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Abstract

Simulation is a key technology for developing planning and exploratory models to optimize decision making as well as the design
and operations of complex and smart production systems. It could also aid companies to evaluate the risks, costs, implementation
barriers, impact on operational performance, and roadmap toward Industry 4.0. Although several advances have been made in
this domain, studies that systematically characterize and analyze the development of simulation-based research in Industry 4.0 are
scarce. Therefore, this study aims to investigate the state-of-the-art research performed on the intersecting area of simulation and
the field of Industry 4.0. Initially, a conceptual framework describing Industry 4.0 in terms of enabling technologies and design
principles for modeling and simulation of Industry 4.0 scenarios is proposed. Thereafter, literature on simulation technologies
and Industry 4.0 design principles is systematically reviewed using the preferred reporting items for systematic reviews and meta-
analyses (PRISMA) methodology. This study reveals an increasing trend in the number of publications on simulation in Industry
4.0 within the last four years. In total, 10 simulation-based approaches and 17 Industry 4.0 design principles were identified. A
cross-analysis of concepts and evaluation of models’ development suggest that simulation can capture the design principles of
Industry 4.0 and support the investigation of the Industry 4.0 phenomenon from different perspectives. Finally, the results of this
study indicate hybrid simulation and digital twin as the primary simulation-based approaches in the context of Industry 4.0.

Keywords: Discrete-Event Simulation, Agent-Based Simulation, System Dynamics, Virtual Reality, Augmented Reality,
Artificial Intelligence

1. Introduction

The Industry 4.0 (I4.0), i.e., the Fourth Industrial Revolution,
is a term conceived at the Hannover Fair in 2011 as part of Ger-
many’s long-term strategy to strengthen the competitiveness of
its manufacturing sector (Liao et al., 2017). From Industrie 4.0
working group, it “will lead to the emergence of dynamic, real-
time optimized, self-organizing value chains that can be opti-
mized based on criteria such as cost, availability, and resource
consumption” (Kagermann et al., 2013, p. 20). After 2013, I4.0
gained worldwide recognition and became a hot topic in scien-
tific literature (Lasi et al., 2014; Liao et al., 2017; Xu et al.,
2018). Moreover, it was the main subject of discussion at the
2016 World Economic Forum owing to its high relevance to the
manufacturing sector (Schwab, 2017). A global survey with
over 2,000 participants proposes that approximately 5% of a
companies’ annual revenue will be invested in digitalization
projects. In turn, companies expect to reduce their operational
costs by 3.6% per year (PwC, 2016). These studies reinforce the
argument that the digitalization of production systems will drive
innovation over the next decades (Kagermann et al., 2013).
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There is no standard definition for the term I4.0 in liter-
ature (Liao et al., 2017). Particularly, over a hundred def-
initions of I4.0 have been developed (Moeuf et al., 2018).
I4.0 is often described as a set of design principles and en-
abling technologies to guide researchers and practitioners to
implement I4.0 scenarios in companies (Hermann et al., 2015;
Ghobakhloo, 2018). Overall, I4.0 is considered as a new socio-
technical paradigm that depends on further development, ac-
cess, and integration of information and communication tech-
nologies (ICT) with automation technologies to promote end-
to-end systems integration across the entire value chain (Kager-
mann et al., 2013). It “is a collective term for technologies and
concepts of value chain organization” (Hermann et al., 2015,
p. 11), having implications on value creation, business mod-
els, services, and work organization (Kagermann et al., 2013;
Schwab, 2017; Xu et al., 2018).

A revolutionary aspect of I4.0 is the accessibility to its en-
abling technologies, made possible by the lowering price and
widespread use of sensors throughout value chains (Dalenogare
et al., 2018), which aids in removing barriers to effective supply
chain integration and management (Cragg & McNamara, 2018;
Ralston & Blackhurst, 2020; Hofmann et al., 2018). Nonethe-
less, from Li et al. (2017), the novelty of I4.0 is classified into
three axes: (1) technological advances and integration; (2) scal-
ing of the access and robustness of the internet, and (3) conver-
gence of digital, physical, and biological technologies together
with its widespread and influence in the dynamics of business,
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economy and social development. This is consistent with the
definition of I4.0 provided by Schwab (2017). Schneider (2018)
also explained that the feasibility of I4.0 differentiates it from
previous initiatives because of the increasing number of avail-
able technologies, the growth of companies’ digital capabili-
ties, and intra and cross-company integration through a com-
plex value chains network, consistent with Hofmann & Ruesch
(2017) and Xu et al. (2018).

Several initiatives related to I4.0 have been launched world-
wide to strengthen the competitiveness of the manufacturing
sector, predominantly through bi- or tripartite collaboration
from a triple helix (university-industry-government) collabo-
ration (Liao et al., 2017). Examples of these initiatives in-
clude the manufacturing USA program, also known as national
network for manufacturing innovation (NIST, 2019); Canada’s
advanced manufacturing supercluster (Elci et al., 2019); the
project evolution of networked services through a corridor in
Quebec and Ontario for research and innovation - ENCQOR
(ISED, 2019); German high-tech strategy 2020 (Kagermann
et al., 2013); factories of the future in the European union’s
(Liao et al., 2017); and made in China 2025 (Xu et al., 2018).

Although some literature report several ongoing projects,
I4.0 is nonetheless in its infancy, and most examples are either
in the planning stage or are pilot projects (Liao et al., 2017; Xu
et al., 2018; Alcácer & Cruz-Machado, 2019). Furthermore,
research on risks, costs, revenue potential, and implementa-
tion barriers of I4.0 is scarce. Additionally, there is a lack of
support to companies desiring to use this new social-technical
paradigm (Hofmann & Ruesch, 2017). In this context, simula-
tion techniques play major roles because they offer the possibil-
ity to evaluate multiple I4.0 scenarios through the development
of planning and exploratory models of complex systems, which
can aid addressing partly the aforementioned problems (Kager-
mann et al., 2013; Lugert et al., 2018).

Modeling and simulation are relevant techniques in the fields
of industrial engineering, operations, and supply chain manage-
ment (Shafer & Smunt, 2004; Negahban & Smith, 2014; Schei-
degger et al., 2018). It is an enabling technology of I4.0 for
managing complex systems (Ghobakhloo, 2018; Moeuf et al.,
2018; Alcácer & Cruz-Machado, 2019). Moreover, an empiri-
cal research (Jeong et al., 2018) and patent analysis (Han et al.,
2018) proposed modeling and simulation as critical technolo-
gies to produce innovations and develop the I4.0.

In manufacturing and logistics systems, which is the primary
focus of this study, modeling and simulation denote a set of
methods and technological tools that allows the experimenta-
tion and validation of products, processes, systems design and
to predict system performance. It also supports decision mak-
ing, education and training, aiding to reduce costs and develop-
ment cycles (Negahban & Smith, 2014). Moreover, modeling
and simulation are robust methods in science and developing
theories (Davis et al., 2007), which can be used for different
purposes, such as prediction, proof, explanation, prescription,
and empirical guidance (Harrison et al., 2007).

Furthermore, the application of simulation technologies is
a component of industry leaders’ initiatives and strategy for
implementing I4.0, such as General Electric’s (GE) brilliant

factory (Thilmany, 2017), and Siemens’ digital factory (Shih,
2016), which addresses manufacturing plant virtualization, vi-
sualization, and simulation. Siemens and GE hold different
patents related to new simulation techniques (Tao et al., 2019).
From Tao et al. (2019), examples of industrial applications in-
clude the use of simulation by Siemens for systems planning,
operation, and maintenance; the application of simulation by
GE for asset management and optimization; and the employ-
ment of simulation by Airbus to monitor and optimize produc-
tion processes. In addition, most leading simulation software
vendors (e.g., AnyLogic, MathWorks, Siemens, Arena, Das-
sault Systèmes, Autodesk, Flexin, Simul8, Aspen Technology,
AVEVA, Simio) are investing in the development of commer-
cial solutions for I4.0 (Martin, 2019; AnyLogic, 2020), fol-
lowing the increasing interest from companies in modeling and
simulation technologies (Deloitte, 2018).

Nevertheless, advancements in I4.0 and its enabling tech-
nologies introduce new challenges to the field of simulation
owing to the increasing complexity of systems to be modeled
(Vieira et al., 2018; Tao et al., 2018; Martin, 2019; Zhou et al.,
2019; Uriarte et al., 2019). Therefore, this study aims to investi-
gate the state-of-the-art of research at the intersection between
the emerging field of Industry 4.0 and the field of simulation.
The research question (RQ) addressed in this study are the fol-
lowing:
• RQ1 – What are the simulation-based approaches being

employed in the context of I4.0?
• RQ2 - What are the purposes, empirical nature, and appli-

cations area of studies on simulation in I4.0?
• RQ3 – What are the design principles of I4.0?
• RQ4 - Which I4.0 design principles are captured by each

simulation-based approach?
Although there are several reviews on simulation, they either

are not in the context of I4.0 (Jahangirian et al., 2010; Negah-
ban & Smith, 2014), focus on a specific simulation technique
(Rodič, 2017; Vieira et al., 2018; Tao et al., 2019), or have a dif-
ferent scope/design from this research (Mourtzis, 2019). To the
best of our knowledge, this is the first article providing a general
overview and comparison between simulation technologies and
design principles of I4.0. Furthermore, the time considered in
this study extends the dates of coverage of existing reviews, in-
cluding more recent publications. Additionally, whereas com-
paring the reference list of this study with the reference lists of
existing review articles, through a bibliographic coupling anal-
ysis (Van Eck & Waltman, 2014), it overlaps maximum in 6%,
indicating that this study introduces new and important insights
for those striving to understand the state-of-the-art of research
at the intersection of I4.0 domain with the simulation domain.

The main contributions of this study are threefold. First, it
presents a broad coverage of the specialized literature using a
quantitative and qualitative approach, identifying the simula-
tion approaches used relative to the I4.0. Second, it extends the
list of I4.0 design principles provided by Ghobakhloo (2018)
and establishes a link between simulation technologies and I4.0
design principles. Third, it provides a comprehensive classifi-
cation of simulation studies relative to I4.0.
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The remainder of this study is organized as follows. Sec-
tion 2 describes the research methodology used to review the
literature. Section 3 and 4 present the quantitative and quanti-
tative analyses, respectively. Section 5 presents the discussion.
Section 6 introduces the limitations and opportunities for future
research. Finally, conclusions are outlined in Section 7.

