalized to consider obstacles and uneven
terrains. We recall the reference frames depicted in Fig. 4 for
this analysis. The Lagrangian approach is chosen to obtain the
equations of motion. First, a set of generalized coordinates
{qi} representing the location and orientation of the sphere
and the cylindrical pendulum must be defined, i.e.

q =
[
ψ θ φ xs ys α u

]T
(13)

where the first three are the Euler angles of the shell, the
following two are the coordinates of the robot on the ground
and the last two are the rotation and translation of the cylin-
drical joint, respectively. The generalized coordinates defined,
the expressions of the kinetic energy are then computed with

Ks =
1

2

(
msṗ

T
s ṗs + sωωωT

s Is
sωωωs

)
(14a)

Kp =
1

2

(
mpṗ

T
p ṗp + sωωωT

p Ip
sωωωp

)
(14b)

where ms, Is, mp and Ip are, respectively, the mass and inertia
tensors of the shell and pendulum. With the CoM of the shell
located at the geometrical center of the sphere and only flat
surfaces considered as mentioned above, the expression of the
potential energy is, with the gravitational acceleration g,

Ep = mpgpp,z (15)

From Ks, Kp and Ep a Lagrangian function is obtained:

L = Ks +Kp − Ep (16)

The Euler-Lagrange equations are therefore

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= τi + λλλTai (17)

where τi is the generalized force associated with the general-
ized coordinate qi. Obviously, the generalized coordinates are
not all independent. Therefore, the two non-slipping constraint
equations defined earlier are integrated in the Euler-Lagrange
equations with the Lagrange multipliers λλλ = [λ1 λ2] and the
2-dimensional vectors ai defined as

[
a1 a2 . . . a7

]
=

[
∂C1/∂q̇
∂C2/∂q̇

]
(18)

The generalized forces τ6 and τ7 are, respectively, equal
to τ and f , the torque and force output of the cylindrical
joint. Therefore, we have 9 unknowns, namely 7 generalized
coordinates defined in (13) and 2 Lagrangian multipliers λi,
as well as 9 equations, i.e. eqs. (10) and (17).
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Fig. 5. Steering motion: (a) geometrical model; (b) lateral forces and moments; (c) curvature radius

E. Curvature Radius

The next essential element to consider is the curvature
radius while the ARIES steers, as shown in Fig. 5 where the
geometrical parameters and variables are defined. To this aim,
a similar approach to the one used by Kayacan et al. [25]
and Asiri et al. [1] is applied here. The same simplifications
and variables are used here to make the comparison easier,
instead of using exactly the model described in the previous
section. Regardless of the steering mechanism chosen, the
angular velocity of the spherical robot about the vertical axis
of the reference frame F is

ψ̇ = −RΘ/rc (19)

where R, Θ and rc are, respectively, the radius of the sphere,
the rolling angular velocity of the sphere (which should not be
confused with θ̇ defined earlier; depending on the orientation
of the sphere, they can be equal) and the radius of curvature
while steering. Therefore, since none of the first two are
affected by the steering mechanism, tilting and cylindrical
mechanisms must be compare over how the radius of curvature
rc is generated. It should be noted that variables used to
define the state of the BSR are slightly different than those
presented in Section III-B in order to simply the equations.
For the cylindrical pendulum, the magnitude of the friction
force between the ground and the sphere is computed with
the following expression:

||ff || =||fc,s||+ ||fc,p||
=msrcψ̇

2 +mp(rc + u cos γ)ψ̇2

≈(ms +mp)rcψ̇
2

(20)

where fc,i, i = {s, p} are the centrifugal forces acting on the
sphere and the pendulum and ψ̇ is the angular velocity of the
sphere about the z-axis in F . As can be seen, the translation
component of the cylindrical pendulum is neglected, as rc is
assumed significantly larger than u. Then, the magnitude of
the torque acting about the transversal axis of the sphere, i.e.
the y-axis of frame Fs, is computed with

Ty =−R||ff || −mpg(r′ sin γ + u cos γ)

+ ||fc,p||(r′ cos γ − u sin γ)

≈−R(ms +mp)rcψ̇
2 −mpg(r′ sin γ + u cos γ)

+mprcψ̇
2(r′ cos γ − u sin γ)