2. Methodology

2.1. Conceptual framework

1..*

embraces

encompasses

1..*

captures 1..*

characterizes

1..*

1..*

scenarios

Figure 1: Conceptual framework

Fig. 1 presents the conceptual framework to guide the sys-
tematic review, represented as a unified modeling language
(UML) class diagram, which describes the system’s compo-
nents and the different types of static relationships among them
(Bersini, 2012). As shown in Fig. 1, I4.0 can be described in
terms of its design principles and enabling technologies (Her-
mann et al., 2015, 2016; Ghobakhloo, 2018). The simulation
characterizes one or more enabling technologies of I4.0 (Kager-
mann et al., 2013; Ghobakhloo, 2018), which can be used to
evaluate multiple I4.0 scenarios (Houston et al., 2017; Martin,
2019; Tao et al., 2018; Gajsek et al., 2019).

To better understand these relationships in Fig. 1, the de-
sign principles that serve as the foundation of I4.0 and exist-
ing simulation-based approaches used relative to I4.0 will be
systematically reviewed. Simulation techniques serve different
purposes (Harrison et al., 2007) and apply to different areas (Ja-
hangirian et al., 2010), which can enable easy examination of
the I4.0 phenomenon from different perspectives. Therefore,
the uses of simulation, the application areas, and the relation-
ship between the simulation approaches and I4.0 design princi-
ples will also be investigated.

2.2. The systematic review strategy
To ensure a robust and rigorous systematic literature review,

the preferred reporting items for systematic review and meta-
analysis (PRISMA) methodology (Moher et al., 2009), consist-
ing of a 27-item checklist and a four-phase flow diagram (see
Fig. 2), was adopted. From Moher et al. (2009), the PRISMA’s
checklist provides guidelines to conduct a systematic literature
review (e.g., title, abstract, method, results, discussion) and the
PRISMA flow chart describes the information flow through the
different phases of the systematic literature review (i.e., iden-
tification, screening, eligibility, inclusion). With thousands of

citations on the web of science, Scopus, and Google scholar,
this approach is widely used across different research fields to
guide the development of systematic reviews, including I4.0
(Liao et al., 2017).

2.2.1. Sampling

Table 1: Search protocol

SP1 Data source: Web of Science and Scopus
Search string: “simulation” AND (“model*” OR “frame-

work”) AND (”Industry 4.0” OR ”Industrie
4.0” OR ”Fourth Industrial Revolution”OR
”4th Industrial Revolution”)

Search fields: Title, abstract, and keywords
Period: From 2011 to December 31, 2019
Language: English
Document: Journal articles

SP2 Data source: Web of Science and Scopus
Search string: (“design principle*” OR “requirement*”)

AND (”Industry 4.0” OR ”Industrie 4.0”
OR ”Fourth Industrial Revolution”OR ”4th
Industrial Revolution”) AND (“literature
review“ or survey or state-of-the-art)

Search fields: Title, abstract, and keywords
Period: From 2011 to December 31, 2019
Language: English
Document: All types

The data collection follows a two-phase process to enable
the cross-analysis of concepts (see Fig. 2). The first phase
systematically identifies studies that use simulation-based ap-
proach relative to I4.0, whereas phase two systematically iden-
tifies publications that analyze or review the design principles
of I4.0. The search protocol adopted in each phase were built
in three steps (see Table 1). First, the electronic data sources
Web of Science Core Collection and Scopus, broadly covering
the management and engineering research literature, were se-
lected. Second, the search string was constructed based on the
objectives of the research. Third, four eligibility criteria were
applied: (1) date of coverage: the search period ranges from
the beginning of 2011, with the emergence of the term Industry
4.0 (Liao et al., 2017), to December 31, 2019; (2) Search fields:
title, abstract, or keywords of articles in the data sources; (3)
Document types: in the first search protocol, only journal arti-
cles were included as they were considered more reliable owing
to the rigor of the evaluation process and because they predomi-
nantly provide significant details about the methodology, which
is essential to the development of this study. However, in the
second search protocol, all types of documents were consid-
ered; (4) Language: consider only studies published in English.

After defining the search strategy, articles were identified,
screened, and assessed for eligibility, to develop the final sam-
ple. A summary of the systematic review strategy, based on
PRISMA methodology, is exhibited in Fig. 2.

The identification phase consisted of applying the search pro-
tocol in each data source, combining the articles into a sin-
gle database, and removing duplicates using EndNote X9 and
double-checking references. The screening phase consisted of
analyzing the title, abstract, and keywords of articles in the sam-
ple, applying the exclusion criteria in Table 2. In the eligibility
phase, the remaining full-text articles remaining in the sample
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Figure 2: Systematic review strategy

Table 2: Inclusion and exclusion criteria with the total number of occurrences

Criteria Description Total occurrences
Phase 1 Phase 2

Exclusion
(E)

E1: Industry 4.0 or Simulation is used only as a keyword, example fact, or cited expression. 29 16
E2: Does not fit with the scope of the research. 65 N/A
E3: Industry 4.0 or Simulation is only used to describe some challenges, trends, or recommendation. 20 N/A
E4: The paper does not focus on the analysis or review of Industry 4.0 design principles. N/A 113
E5: Full-text could not be assessed or is not in English. N/A 2

Inclusion
(I)

I1: Simulation and Industry 4.0 are part of the main research effort. 80 N/A
I2: The paper analyze or review the design principles of Industry 4.0 N/A 10

were assessed for qualification. Only articles matching the in-
clusion criteria in Table 2 were accepted in the sample. Next,
the backward and forward snowball sampling technique was ap-
plied to these articles to determine if any relevant references
was missed in the sample. Snowballing is an important search
technique to develop systematic review studies (Wohlin, 2014).
It uses an article’s reference list (backward snowball sampling)
or the citations to the article (forward snowball sampling) to
identify additional references to include in the sample of arti-
cles to be reviewed (Wohlin, 2014). Finally, in the inclusion
phase, articles in the sample after eligibility analysis plus arti-
cles identified through the snowball sampling were included in
the quantitative and qualitative analysis.

Phase 1 initially resulted in 251 articles. After duplicate re-
moval, the sample reduced to 174 articles. The titles, abstracts
and keywords were thereafter analyzed and exclusion criteria
E1 and E2, set out in Table 2 were applied, reducing the sample
from 174 to 105 articles. At this stage, the 62 articles excluded
owing to E2 occurred mainly because they focused on other ar-
eas (e.g., energy, healthcare, construction, telecommunication),
alternate to on manufacturing or logistics systems. After as-
sessing the full text of the articles, the other 45 articles were
excluded owing to E2 and E3, resulting in a sample with 60 ar-

ticles. By performing the snowball sampling, 20 additional arti-
cles were identified. Hence, a total of 80 articles were included
in the final sample for the quantitative and qualitative analysis.
A third researcher, an expert in the field, double-checked the
reference lists (articles excluded and included in the sample) to
reduce potential bias. The underlying principle was, whenever
a disagreement about the inclusion or exclusion of an article
occurs (which were very few cases), we appended the article to
the sample to prevent missing possible relevant studies in the
sample.

In phase 2, we repeated the four step procedure in Fig. 2 to
identify studies describing the principles of I4.0, resulting in a
sample of 10 articles, included in qualitative analysis. Here,
most of the 113 articles were excluded owing to E4 because
they used design principles or requirements only as a keyword,
cited expression, or example fact, and did not focus on the anal-
ysis or review of the design principles of Industry 4.0.

2.2.2. Data analysis
Adhering to the PRISMA guidelines (Moher et al., 2009),

this research uses a mixed-method systematic review, combin-
ing quantitative and qualitative approaches. Accordingly, the
data analysis was divided into two stages. First, we performed
a quantitative synthesis through graphical and tabular methods
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of descriptive statistics. Thereafter, we conducted a qualitative
content analysis, which involves decontextualization, recontex-
tualization, categorization, and compilation of data (Bengtsson,
2016).

Overall, the research design is divided into four phases, as
depicted in Fig. 2. Firstly, studies at the intersection of I4.0 and
simulation fields are selected to identify the simulation-based
approaches used relative to I4.0. Secondly, reviewed articles
related to I4.0 are analyzed to identify the design principles
of I4.0, i.e., essential constructs for the development of I4.0
models. Now, a quantitative analysis of the simulation-based
studies is performed, and the simulation approaches in I4.0,
and the design principles of I4.0, introduced. Thirdly, a cross-
analysis of concepts that establishes the relationship between
the simulation-based approaches and the design principles of
I4.0 is presented. Next, a classification scheme (coding) with
five categories, subdivided into 61 subcategories, is developed
to guide further content analysis. The 80 articles included in
the final sample of phase 1 were next classified, and the results
reported. Lastly, gaps and opportunities for future research are
discussed.

3. Quantitative analysis

The sample size of phase 1 comprises of 80 journal arti-
cles, used for both quantitative and qualitative analysis (see Ap-
pendix A). Fig. 3a displays the distribution of these publications
over time, showing an upward trend in the number of scientific
publications in the fields of I4.0 and simulation. It is observed
that more than 70% of the articles were published in the last
two years. Fig. 3a indicates that the research field at the inter-
section of the I4.0 domain with the simulation domain is new
and under-explored, considering the potential of simulation to
develop I4.0 and vice versa, as highlighted by the academic,
and industry professionals and other organizations (Kagermann
et al., 2013; Shih, 2016; Thilmany, 2017; Lugert et al., 2018;
Tao et al., 2018; Martin, 2019; AnyLogic, 2020).