(21)

Knowing that the angular velocity of the sphere, in Fm, is
mωωωs = [−Θ cos γ − γ̇ ψ̇ −Θ sin γ]T (22)

and that its angular momentum is defined as (the planar
moment of inertia of the shell is assumed to be the same
regardless of the plane, i.e. rIs = tIs = Is)

L = Isωωω = [−IsΘ cos γ − Isγ̇ Is(ψ̇ −Θ sin γ)]T (23)

then the total torque applied on the sphere, which is the time
derivative of L, can also be obtained as T = ΩΩΩ×L since the
sphere is undergoing uniform circular motion2, i.e.

T = [Isψ̇γ̇ − Isψ̇Θ cos γ 0]T (24)

Therefore, the second component of T (from eq. (24)) must
be equal to Ty (from eq. (21). After some simplifications and
using a small-angle assumption for γ, we have

rc ≈
−mpr

′R2Θ2 + IsRΘ2 +R3(ms +mp)Θ2

umpg
(25)

The resulting curvature radius for different rolling velocities
and normalized tilting angles was computed and is shown in
Fig. 5(c). The normalized tilting angle is defined as w =
β/30◦ m, where 30◦ is the expected maximum value of β
(realistic maximum value with regards to the scale of our
prototype discussed in the next section and other devices found
in the literature). The numerical values of the parameters used
to generate these curves are included in Table I, and we
assumed r = r′.

TABLE I
PARAMETERS USED FOR THE CURVATURE RADIUS COMPUTATION

Is Ip ms mp R r g

0.25 kgm2 0.2 kgm2 1 kg 5 kg 0.2 m 0.1 m 9.81 m
s2

Fig. 6. Rendering of the cylindrical pendulum only, casing enveloping the
pendulum not shown (the motors are rigidly attached to the casing)

2Here, ΩΩΩ is the angular velocity vector defining the uniform circular motion,
i.e. ΩΩΩ = [0 0 ψ̇]T and should not be confused with ωωω.



IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. XY, NO. Z, MONTH 2022 6

IV. CYLINDRICAL DRIVE ACTUATION

A cylindrical drive is a differential mechanism with two
DoFs, a rotation and a translation, about the same axis (in our
case passing through the center of the sphere). Harada et al.
designed one example of this kind of mechanisms, dubbed
the C-drive, with a RHHR3 kinematic chain [26]. Karimi,
Eskandary and Angeles later improved the device with belts
and pulleys shaped into a translating Π-joint [27] that was
used to drive a two-limb isostatic pick-and-place robot [28].

Inspired by this work, our design, shown in Fig. 6, trans-
forms the concept into a novel implementation. In both ap-
plications, two identical revolute motors are used to reduce
the complexity and two lead screws with the same pitch, one
righthand, the other lefthand, support the linear motion. In
their implementation, Karimi Eskandary and Angeles attached
the motors of the C-drive to the base and the output shaft was
connected to the first link of a manipulator. Instead, in our
approach the motors are rigidly attached to the mobile platform
(pendulum), as shown in Fig. 3. The motors of our cylindrical
drive are moving inside the spherical shell by translating
about the rolling axis of the robot, as depicted in Fig. 3. The
output of this cylindrical drive generates the rotation required
for the sphere to roll plus the translation needed for it to
steer. Therefore, the mechanism was fundamentally rethink
for this different output as well as to minimize its mass;
an important criterion for mobile robots mostly absent from
industrial manipulator design.

A. Kinematics

As mentioned above, the pulleys can only rotate about their
axis, therefore cannot translate inside the sphere, as depicted in
Fig. 3. Array d, the output of the cylindrical joint, is mapped
by the (2× 2) Jacobian matrix J into the joint variables ψ:

ψ = Jd, J ≡ 1

p

[
2π p G
−2π p G

]
, d = [u α]T (26)

where u and α, as mentioned above, are the translational
and rotational output of the cylindrical joint, G and p are,
respectively, the gear-reduction ratio of the mechanism and
the pitch of the lead screws (the same for symmetry).