The geographical distribution of the publications is presented
in Fig. 3b. The top 10 most frequent were considered. Another
25 countries were represented in the sample, with up to two
publications. The institution and location information from the
affiliation of all authors of each article was considered. There-
fore, a publication with authors from different institutions and
countries were computed separately. In total, the 80 articles
analyzed involved 322 authors, 161 institutions, and 35 coun-
tries, with an average of 4.03 authors per article and a standard
deviation of 1.55. Almost 70% of the research articles were
co-authored by four or more researchers. In total, 61 articles
(78.75%) involved one or more institutions of a single country,
whereas 17 articles (21.25%) involved institutions in different
countries, suggesting that it remains considerable room for in-
ternational collaboration. Considering the distribution by con-
tinent, we find: Europe (54 articles; 66%); Asia (34 articles;
41%); North America (7 articles; 9%); and South America (6
articles; 8%). There is a higher concentration of publications
linked to European institutions, mainly from Germany, Italy,
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Figure 3: Publication count by year and country

and the UK, following a similar pattern of I4.0 publications, as
presented in Liao et al. (2017).

Table 3: Keywords frequency analysis

Keyword n %
Manufacturing 53 66.3
Cyber-Physical Systems 41 51.3
Agent-Based Simulation 30 37.5
Decision Making 21 26.3
Smart manufacturing 17 21.3
Digital Twin 15 18.8
Virtual Reality 14 17.5
Internet of Things 11 13.8
Discrete Event Simulation 9 11.3
Big Data 8 10.0

The keyword analysis is important to initially identify the
primary constructs addressed in the content of the studies. In
total, 871 keywords were collected from the 80 studies. Ta-
ble 3 presents the 10 most common keywords, excluding the
two used in the query (i.e., simulation, Industry 4.0) and the
ratio based on the absolute number (n) of articles in the sample.

The keywords in Table 3 suggests that most of the studies
(62%) are within the manufacturing context, which is in the
scope of this study. Furthermore, it indicates three core en-
abling technologies of I4.0, i.e., the Internet of Things (IoT),
Cyber-Physical Systems (CPS), and Big Data, as described by
Kagermann et al. (2013). In addition, it indicates that: 35%
of the studies in the sample may adopt agent-based modeling
and simulation (ABMS) or multi-agent systems (MAS), con-

5



1950 1960 1970 1980 1990 2000 2010 2019
0

1000

2000

3000

4000

5000

6000

7000

8000

Virtual Reality

Augmented Reality

System Dynamics

Discrete Event Simulation
Agent Based Simulation
Digital Twins
Hybrid Simulation

Industry 4.0

Figure 4: Evolution of the number of publications per simulation approach

Table 4: Articles by journal and period

Journal IF SJR Articles published per year Total Percent14 15 16 17 18 19
International Journal of Production Research 4.577 1.78 0 0 0 3 2 4 9 11.3%
Computers & Industrial Engineering 4.135 1.47 1 0 0 2 1 5 9 11.3%
International Journal of Computer Integrated Manufacturing 2.861 0.66 0 0 0 1 2 5 8 10.0%
Computers in Industry 3.954 1.01 0 0 1 0 2 4 7 8.8%
International Journal of Advanced Manufacturing Technology 2.633 1.00 0 0 0 1 3 3 7 8.8%
Simulation Modelling Practice and Theory 2.219 0.61 0 0 0 0 0 4 4 5.0%
Journal of Manufacturing Systems 5.105 2.11 0 1 0 1 0 1 3 3.8%
CIRP Annals-Manufacturing Technology 3.641 2.54 0 0 0 1 1 1 3 3.8%
Sustainability 2.576 0.58 0 0 0 0 0 3 3 3.8%
International Journal of Simulation Modelling 2.492 0.62 0 0 0 0 1 2 3 3.8%
IEEE Transactions on Industrial Informatics 9.112 2.35 0 0 0 0 1 1 2 2.5%
International Journal of Production Economics 5.134 2.38 0 0 0 0 0 2 2 2.5%
IEEE Access 3.745 0.78 0 0 0 2 0 0 2 2.5%
Social sciences N/A 0.24 0 0 0 0 0 2 2 2.5%
Systems N/A 0.40 0 0 0 2 0 0 2 2.5%
Applied Soft Computing Journal 5.472 1.41 0 0 0 0 0 1 1 1.3%
IEEE Transactions on Automation Science and Engineering 4.938 1.50 0 0 0 0 1 0 1 1.3%
Engineering with Computers 3.938 0.66 0 0 0 0 1 0 1 1.3%
Production Planning & Control 3.605 1.39 0 0 0 0 0 1 1 1.3%
Journal of Computational Design and Engineering 3.408 0.74 0 0 1 0 0 0 1 1.3%
IEEE Transactions on Human-Machine Systems 3.374 1.19 0 0 1 0 0 0 1 1.3%
Computer Networks 3.111 0.85 0 0 1 0 0 0 1 1.3%
Applied Sciences 2.474 0.42 0 0 0 0 0 1 1 1.3%
Processes 1.963 0.85 0 0 0 0 0 1 1 1.3%
Mathematics 1.747 0.24 0 0 0 0 0 1 1 1.3%
Journal of Simulation 1.214 0.87 0 0 0 1 0 0 1 1.3%
Production and Manufacturing Research N/A 0.64 0 0 0 0 1 0 1 1.3%
Machines N/A 0.42 0 0 0 0 0 1 1 1.3%
Organizacija N/A 0.22 0 0 0 1 0 0 1 1.3%

Total 1 1 4 15 16 43 80 100%

sidering that both terms are often used interchangeably (Bar-
bati et al., 2012); that 17% of studies may address digital twin
(DT); 16% virtual reality; and 10% discrete-event simulation
(DES). This analysis also indicates the other three simulation
approaches: system dynamics (3%), augmented reality (3%),
and hybrid simulation (5%).

The articles were published in 29 different scientific journals
(see Table 4), covering the leading journals of industrial en-
gineering and simulation fields, based on the journal citation
reports (JCR) and SCImago journal rank (SJR). Table 4 consid-
ers initially the total number of articles per journal, followed by

the journal’s impact factor (IF), based on the JCR, and SJR. The
number of publications per journal per year and the proportion
of articles per journal in the sample is also presented.

Although publications are spread over 29 journals, 50%
are from five journals: Computers & Industrial Engineering
(11.3%), International Journal of Production Research (11.3%),
International Journal of Computer Integrated Manufacturing
(10%), Computers in Industry (8.8%), and International Jour-
nal of Advanced Manufacturing Technology (8.8%). Moreover,
a bibliographic coupling analysis indicates that the 80 articles
in the sample are closely related, with more than 80% sharing
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minimum 3 and maximum 49 references. Note that “the larger
the number of references two publications have in common, the
stronger the bibliographic coupling relation between the pub-
lications” (Van Eck & Waltman, 2014, p. 287). The biblio-
graphic coupling analysis and co-occurrence keyword analysis,
two of the most commonly studied types of bibliometric net-
works (also referred to as science mapping), were carried out
using VOSviewer software, highly used for visualizing biblio-
metric networks and text mining (Van Eck & Waltman, 2014).

To understand how the use of simulation approaches changed
over time, particularly before and after the emergence of the
I4.0, we observed the time series associated with the seven sim-
ulation technologies provided by the keyword analysis using
Google Ngram Viewer (http://books.google.com/ngrams) and
Scopus. On one side, Google Ngram is a data-mining tool
based on a rich data set of words/phrases from millions of dig-
itized books published between 1500 and 2008, widely used in
data science (Skiena, 2017). On the other side, Scopus is one
of the largest abstract and citation databases of scientific publi-
cations. The time series produced with Google Ngram viewer
and Scopus datasets presented similar patterns up to 2008, ex-
cept for Digital Twins, which Google Ngram returns no results.
Fig. 4 shows the time series of each simulation approach based
on the Scopus database. Each term was searched individually,
and filtered by five subject areas closely related to the scope
of this research: engineering, computer science, mathematics,
decision science, and business management. Articles contain-
ing the terms in either the titles, abstracts, or keywords were
retrieved.

Fig. 4 indicates that virtual reality, together with augmented
reality, concentrates the higher number of publications. System
dynamics and discrete-event simulation are the oldest methods,
both with more than 50 years old. Concerning the evolution of
publications, simulation-based approaches experienced a sig-
nificant increase after the 1990s. However, the distribution of
publications slightly changed after 2011. In the last three years,
digital twin’ publications increased exponentially, agent-based
simulation and hybrid simulation were stable, whereas the other
approaches presented a high variation.

4. Qualitative analysis

4.1. Simulation in Industry 4.0

Simulation is defined as the process of designing a model of
a real or hypothetical system to describe and analyze the behav-
iors of the system (Scheidegger et al., 2018). The key compo-
nents of this definition are: modeling – the process of creating
a model; model - an abstract and simplified representation of a
system, composed of a set of assumptions, which is often rep-
resented by a mathematical or logical relationship; system - the
process that is analyzed; process – a collection of interrelated
elements; and simulation – the operation of a model over time
(Banks, 1998).

Simulation is a primary methodology for analyzing complex
production systems and an essential problem-solving method-
ology (Negahban & Smith, 2014). A reason for using simula-

tion are the high cost associated with the development of ex-
periments with the actual system, to observe the behavior of
processes in the real world, or with the building of a physical
model (Scheidegger et al., 2018). Additionally, a model can
be significantly complex to be analyzed analytically (Banks,
1998). Advantages in using simulation approaches includes:
conducting tests rapidly and cheaper without disrupting the real
system (risk-free environment), compressing or expanding time
for a particular observation, and use of animation (visualization
of dynamic systems) to facilitate communication and models
validation (Banks, 1998; Borshchev, 2013; Scheidegger et al.,
2018). Whereas the main disadvantages are the lack of profes-
sionals, high salaries of simulation engineers, the high cost of
software licenses, and time to develop models (Banks, 1998;
Kagermann et al., 2013).

There are several simulation-based approaches available in
literature. Fig. 5 provides an overview of the simulation-based
approaches being employed in the context of I4.0, based on
the studies in the sample. A description of each simulation ap-
proach and an indication of key references are provided next.

Agent-based modeling and simulation (ABMS): is consid-
ered a “relatively new approach to modeling complex systems
composed of interacting, autonomous agents” (Macal & North,
2010, p. 151). ABMS or Multi-Agent Systems (MAS) is also
defined as “a set of elements (agents) characterized by some
attributes, which interacts with each other through the defini-
tion of appropriate rules in a given environment” (Barbati et al.,
2012, p. 6020). An agent is defined as a complex software
unit able to operate autonomously, pursuing a set of specific
goals (Frayret, 2011; Abar et al., 2017). It can represent differ-
ent things, whether material or not, such as sensors, machines,
products, people, and innovation (Borshchev, 2013). Generally,
an ABMS model consists of a set of agents, the agents’ environ-
ment, and a set of agents relationships (Macal & North, 2010).
There is also a strong notion of an agent, which includes not
just characteristics like autonomy, social ability, reactivity, pro-
activeness, but also human-like attributes such as knowledge,
belief, intention, and emotion (Wooldridge & Jennings, 1995).
ABMS plays an important role in I4.0 as a modeling paradigm
for CPS and simulation method (Houston et al., 2017). A re-
view of the industrial applications of agent technology in CPS
is presented in Leitão et al. (2016). A detailed software tool list
for ABMS is presented in Abar et al. (2017).

Discrete Event Simulation (DES): is defined as “one in which
the state variables change only at those discrete points in time
at which events occur” (Banks, 1998, p. 8). The event con-
sists of an occurrence that alters the system’s state, while a state
variable of a system represents all the information necessary to
describe the system’s behavior at a certain point in time. As
an example, the number of products in a queue waiting for a
quality check may be considered a state variable, and a product
that is entering or leaving the queue, an event (Da Costa et al.,
2017). Other key elements of DES models are passive entities
(or objects), resources, locations, queues (or processing lists),
source and sink blocks, and path network (Scheidegger et al.,
2018). DES is process-oriented, mainly developed using pro-
cess flowchart, and operates in discrete times. The abstraction
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Figure 5: Simulation-based approaches applied in the context of Industry 4.0

level of DES models is usually medium to low. A review of
DES in the scope of I4.0 is provided by Vieira et al. (2018).

System Dynamics (SD): is a continuous simulation approach
to analyses dynamic systems over time, using stock and flows
and feedback loops diagrams and differential equations to rep-
resent systems’ components relationships (Scheidegger et al.,
2018). SD has two modeling approaches (Kunc, 2017). The
use of stock and flow diagrams implies a quantitative approach
(hard modeling), while the qualitative approach, which is also
referred to as soft operational research, involves only the use of
influence (feedback loop) diagrams. SD is considered a more
strategic modeling approach, where the models usually present
a high abstraction level (Borshchev, 2013).

Virtual Reality (VR): is a virtual experience in which a user
is immersed in a responsive virtual environment (Turner et al.,
2016). It refers to a set of ICT technologies (i.e., expression
technology, interaction technology, authoring technology, col-
laboration technology) that enables the user to experience a vir-
tual environment in an experimental simulation (Choi et al.,
2015). VR has a wide range of applications in the manufac-
turing industry (Berg & Vance, 2017).

Augmented Reality (AR): is a set of technologies (e.g., cap-
turing device, visualization devices, interaction device, track-
ing system) that allows the direct or indirect view of the physi-
cal world environment in real-time to be augmented (i.e., en-
hanced) by adding virtual computer-generated devices to it
(Bottani & Vignali, 2019). AR systems in manufacturing can
increase a user’s perception and interaction with the real world,
supporting different activities such as training, assembly, and
maintenance (Longo et al., 2019; Pérez et al., 2019).

Artificial Intelligence (AI): is a domain of computer science
relating to the simulation of intelligent behavior in comput-
ers. Its subfields include machine learning, deep learning, nat-
ural language processing, computer vision, cognitive comput-
ing, and more (Carvalho et al., 2019; Lolli et al., 2018). AI
can also be described as a set of techniques for modeling and
simulation of environmental systems, which includes artificial
neural networks, fuzzy models, reinforcement learning, cellular
automata, and meta-heuristics (Chen et al., 2008).

Petri Nets simulation (PN): is a discrete-event graphical and
analytical tool used to model and simulate flexible manufactur-

ing systems (Başak & Albayrak, 2014; Pisching et al., 2018).
In other words, PN formalism is suitable for representing con-
current, asynchronous, distributed, parallel, and stochastic sys-
tems (Guo et al., 2017; Drakaki & Tzionas, 2015). There are
different extensions to PN. Overall, a PN consists of four ele-
ments: places - represented by circles, transitions - represented
by rectangles, edges - represented by direct arrows, and tokens
- represented by small solids (Pisching et al., 2018).

Hybrid Simulation (HS): is characterized by the combina-
tion of two or more simulation methods, i.e., multi-paradigm
model (Scheidegger et al., 2018; Brailsford et al., 2019) or
combination of simulation with optimization approaches, i.e.,
simulation-optimization (de Sousa Junior et al., 2019). The in-
troductory guide for HS presented in Scheidegger et al. (2018)
compares in detail the three of the main simulation methods in
industrial engineering, i.e., DES, ABMS, and SD. Another key
reference on HS is the literature review conducted by Brails-
ford et al. (2019), which also presents a conceptual framework
to guide the development of HS projects. According to the au-
thors, there are four types of hybridization: sequential - the out-
put of one model is the input to another model; enriching –
narrow use of another method by one dominant; interaction –
the models interact cyclically without dominance; and integra-
tion – where it is not easy to distinguish the beginning of one
method and the ending of another method. They also provide
guidelines to combine simulation methods with optimization
approaches (e.g., exact or heuristic methods). There are differ-
ent kinds of HS models in the literature, such as DES-ABMS
(Farsi et al., 2019), SD-ABMS (Nassehi & Colledani, 2018),
DES-VR (Turner et al., 2016), ABMS-Data Science (Hous-
ton et al., 2017), Simulation-Big data (Vieira et al., 2019b),
PN-AI (Drakaki & Tzionas, 2017), and multi-level simulation
(Delbrügger et al., 2019). Most authors employ the term HS
to describe their models, even though the taxonomy for classi-
fying simulations with multiple models proposed by Lynch &
Diallo (2016) may be considered in future research.

Digital Twins (DT): refers to the digital representation of a
physical system and the seamless integration between the phys-
ical and digital spaces (Cimino et al., 2019). DT is commonly
defined as “a multi-physics, multi-scale, probabilistic, ultra-
fidelity simulation that reflects, in a timely manner, the state
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of a corresponding twin based on historical data, real-time sen-
sor data, and physical model ”(Tao et al., 2019, p. 2406). It was
initially developed within the aerospace industry than extended
to the manufacturing field (Rodič, 2017; Tao et al., 2019). Es-
sentially, DT is a hybrid approach, built into four levels: geom-
etry, physics, behavior, and rule (Tao & Zhang, 2017). The first
two levels involve mainly kinematics and geometric simulation,
also referred to as continuous simulation (Klingstam & Gul-
lander, 1999), which is based on computer-aided technologies,
such as computer-aided design (CAD), computer-aided engi-
neering, and computer-aided manufacturing as well as finite el-
ement analysis (Dankwort et al., 2004). Levels three and four
involve different simulation approaches, such as DES, ABMS,
and AI techniques (Schluse et al., 2018). Tao & Zhang (2017)
and Tao et al. (2019) review the role of DT in the manufacturing
industry. A review of the influence of I4.0 on the development
of DT is presented in Rodič (2017).

Virtual Commissioning (VC): is a digitalization method to
speed up the commissioning of a new production process
through a virtual environment (Lechler et al., 2019). It is a test-
ing method that makes use of simulation models and emulated
controllers during the development and validation of new man-
ufacturing systems (Ahrens et al., 2018). VC integrates differ-
ent technologies, such as 3D CAD, DES, and PLC. DT models
have also been incorporated into the process of virtual commis-
sioning. DT models, along with PCL design, give an even more
accurate view of how automated systems design will perform
prior to physical commissioning when hardware and PLCs are
put together. A brief review of VC can be found at Lechler et al.
(2019) and Putman et al. (2017).

4.2. Industry 4.0 design principles
Defining constructs clearly, in a desegregate approach, is es-

sential to advance scientific research in the intersection of I4.0
and simulation fields, because it aids identifying variables and
operational definitions for modeling, simulation and the devel-
opment of theories (Davis et al., 2007; Harrison et al., 2007).

It is important to support companies in identifying and imple-
menting I4.0 projects (Hermann et al., 2015).Although there is
no consensus on the definition of I4.0, some of its core techno-
logical components and design principles can be identified and
used to support the implementation of I4.0 scenarios in com-
panies (Hermann et al., 2015, 2016), and model and simulate
those scenarios in a risk-free virtual environment prior to real
implementation. Similar strategies have been used to character-
ize other important managerial approaches, such as Lean Pro-
duction. In summary, I4.0 design principles are fundamental
concepts that describe the I4.0 phenomenon and support its im-
plementation (Ustundag & Cevikcan, 2017).

Ten articles describing the I4.0 design principles were se-
lected for analysis, following the search protocol and eligibility
criteria described in Section 2.2.1 (Kagermann et al., 2013; Lasi
et al., 2014; Hermann et al., 2015, 2016; Ustundag & Cevikcan,
2017; Ghobakhloo, 2018; Mabkhot et al., 2018; Mittal et al.,
2018; Ruppert et al., 2018; Tavcar & Horvath, 2019). Fig. 6
and Table 5 provides an overview of the 17 design principles of
I4.0 identified from these articles, extending the list provided
by Ghobakhloo (2018).