The resulting Jacobian matrix in eq. (26) is constant and
of full rank; useful features for control. Finally, it should be
noted that the transpose of the Jacobian matrix can be used to
compute the generalized forces τ and f previously mentioned
with the following equation:[

f
τ

]
= JT

[
τL
τR

]
(27)

B. Prototype of the cylindrical pendulum

The cylindrical pendulum is illustrated in Fig. 6. The two
revolute actuators, Maxon EC 45 flat 30 W brushless motors
(26:1 reduction ratio), are rigidly attached to the casing of
the pendulum. They were selected for their mass and to fit in

3R, H and C stand for revolute, helical (screw) and cylindrical joint
respectively.

Fig. 7. Above view (all parts that can translate relative to the mobile platform
are highlighted in blue) and front view of the cylindrical drive (payload
platform visible on top)
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Fig. 8. Control scheme (ML: left motor; MR: right motor)

the limited available space. Maxon controllers for brushless
DC (BLDC) motors were also chosen. Gears are used to
lower the CoM by putting the motors parallel and underneath
the lead screws. This increases the translation range of the
mechanism. Pulleys are coupled to the nuts. Thrust bearings
and two side panels (aluminum-ABS-aluminum to increase
rigidity to weight ratio) are used to assure that the pulleys
remain in the same plane. The upper pulley is rigidly attached
to the rolling axis of the robot. Two guiding rails, parallel
two the screws and the main shaft, are included. Thereby, the
pulleys are not translating inside the sphere, they only rotate,
as can be seen in Fig. 7. It is the inner mechanism casing that
translates (not shown in Fig. 6) in order to tilt the shell. Some
structural parts were 3D printed to complete the mechanism.
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C. Control

The control scheme is programmed in Python within the
Robot Operating System (ROS) environment. The ARIES has
two independent control variables: the rotation and the transla-
tion of the pendulum, corresponding, respectively to the rolling
and the steering motion of the sphere. Moreover, remember
that u is approximately proportional to the inverse of the
curvature radius rc, as demonstrated in an earlier paper [5]. To
control these two variables, we implemented a PID position
controller4, which is illustrated in Fig. 8. As mentioned above,
the angular position of the motor actuating the cylindrical
pendulum, namely ψ, is measured with optical encoders and to
obtain accurate heading of the robot while rolling, an inertial
measurement unit (IMU) rigidly attached to the pendulum
is used to compute its orientation. The measurements from
the IMU are processed by the Madgwick filter [29], which
returns the quaternions defining the orientation. The feedback
from the sensors can be visualized remotely over wifi, but
the control happens onboard. The reference is obtained from
remote controller communicating over Bluetooth directly with
the ARIES, but a script trajectory could also be implemented
and published through ROS. The remote controller node in
ROS publishes linear and angular velocities, which are applied
to the cylindrical pendulum, not the sphere.

V. PROTOTYPE OF THE ARIES

A prototype of the ARIES was built to experimentally test
its capabilities and is depicted in Fig. 1. The cylindrical drive,
which was already presented in Section IV, is meant to be
encompassed inside a polycarbonate transparent shell divided
into two hemispheres, with an overlapping section to guarantee
hermeticity and an adequate curvature. It can be seen in Fig. 1.

The system is controlled by an on-board Nvidia Jetson
Xavier NX. For prototyping purposes, Phidget modules are
used to generate the necessary inputs/outputs: directions and
references for the motors, feedback from the quadrature
encoders, etc. The Phidget modules communicate with the
Xavier NX through two USB ports. For data acquisition and
the experiments presented in Section VI, two current sensors
are included to measure the total current passing through each
motor. The ARIES was designed in the first place for appli-
cations involving SLAM. Therefore, it is equipped with a 3D
LiDAR, the Blickfeld Cube1, and two Intel Realsense cameras
(D435i and T265) in addition to the on-board electronics
previously mentioned. Considering the large space available
in the upper hemisphere of the robot, the payload can easily
be modified to follow the mission needs.