A seminal reference in I4.0 is the final report of the Industrie
4.0 working group (Kagermann et al., 2013), which initially de-
scribed its vision, potential, research requirements, and priori-
ties for further research. From this report, the essential building
blocks of I4.0 are vertical integration, smart factories, horizon-
tal integration, and end-to-end digital integration of engineer-
ing. Additionally, Lasi et al. (2014) indicates flexibility, product
personalization, decentralization, virtualization, and corporate
social responsibility as main drivers and fundamental concepts
of I4.0. Hermann et al. (2015) systematically reviewed the criti-
cal features of I4.0, identifying six design principles for I4.0 im-
plementation: modularity, interoperability, real-time capability,
virtualization, decentralization, and service orientation. These
six principles were also analyzed in Mabkhot et al. (2018) and
Ruppert et al. (2018). An aggregate analysis is presented in
Hermann et al. (2016), which describes four I4.0 design prin-
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Figure 6: Design principles of Industry 4.0. Each node represents a design principle of Industry 4.0. The color of the
node indicates the number of articles in the sample. The edge (line) represents a key relationship between principles.
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Table 5: Description of the desigh principles of Industry 4.0

Principle Description
Vertical
integration:

is the integration of different ICT systems within a company at the different hierarchical levels, i.e., physical, software application, busi-
ness processes (Kagermann et al., 2013). It refers to intra-company integration and networked manufacturing systems (Alcácer & Cruz-
Machado, 2019), following a bottom-up automation pyramid approach, which is mostly described in terms of five levels: 1 - field level
(devices, sensors and actuators); 2 - control levels (programmable logic controllers - PLC); 3 - supervisory level; 4 - planning level; and 5
- management level (Snatkin et al., 2013; Schlechtendahl et al., 2014; Wang et al., 2016a).

Horizontal
integration:

consists of inter-company integration of IT systems (Alcácer & Cruz-Machado, 2019), both within and across an organization (Kagermann
et al., 2013), enabling collaborative networks of companies share resources, capabilities, and information in real-time across the value
chain (Brettel et al., 2014).

End-to-end
engineering
integration:

it refers to the digital integration of system engineering across the entire value chain, including product design and development, production
planning, production engineering, production, and services (Kagermann et al., 2013; Wang et al., 2016a). It implies a holistic system
engineering approach and digital product life-cycle management, encompassing both the production process and the manufactured product
(Kagermann et al., 2013; Tao et al., 2018).

Smart factory: refers to extensively integrated and collaborative manufacturing systems, which are capable of responding in real-time to changes in
demands and conditions in the factory (Mabkhot et al., 2018). It consists of a network of smart objects or interconnected cyber-
physical systems, and its main features include comprehensive connection, deep convergence, and reliance on data-driven simulation-
optimization (Wang et al., 2016a,b; Kusiak, 2018).

Interoperability: indicates the capacity of two or more systems to coexist, interact (exchange information), and interoperate, i.e., share resources (Gorkhali
& Xu, 2016; Schlechtendahl et al., 2014). It refers to the ability of CPS components and IT systems having different standards to connect
and communicate with each other (Mabkhot et al., 2018).

Modularity: is an engineering concept that refers to the degree in which a product or system can be decomposed in re-combinable modules (Mabkhot
et al., 2018) that are units “composed of a set of components with a set of specific interfaces” (Efatmaneshnik et al., 2018, p. 365).
Modularity applies to the different stages of the production cycle (e.g., design, fabrication, assembly), enabling mass customization, and
flexible and agile manufacturing systems (Hermann et al., 2015; Mabkhot et al., 2018; Efatmaneshnik et al., 2018; Ghobakhloo, 2018).

Real-time
capability:

refers to data collection and analysis in real-time to support data-driven decision making (Tavcar & Horvath, 2019). It can be subdivided
into three categories: real-time monitoring, real-time data analysis, and real-time decision-making (Mabkhot et al., 2018). The main
technological enablers for real-time systems capabilities are industrial automation, IoT, CPS, cloud computing, big data, and simulation
(Kagermann et al., 2013).

Virtualization: refers to the virtual replication of a physical system by linking sensors and actuators data with digitized factory model (Hermann et al.,
2016), in which a virtual system can be used to monitor, simulate and control its physical counterpart (Mabkhot et al., 2018). Virtualization
is mainly related information transparency and to enabling technologies such as CPS, virtual reality, augmented reality, digital twin, and
virtual commissioning (Hermann et al., 2015; Ghobakhloo, 2018; Mabkhot et al., 2018).

Decentralization: means that the system network, where the decision is made, is not centrally controlled. It is directly related to the idea of self-organization
and emergent behaviors, where lower-level components act on local information to achieve global goals (Kamdar et al., 2018; Oh et al.,
2015; Tang et al., 2018).

Autonomy: generally means that a system can operate and make decisions autonomously, without external instructions or intervention (Kamdar et al.,
2018). It also suggests self-leaning capabilities, i.e., the ability of a system to learn and adapt (Tavcar & Horvath, 2019). Autonomy equips
a production system with the capacity to respond to unforeseen events intelligently (Kagermann et al., 2013). However, a system may have
different degrees of autonomy (Santa-Eulalia et al., 2012; Tavcar & Horvath, 2019).

Optimization: is related to resource productivity and efficiency (Kagermann et al., 2013). It usually refers to prescriptive models used to find an optimum
or near-optimum solution for a problem described in terms of a function and a set of constraints, ensuring the higher performance of
a system, e.g., operational, economic, and environmental performance (de Souza Dutra et al., 2020). It “consists of searching the best
solution, according to a given criterion, among a set of feasible solutions” (Barbati et al., 2012, p. 6021). It is also related to self-adjust
and self-optimize functions (Ruppert et al., 2018; Tavcar & Horvath, 2019).

Flexibility: refers to the ability of manufacturing systems and supply chains network to adapt and respond (proactively or reactively) to turbulent
demand and changing environments (Lasi et al., 2014; Yu et al., 2015).

Agility: is mainly related to responsiveness and speed to respond to changes. It is the capability of systems to be agile and to respond to unexpected
or unplanned events quickly (Taylor et al., 2015). It is characterized by visibility, short lead times, and rapid detection and reaction
(Giannakis & Louis, 2016).

Service
orientation:

refer to new business models, such as factory as a service (FaaS), were organizations shift the focuses of obtaining profit from selling
products to selling services (Mabkhot et al., 2018). “In this environment, complex manufacturing tasks can be accomplished collaboratively
by several manufacturing services from different companies” (Ghobakhloo, 2018, p. 922).

Smart product: refers to uniquely identifiable and all times located products that carry information about itself, about its environment, and its users
(Kagermann et al., 2013; Mabkhot et al., 2018). Smart products are also referred to sensor-embedded products, and can be implemented
through RFID tags, which allow storing and transmitting all information required for its production to machines (Hermann et al., 2015; Li
et al., 2017).

Product
personalization:

refers to production based on customized orders (lot size-1), where buyers dictate the conditions of the trade (Lasi et al., 2014). Product
personalization also means that customer-specific criteria can be incorporated into the different phases of product development and that
later modification in orders can be easily managed (Kagermann et al., 2013).

Corporate
and social
responsibility:

refers to environmental sustainability, resource efficiency, and labor regulations (Lasi et al., 2014; Ruppert et al., 2018). I4.0 will create
new social infrastructures in the workplace, affecting job creation, competence profiles, training strategies, and increasing the participation
of workers in the innovation process (Kagermann et al., 2013). Moreover, I4.0 emphasizes that sustainability and resource productivity
and efficiency should be at the center of the design and operations of industrial manufacturing processes (Lasi et al., 2014).

ciples (i.e., interconnection, technical assistance, decentralized
decisions, and information transparency). Other key feature
that characterizes the I4.0 includes autonomy, smart product,

optimization, and agility (Ustundag & Cevikcan, 2017; Mittal
et al., 2018; Tavcar & Horvath, 2019).
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4.2.1. Key relationships between I4.0 design principles
All I4.0 design principles are related to some extent. Al-

though it is beyond the scope of this study to analyze all rela-
tionships and or dependencies between principles, it is impor-
tant to highlight some key relationships described in the ana-
lyzed papers, represented by the arcs in Fig. 6. They are:
• Interoperability enables vertical and horizontal integration

(Burke, 2017; Mabkhot et al., 2018).
• Modularity enables flexibility, agility, and product per-

sonalization (Hermann et al., 2015; Mabkhot et al., 2018;
Efatmaneshnik et al., 2018; Ghobakhloo, 2018).
• Vertical integration enables smart factory (Ustundag & Ce-

vikcan, 2017; Tavcar & Horvath, 2019).
• Smart manufacturing enables digital end-to-end engineer-

ing (Kagermann et al., 2013).
• Virtualization of production systems depends on real-time

capabilities (Hermann et al., 2015; Ghobakhloo, 2018).
• Decentralization can be achieved through smart products

(Kagermann et al., 2013; Hermann et al., 2015, 2016).
There are different levels of interoperability (i.e., technical,

syntactic, semantic, organizational) and interoperability tech-
nologies, such as AutomationML (Automation Markup Lan-
guage) and OPC UA (Open Platform Communications Uni-
fied Architecture), which are part of the reference architec-
ture model for Industrie 4.0 (RAMI4.0) (Mabkhot et al., 2018;
Ghobakhloo, 2018). These technologies enable vertical and
horizontal integration by providing semantic interoperability
for connected systems, allowing multi-vendor heterogeneous
devices, machines, processes, and systems to communicate and
information to flow seamlessly from field level to business level
(Burke, 2017; Mabkhot et al., 2018).

Modularity allows achieving product personalization through
combination, modification, or addition of modules, in a mod-
ular design of products (Duray et al., 2000; Efatmaneshnik
et al., 2018; Ghobakhloo, 2018). Modularity also enables in-
creased flexibility and agility of production systems to respond
to fluctuating demands by reducing lead-time through a fast
(plug & play) combination of modules with compatible soft-
ware and hardware interfaces (Hermann et al., 2015; Li et al.,
2019), wherein functionalities can be added or removed more
quickly from a system (Efatmaneshnik et al., 2018; Mabkhot
et al., 2018), as in modular and reconfigurable manufacturing
systems (Kim et al., 2019).

The vertical integration of hierarchical subsystems serves as
a backbone for implementing the smart factory, by connecting
sensors and actuators in the field level up to management level
(Wang et al., 2016b; Ustundag & Cevikcan, 2017; Tavcar &
Horvath, 2019), which in turn supports end-to-end digital in-
tegration by allowing vertical networking of smart production
systems (Kagermann et al., 2013; Wang et al., 2016a) endowed
with reasoning, learning, adapting, and evolving capabilities
(Tavcar & Horvath, 2019), which is crucial to support mass
product personalization (Wang et al., 2016a).

Virtualization suggests that cyber-physical systems can mon-
itor physical processes, which rely on real-time capabilities,
such as real-time data collection (Ghobakhloo, 2018). It is as-

sociated with digital twins, wherein “sensor data are linked to
virtual plant models and simulation models” (Hermann et al.,
2015, p. 15) to monitor, analyze and optimize the physical pro-
cess in real-time (Mabkhot et al., 2018; Tao et al., 2019).

Decentralization can be achieved through smart products due
to smart products’ capability to store and exchange data with
smart processes throughout its lifetime and to actively con-
trol the manufacturing process (Kagermann et al., 2013; Kager-
mann, 2015; Hermann et al., 2015; Alqahtani et al., 2019). De-
centralized controlled production systems based on smart prod-
ucts can produce by following the specifications and instruc-
tions recorded in an RFID tag embedded or attached to the
product or product carrier (Kagermann et al., 2013; Wang et al.,
2016b; Li et al., 2017; Mabkhot et al., 2018).

4.3. Linking simulation approaches with I4.0 design principles

After identifying the simulation-based approaches used rela-
tive to I4.0 and the design principles of I4.0, we proceeded with
the cross-analysis of the concepts. To understand the I4.0 de-
sign principles that are captured by each simulation-based ap-
proach, we assessed all studies in the sample (see Appendix
A). Initially, the articles were grouped by the simulation ap-
proaches used. Thereafter, key terms (i.e., I4.0 design prin-
ciples) were searched in the text. Subsequently, the context
wherein the string is invoked was analyzed to identify any ex-
plicit relationship between the simulation approach and the I4.0
design principle established by the authors. Thereafter, full-
text articles were assessed relative to model conception, imple-
mentation, and analysis to identify implicit relationships. To
increase the validity and reliability of the analysis, a triangu-
lation by investigators (Bengtsson, 2016) was performed. Two
investigators performed the analysis separately and thereafter,
discussed their results at weekly meeting to obtain consensus.
If no consensus was reached, a third investigator was consulted
to reach the final decision. Tab. 6 summarizes the main rela-
tionships between simulation approaches and I4.0 design prin-
ciples, from the authors’ perspective, where the symbols mean
that the I4.0 design principle is captured ( ), partially captured
(H#), or non-captured by a simulation approach (#).

Vertical integration (P1) and horizontal integration (P2) can
be modeled using ABMS (Wang et al., 2016b) or PN formal-
ism (Haag & Simon, 2019; Pisching et al., 2018; Guo et al.,
2017). Other approaches, such as VR, DT, and VC, also depicts
these principles. The DT-based model proposed by Zhang et al.
(2017), Zhou et al. (2019), and Schluse et al. (2018) integrates
intra-company level data from sources, such as human workers,
sensors/actuators, manufacturing execution systems, and kine-
matics/dynamics. At inter-company level, Vieira et al. (2019a)
and Vieira et al. (2019b) proposed a decision support system
that integrates different supply chain’ data sources and repro-
duces material and information flow using a hybrid data-driven
simulation model, allowing supply chain disruption scenarios
to be evaluated.

DT together with VR are two promising technologies to de-
ploy end-to-end engineering integration (P3) across a value
chain, by allowing the combination of a physical entity with a
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Table 6: Linking simulation-based approaches with the design principles of Industry 4.0

SM approach
I4.0 design principle

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17
ABMS  H# # H#    H#      H# H# H# H#
DES # H# # # # # H# H# # #     # # H#
SD # H# # # # # H# H# # #   # H# # H# #
VR H# # # H# # #   # #   #    H#
AR # # # H#  #   H# #   H#   H# #
VC  H# H# H# H# H# H# H# # #   H#  H# H# #
PN  H# # H# H# H# H# H# # #   H# # # H# #
AI H# # #  H# H#       H#   H# #
DT   H#      H# H#   H#  H# H# H#
HS   H#   H#         H# H# H#

The symbols mean I4.0 desing principle captured ( ), partialy captured (H#), or non-captured (#) by the simulation approach. The abbreviations are: P1 - Vertical integration; P2 -
Horizontal integration; P3 - End-to-end engineering integration; P4 - Smart factory; P5 - Interoperability; P6 - Modularity; P7 - Real-time capability; P8 - Virtualization; P9 - Decentral-
ization; P10 - Autonomy; P11 - Optimization; P12 - Flexibility; P13 - Agility; P14 - Service orientation; P15 - Smart product; P16 - Product personalization; P17 - Corporate and social
responsibility; ABMS - Agent Based Modeling and Simulation; DES - Discrete Event Simulation; SD - System Dynamics; VR - Virtual Reality; AR - Augmented Reality; VC - Virtual
Commissioning; PN - Petri Nets Simulation; AI - Artificial Intelligence; DT - Digital Twins; HS - Hybrid Simulation;

high-fidelity virtual counterpart and creation of immersive vir-
tual environments. The potential application of DT through-
out the product-life-cycle is indicated in several studies (Tao
& Zhang, 2017; Rodič, 2017; Tao et al., 2019; Cimino et al.,
2019). However, there are several challenges to be addressed
to make it feasible, as listed in Tao et al. (2018). However,
some studies proposed addressing these principles partially.
Sierla et al. (2018) combines DT with product-centric control,
wherein the virtual counterpart of a product (developed from
the virtual product description) inquires its own manufacturing
services, allowing potential manufacturing suppliers to be in-
volved in the product design phase and assembly planning. The
authors present two example cases as a proof-of-concept. Cecil
et al. (2019) proposed an IoT-based CPS framework, wherein
a VR-based collaborative environment is used to support dis-
tributed micro-devices assembly planning. The authors devel-
oped a testbed to demonstrate the feasibility of their approach.

A smart factory (P4) is often modeled as a multi-agent sys-
tem. Wang et al. (2016b) proposed a smart factory framework,
modeling physical resources as different types of agents, form-
ing a self-organized MAS system with feedback and coordina-
tion based on Big Data. Nagadi et al. (2017) presented a frame-
work for smart factory assessment using ABMS to determine a
machines’ behaviors and DES to mimic process flows.

The principles interoperability (P5) is explored by different
approaches, such as ABMS, HS, DT, and VC models. Lau-
rindo et al. (2019) proposed an integration mechanism for HS
or VC approach, by allowing online communication and high-
level data exchange between DES and the dynamic system sim-
ulation software. From the authors, the integration between the
DES model and the control system enables the validation of
PLC logic and other different operational aspects of a produc-
tion system. Vieira et al. (2020) presented a simulation-based
approach to address problems related to the integration of big
data, from different data sources, into supply chain simulation
models. Schluse et al. (2018) introduced the concept of experi-
mentable digital twins that combines DT with model based sys-
tems engineering and simulation technology, wherein its com-
ponents communicate through a simulated communication in-

frastructure, mirroring the real communication infrastructure
of its physical counterparts. A general approach to transform
legacy systems into Industry 4.0-ready by connecting produc-
tion systems with different interfaces is presented in Schlecht-
endahl et al. (2014).

Modularity (P6) links to the strategy of modular simulation,
used to reduce the model building complexity, and to the ca-
pacity to reuse and share sub-models (Delbrügger et al., 2019).
It is an important feature of agent systems (Heydari & Dalili,
2015; Rodrigues et al., 2018). Farsi et al. (2019) proposed
a modular HS framework, combining DES with ABMS for a
modular manufacturing system design, which considers differ-
ent abstraction levels. Zhang et al. (2017) uses 3D reference
models and modular encapsulation to aid individualized designs
and virtual assembly. Zhou et al. (2019) and Delbrügger et al.
(2019) integrated several simulation modules. To achieve mod-
ularity, Tan et al. (2019) proposed the smart assembly units,
which encapsulate assembly functions and data-drive capabili-
ties, enabling decomposition and reconfiguration of assembly
processes, implemented in an event-driven multi-agent rein-
forcement learning approach.

Real-time capability (P7) and Virtualization (P8) are mainly
related to the capacity to collect and integrate CPS/ IoT-data
(or big data) into the simulation models. Saez et al. (2018)
used an HS approach to assess the performance of production
systems in real-time, monitoring and analyzing machines’ con-
tinuous and discrete variables in virtual environments operat-
ing synchronously to factory floor equipment. Turker et al.
(2019) present a decision support system for dynamic job-shop
scheduling that collects data from an IoT system and act on
jobs processing orders, testing the system under different de-
mand scenarios through a DES model. Houston et al. (2017)
combined ABMS with data science to evaluate the return on in-
vestment of installing an IoT system, used to collect continuous
real-time data in support of predictive maintenance. A multi-
view of a DT real-time data synchronization logic to link a
physical system with and virtual simulation model is described
in Zhang et al. (2017).

Decentralization (P9) is captured through an ABMS, which
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enables distributed decision making at different levels, i.e., ma-
chine level, system level, or to create collaborative enterprise
networks. Kaihara et al. (2017) proposed a simulation model to
evaluate the effectiveness of crowdsourced manufacturing using
ABMS and DES, wherein business entities share their manufac-
turing resources based on their demand and available capacity.
A continuation of this study is presented in Kádár et al. (2018),
wherein the authors propose a bi-level simulation model to sup-
port asset sharing in a large federated network of manufacturers.
In their model, each factory agent integrates a DES model and
has an interface to communicate with an agent-based collabo-
ration platform, which establishes the negotiation mechanism.
Similarly, a distributed approach based on ABMS and DES for
multi-machine preventive maintenance scheduling is proposed
in Upasani et al. (2017). Other examples include the VR-based
simulation approach for evaluation and validation of manufac-
turing assembly planning from distributed locations, proposed
by Cecil et al. (2019), and a DT-based distributed approach is
presented in Liu et al. (2018).