VI. EXPERIMENTS AND DISCUSSION

Several experiments were conducted to validate the capabil-
ities of the ARIES, focusing on three elements, i.e. the rotation
of the cylindrical pendulum/rolling, its translation/steering and
the rolling with a steering angle. First, The curvature radius
was determined experimentally to validate the concept of the
actuated cylindrical pendulum and the model of the system. As

4Parameters of the PID: Kp = 0.02, Kd = 0.0004, Ki = 0
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Fig. 9. Experimental curvature radius for θ̇ = 4.26 rad/s; dashed curves for
estimation from the model, circles for experimental data

shown in Fig. 9, the experimental data approach the curvature
estimated by the model for the tested velocity. The noticeable
discrepancies can be explained by friction in the mechanism,
assumptions made in the model and inertial parameters that
do not perfectly fit reality. Nevertheless, this shows that the
ARIES can be steered with a relatively small curvature radius
at a reasonable speed and be controlled.

Second, the current at each motor, filtered to remove high
frequency noise, was measured during a simple forward tra-
jectory without any steering. The resulting trajectory, with
the position obtained from the odometry of the T265, is
illustrated in Fig. 10(a). The result shows a minor deviation
of less than 5% without close-loop position control nor the
operator’s intervention. The other measurements are shown
in Fig. 10(b-c). As expected, angle φ remains close to zero
for a forward motion on a flat surface. Two other meaningful
angles are displayed in the righthand side of this figure. As
can be seen, the ARIES rolled at a constant desired forward
velocity generated by the rotation of the pendulum, i.e. α. The
pendulum was pointing downward for most of this trajectory,
as illustrated by the ε, which is the roll angle obtained by the
IMU attached to the pendulum. The fact that α and γ closely
follow each other at the beginning of the motion is explained
by the torque necessary to start the motion, which is not zero.
On the lefthand side of the same figure, the current in the
motors is displayed. Because the CoM position is controlled
and not the torque, there are discrepancies between both
motors. Friction and compliance in the cylindrical mechanism
explain most of these differences. Previous robot designs
actuated with cylindrical drives, such as the PMC mentioned
earlier, show similar variation of the torque in experiments,
even with ballscrews to reduce friction on a rigid mechanism
made of aluminum [27].

We also validate the performance with measurements ob-
tained during a translation of the cylindrical pendulum (from
left to right) while the ARIES remains stationary, i.e. without
rolling, see Fig. 11. Again, the current in the motors and the
pitch angle of the pendulum/sphere (φ) were measured. As
the figure shows, because of friction, no current is needed
to keep an arbitrary tilting angle (visible at the beginning).
Moreover, the discrepancies between the two motors are also
caused by the internal friction of the mechanism. A continuous
variation of the tilting angle was obtained, as shown in
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Fig. 12. Complex trajectory starting at (0, 0), with heading shown by arrows
and desired trajectory by the dashed curve

the same figure. Considering the internal friction mentioned
above, future improvements will include an optimization of the
mechanism to reduce its effect, for example using ballscrews
instead of lead screws, as well as a qualitative comparison
with other SRRs.

Finally, to complete the experimental validation, we ran a
more complex trajectory, including steering as well as forward
and backward motions, to assess the maneuverability of the
system, with multiple changes of direction. As shown in
Fig. 12, it includes first a curved path, followed by a backward
motion in straight line and another curve mirroring the begin-
ning of the trajectory. The dashed curve is the desired path,
showing relatively minor deviation obtained without close-
loop position control. Arrows in this figure depict the heading
computed online with the equations of Section III-C. Indeed,

sRp is obtained from the encoders, and sRp is computed from
the IMU measurements, which is attached to the pendulum.
We can therefore solve eq. (11). Locations where the heading
arrows displayed seem more erratic correspond to moments
when the ARIES actuators are no longer generating torque
to drive the sphere. In these situations, after the motion is
stopped, the residual kinetic energy is dissipated by small
oscillations caused by the spherical nature of the robot.

VII. CONCLUSION

In this paper, a novel barycentric SRR driven by a cylin-
drical pendulum was presented. This 2-DoF differential mech-
anism allows simultaneous rolling and steering with a robust
mechanism actuated by only two identical motors. Kinematics
and dynamics of the system were first presented, followed
by the implementation of the cylindrical joint. The modeling
shows that simple input/output equations can be used to
control the robot. Therefore, a PID control scheme was im-
plemented to control the location of the CoM to generate both
the rolling and steering motions. A full prototype was finally
presented, with several experiments. Future work will include
optimal control of this spherical robot and its integration into
a swarm of heterogeneous robots for exploration.
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