Autonomy (P10) is determined by agent design (i.e., ABMS),
wherein system entities are modeled as autonomous intelligent
agents. The intelligence of the agent is usually modeled in
terms of ”if-else” statements, optimization methods, or follow-
ing an AI technique. UML statechart and sequence diagram
are employed as a conceptual modeling tool to describe the be-
haviors and communications between agents. An ABMS with
reinforcement learning for intelligent planning and scheduling
is described in Tan et al. (2019). Grundstein et al. (2017)
proposed an autonomous production control method for com-
plex job shop manufacturing using heterarchical structures, val-
idated through a DES model. Other examples of simulation
models with intelligent mechanisms can be found in Ghadimi
et al. (2019) and Carvajal-Soto et al. (2019).

All 10 simulation-based approaches can capture optimization
(P11) and flexibility (P12) principles by adjusting the parame-
ters in the models in multiple evaluation scenarios or by incor-
porating mathematical optimization approaches into the mod-
els. Trebuna et al. (2019) combined the value stream mapping
(VSM), a Lean manufacturing tool, with a DES model to iden-
tify improvement opportunities that optimize production flows
and increases the flexibility and productivity of a production
system. Frazzon et al. (2018) proposed an HS model to op-
timize production scheduling and transport planning in supply
chains by combining a mixed-integer programming model, a
DES model, and a genetic algorithm iteratively. Zhang et al.
(2017) describes how DT models can perform real-time opti-
mization of production systems. In addition, Zhou et al. (2019)
proposed a knowledge-driven DT framework that enables self-
optimizing manufacturing systems. Human-robot collaboration
in the physical and virtual space is another promising technol-
ogy of I4.0 to improve manufacturing flexibility. In this regard,
Pérez et al. (2019) presented a VR-based framework to support
training, simulation, and VR-operated robotic systems through
an immersive virtual environment.

Simulation models capture agility (P13) in approaches
such as, by supporting multiple scenarios evaluations, dis-
tributed collaboration and by increasing information trans-

parency. Schönemann et al. (2015) proposed an HS model, that
combines DES with ABMS, to evaluate the development of ag-
ile manufacturing systems based on redundant job shop work
stations and flexible product routing. In Vieira et al. (2019a),
disruptive events were triggered in different geographic loca-
tions in supply chain simulation run time to analyze system’
performance impact related to terms of stock levels and unfilled
orders. To address the need for agile manufacturing, Sierla et al.
(2018) combined DT with product-centric control, proposing a
framework to aid collaborative product design and factory plan-
ning.

Service orientation (P14) can be achieved through data-
driven simulation, wherein users can develop and run simula-
tion models with minimum or no knowledge in programming,
in a self-contained service. This enhances the model maintain-
ability, reusability, and ability to support decision making in
complex systems (Guizzi et al., 2019). An example is pre-
sented in Goodall et al. (2019), which proposed a data-driven
simulation approach for remanufacturing operations using DES
and object-oriented programming paradigm. Their simulation
model predicts material flow in a generic and reusable manner,
reflecting changes in real systems without manually change the
simulation construct. Moreover, the concept of software as a
service (SaaS) is applied in Kádár et al. (2018).

Smart product (P15) enables data-driven simulation ap-
proaches. Alqahtani et al. (2019) developed a DES model to
predict an optimal warranty policy for remanufactured products
and components, wherein an end-of-life product is equipped
with RFID sensors to collect and transfer critical product pieces
of information. Furthermore, modeling as an agent system,
Benotsmane & Kov (2019) and Benotsmane & Kov (2019), de-
scribed a model that considers iterative smart working pieces.

Product personalization (P16) also implies smart produc-
tion lines. Zhang et al. (2017) and Zhang et al. (2017) pro-
posed a DT-driven platform for rapid individualized design-
ing of production systems, which combines a reference model,
distributed simulation, and multi-objective optimization mod-
els to support the quality of design and quality of confor-
mance. From Park et al. (2019), a mean to achieve customiza-
tion/personalization is operating factory as a service (FaaS) in
a distributed manufacturing system. To achieve this, they pro-
posed a DT-based approach. Tamás (2017) proposed a DES
model to improve the performance of intermittent production
systems, to enable managing several product variants, in a
customer-oriented approach.

Corporate and social responsibility (P17) can be analyzed in
terms of impact analysis and resource efficiency. Ghadimi et al.
(2019) proposed a framework for sustainable supplier evalua-
tion and selection in the I4.0 supply chain using agent technol-
ogy. Charnley et al. (2019) explored the relationship between
circular economy and I4.0 through an HS approach, combining
a DES and an SD model to enable a data-driven circular econ-
omy, focusing on remanufacturing processes in the automotive
industry. Yazdi & Azizi (2019) considered the concept of man-
ufacturing sustainability, thus, proposed a DES model to eval-
uate an improvement project before implementation, showing
an impact on production systems’ operational performance and
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energy consumption. Longo et al. (2019) proposed a VR-based
system for emergency response training in industrial sites, ap-
plicable to emergency management and disaster/risk prepared-
ness enhancement, as well as to support companies comply with
security norms and reduce environmental risks.

4.4. Classification scheme and assessment

To aid further content analysis, and assess central aspects of
the studies employing a simulation-based approach in I4.0, a
classification scheme with five categories, subdivided into 61
subcategories was proposed (see Fig. 7). The dataset used to
display the results in Fig. 7 is available in the Appendix A.

The first category represents the simulation-based ap-
proaches identified through quantitative and qualitative analy-
sis, as described previously. The second category, adapted from
Jahangirian et al. (2010), is used to assess the empirical nature
of the studies. Here, real problem solving (RPS) refers to mod-
els that use real data gathered from real processes to solve a
real problem. In contrast, hypothetical problem solving (HPS)
uses artificial data (e.g., randomly generated instances) to solve
a real-life problem. The RPS has a stronger internal validity
compared to HPS, which subsequently presents a stronger ex-
ternal validity, focusing on providing solutions that can be gen-
eralized.

The third category, adapted from Harrison et al. (2007), clas-
sifies the purpose (or use) of simulation models into seven
categories: (1) prediction – analysis of variables relationships
through simulation output, which can also be seen as hypothe-
ses subject to empirical testing; (2) proof – relates to result-
ing system behavior, used to show that the system modeled
can yield specific types of behaviors; (3) discovery – identifica-
tion of unexpected behaviors through system entities interaction
analysis; (4) exploration – analysis of the conditions wherein a
particular behavior is produced; (5) critique – examination of a
pre-existing theoretical explanation for a phenomenon; (6) pre-
scription - recommendations to improve operations effective-
ness; (7) empirical guidance – support the development of new
theories and empirical research.

Category four, adopted from Harrison et al. (2007) and Ja-
hangirian et al. (2010), is used to classify the studies per area of
application related to the field of industrial engineering. The
fifth category groups the design principles of I4.0 identified
through the qualitative analysis of studies included in phase 2
of the systematic review. The key results from the content anal-
ysis were thereafter computed using the defined classification
scheme, summarized in Fig. 7, where each publication can be
classified into no, one, or multiple categories.

Overall, 10 simulation-based approaches and 17 design prin-
ciples of I4.0 were identified. The more significant part of the
simulation-based studies (over 55%) employs hybrid simula-
tion or digital twin (see Fig. 7a). DES and ABMS also play a
vital role in I4.0, being applied in 20% of the sample. In ad-
dition to that, most HS models integrate DES and/or ABMS
approach. Other approaches are represented in the sample as
follows: SD (4 articles, 5%); AI techniques (4 articles, 5%); VR
(3 articles, 3.8%); AR (3 articles, 3.8%); PN (1 article, 1.3%).

As concerns model implementation, the studies use very differ-
ent software tools. Of these, the most frequent are AnyLogic (8
articles, 10%), Arena (7 articles, 8.8%), Tecnomatix plant sim-
ulation (6 articles, 7.5%), and MATLAB/Simulink (5 articles,
6.3%). In terms of programming languages, Java stands out
with 19 articles, representing 23.8% of the sample size. Fur-
thermore, AnyLogic is also based on Java programming.

For the empirical nature (see Fig. 7b), the majority of these
studies (42 articles, 52.5%) used artificial data based on hy-
pothetical cases or randomly generated instances. In contrast,
29 studies (36.3%) used real-data. Additionally, 6 review ar-
ticles (7.5%) and 3 theoretical-conceptual articles (3.8%) were
identified. In general, the review articles focused on a specific
simulation method. Rodič (2017), Tao et al. (2019) and Cimino
et al. (2019) focus on DT. Vieira et al. (2018) center on DES,
and Turner et al. (2016) on DES-VR. Mourtzis (2019) empha-
sizes the historical evolution of simulation technologies. They
all have a different scope and design compared to this research.
For applications (see Fig. 7d), most of the studies (57.5%) fo-
cused on process engineering manufacturing, scheduling, or
production planning and inventory control. Together, supply
chain management, maintenance, education/training represents
25% of the sample. Nevertheless, 10 out of 23 areas related
to the field of industrial engineering are unexplored. Lastly,
Fig. 7e shows that all 17 design principles of I4.0 identified can
be captured by simulation technology. However, the extensive-
ness wherein the design principles are captured varies depend-
ing on the simulation approach. HS and DT consider a higher
number of I4.0 principles. End-to-end engineering integration,
smart product, and corporate social responsibility are the prin-
ciples least addressed by these studies.

5. Discussion

This review’s results reveal an increasing trend in the num-
ber of publications on simulation in I4.0 in the last 4 years.
This result reinforces the importance and potentials of simula-
tion technologies to support the implementation of I4.0, as in-
dicated by other academics, industry experts, and leading sim-
ulation software vendors (Kagermann et al., 2013; Shih, 2016;
Thilmany, 2017; Tao et al., 2018; Lugert et al., 2018; Jeong
et al., 2018; Han et al., 2018; AnyLogic, 2020; Ghobakhloo,
2018; Martin, 2019). It is consistent with the recommendations
in the final report from the German Industrie 4.0 working group
to develop the I4.0, which is a primary reference on I4.0. It
is also consistent with the findings of the empirical research
conducted by Lugert et al. (2018) with 170 industry experts,
which reveals simulation as an essential technique to enhance
continuous improvement tools to plan and guide companies’
transition to I4.0. Moreover, the use of simulation technolo-
gies is incorporated as part of industry leaders’ strategy (e.g.,
General Electric, Siemens, Bosch, Airbus) on the path to I4.0
digital transformation (Tao et al., 2019; AnyLogic, 2020; Vieira
et al., 2019b,a; Deloitte, 2018). Furthermore, from the ABI re-
search group, I4.0 stimulates investments (in billions of dol-
lars) in plant simulation software (Martin, 2019). The global
survey conducted by Deloitte (2018) with 361 executives about
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Figure 7: Classification scheme and assessment results

I4.0 also indicates companies’ investments to adopt advanced
simulation and modeling technologies to access, analyze and
leverage data from assets. We can therefore infer that the re-
search area at the intersection of I4.0 and simulation fields will
continue to grow in the coming years owing to its relevance to
industry.

5.1. RQ1 - What are the simulation-based approaches being
employed in the context of I4.0

In addressing the first research question, 10 simulation-based
approaches are used in the context of I4.0: DES, SD, ABMS,

HS, PN, AI, VR, AR, VC, and DT. This result indicates that
traditional simulation techniques (e.g., DES, SD) and software
tools (e.g., Arena, Anylogic, Simulink) are still applicable in
I4.0. The results also indicate hybrid simulation and digital twin
as the main simulation approaches in the context of I4.0. This
result is consistent with the increasing trend to adopt hybrid
modeling and simulation as a mean to meet the complex sys-
tems identified by Jahangirian et al. (2010). It is also consistent
with the rising profile of digital twin along to the advancement
of I4.0 identified by Tao et al. (2018).
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5.2. RQ2 - What are the purposes, empirical nature, and appli-
cations areas of studies on simulation in I4.0?

To address the second research question, the main purpose
of the simulation-based studies in I4.0 is prescription and pre-
diction for an improved mode of operations. However, most
studies use artificial data or hypothetical cases (i.e., hypothet-
ical problem-solving). This finding may be partly due to the
novelty of I4.0 and the early development stage of simulation
in I4.0. It may also be explained by the fact that it is often diffi-
cult and time-consuming to collect primary data from physical
systems that are usable for simulation-based research or owing
to restrictive confidentiality agreements.

For application areas, we found that studies on process en-
gineering manufacturing, scheduling, and production planning
and control are predominant. This result is in partially con-
sistent with those obtained in Shafer & Smunt (2004) and Ja-
hangirian et al. (2010), which features scheduling as a dominant
research topic in simulation.

5.3. RQ3 - What are the design principles of I4.0?

For the third research question, the results indicate 17 de-
sign principles characterizing the I4.0 (see Fig.6). This result
extends the list of principles identified in Ghobakhloo (2018),
revealing other important research constructs, such as flexibil-
ity, agility, and autonomy, widely investigated in operation and
supply chain management literature. This result is significant
to guide companies in identifying and implementing I4.0 sce-
narios in a more practice-oriented manner, considering that it
still lacks a clear understanding of the I4.0 concept (Hofmann
& Ruesch, 2017; Moeuf et al., 2018). It is also important to
support the development of modular and reusable simulation
frameworks for a set of problems based on a library of software
components that can be built upon the principles of I4.0.

5.4. RQ4 - Which I4.0 design principles are captured by each
simulation-based approach?

Finally, for the fourth research question, the results suggest
that simulation can fully or partially capture all design princi-
ples of I4.0. This result indicates that simulation can support the
investigation of the I4.0 phenomenon from multiple perspec-
tives (e.g., strategic, tactical, operational), suggesting a broader
set of applications from the ones already reported in the liter-
ature. This result is essential to foster the simulation’s adop-
tion to capture and solve problems that emerge in the context of
I4.0, to support the assessment and guide the implementation of
I4.0, wherein there is still a lack of tools for practitioners and
managers, as pointed by Hofmann & Ruesch (2017). However,
the extensiveness wherein I4.0 principles are captured varies
according to each simulation-based approach. In this regard,
hybrid simulation and digital twin stand as the most promising
approaches for I4.0 because they are able to capture most prin-
ciples of I4.0. However, traditional simulation approaches such
as DES are still valid and will continue to evolve driven by I4.0,
as discussed by Vieira et al. (2018), which proposes a research
agenda for DES in I4.0.

6. Limitations and future research

Similar to other studies, this review has its limitations, one of
which relates to the search strategy. As discussed by Liao et al.
(2017), there are other similar I4.0 initiatives, such as the In-
dustrial Internet of Things (IIoT), developed in the USA, a term
that could be used in queries considering that some authors use
these terms interchangeably (Hofmann & Ruesch, 2017). How-
ever, these issues were partially addressed using the backward
and forward snowball sampling technique (Wohlin, 2014) and
by including a high number of articles in the sample, compared
to other reviews in the field of I4.0 and simulation, such as the
ones developed by Moeuf et al. (2018) and Vieira et al. (2018).
Furthermore, the study focuses only on peer-reviewed journal
articles. Other document types, sources of data and languages
could be considered in the search protocol. Moreover, this study
is not an exhaustive review of each simulation-based approach.
Future studies can focus on a particular simulation technique,
such as the one developed by Vieira et al. (2018), which pro-
posed a research and development agenda for DES in I4.0.

A limitation of this study related to analysis is that content
analysis (i.e., categorization and compilation of data) involves
subjective judgment calls. However, by using the PRISMA
statement (Moher et al., 2009), triangulation by investigators
(Bengtsson, 2016), and existing classification categories (Har-
rison et al., 2007; Jahangirian et al., 2010) we have minimized
the potential bias of reviewers. In addition, this study does not
investigate all the relationships (and or dependencies) and ag-
gregation levels between the design principles of I4.0. This can
be addressed in future studies.

The analysis of the results also reveals issues and opportunity
areas for future research:
• Hybrid modeling and simulation: different forms of model

hybridization (e.g., multi-methods, multi-models, com-
posite models) can be explored in future researches to
manage the increasing complexity of I4.0 manufacturing
systems. However, problems such as incompatibilities be-
tween simulation software tools, conflicts between dis-
tributed heterogeneous data sources, interface incompat-
ibility, incompatible runtime models and multiple repre-
sentations of time, bases of value, bases of behavior and
resolutions (Mustafee et al., 2015; Eldabi et al., 2018; Tao
et al., 2018), related to models interoperability and syn-
chronization will require addressing.
• Data-driven and real-time simulations: incorporating real-

time data or big data into the simulation models and de-
veloping real-time optimized simulations is a research
trend that can advance I4.0 towards its vision of real-
time self-optimized production systems. In this regard,
there are several opportunities to integrate artificial intel-
ligence techniques (e.g., genetic algorithms, artificial neu-
ral networks, reinforcement learning) as well as other ma-
chine learning and deep learning techniques into simula-
tion models. Simulation models can embed artificial intel-
ligence components to allow testing, calibration, forecast-
ing, optimization, learning, or adaptive behavior and to in-
crease the speed of large-scale models (Wallis & Paich,
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2017).
• Real problem solving: most simulation-based studies in

I4.0 use either artificial data or hypothetical cases. There-
fore, the development of real cases using real-world data
from industry is required to increase the practical rele-
vance of simulation research in the context of I4.0 and
to bridge the gap between academic studies and industry
practices. Because most companies are not Industry 4.0-
ready, as discussed by Schlechtendahl et al. (2014), the
use of learning factories (or living labs) to develop testbeds
and or proof-of-concept experiments can be considered, as
applied in Zhou et al. (2019) and Schluse et al. (2018).
• The purpose of using simulation: most studies analyzed

center on prediction or prescription (see Fig. 7c). There
is a lack of models used for exploration, discovery, proof,
critique, and empirical research guidance. In this regard,
it is also important to highlight that simulation is a ro-
bust methodology to advance theory development (Har-
rison et al., 2007; Davis et al., 2007), and there remains
sufficient room for simulation-based research in I4.0.
• Application areas: the lack of simulation studies in I4.0 re-

lated to critical areas of industrial engineering, operations,
and supply chain management (e.g., just-in-time, cellular
manufacturing, capacity planning, quality management)
revels other future research avenues. An approach to partly
address these problems, whereas using companies’ capa-
bilities is to combine Lean production practices with simu-
lation techniques, which is consistent with earlier research
(Lugert et al., 2018; Uriarte et al., 2019).
• Principles captured: the summary of I4.0 design princi-

ples described by the simulation models analyzed (indi-
cated in Fig. 7e) introduces other research opportunities
owing to the lack of models to describe principles such as
smart products, corporate and social responsibility, hori-
zontal integration, and end-to-end engineering integration,
which requires significantly holistic approaches.
• Classification of models: the development of a new typol-

ogy and or taxonomy for modeling and simulation in I4.0
is another promising avenues for future research because
it can help reduce complexity (grouping several concepts
into a small number of types) and make more accessible
for researchers and practitioners to identify terminologies,
define and categorize their models more accurately.

7. Conclusions and implications

Simulation is a key technology of Industry 4.0 to support the
development of planning and exploratory models to optimize
decision making, the design, and operations of complex sys-
tems. It also has the potential to aid the assessment and im-
plementation of Industry 4.0 in companies by evaluating mul-
tiple scenarios. However, advancements in Industry 4.0 and
its enabling technologies (e.g., the Internet of Things, Cyber-
Physical Systems, Big Data) introduces new challenges to the
field of simulation owing to the increasing complexity of sys-
tems to be modeled. This study aimed to provide a state-of-the-
art review of simulation in the context of Industry 4.0.

This study shows an increasing trend in simulation-based re-
search in Industry 4.0 within the last four years and suggests
that the research area at the intersection of Industry 4.0 and
simulation fields will likely continue to grow owing to its in-
creasing relevance to the industry. In total, 10 simulation-based
approaches employed in Industry 4.0, and 17 design princi-
ples characterizing the Industry 4.0 were identified. A cross-
analysis of concepts show that all design principles of Indus-
try 4.0 can be fully or partially expressed through simulation.
Moreover, our findings suggest that hybrid simulation and dig-
ital twins are currently the two primary simulation approaches
in Industry 4.0.

The findings from this study have implications for re-
searchers, practitioners, and managers. The results suggest that
simulation-based approaches can aid the investigation of the In-
dustry 4.0 phenomena from different perspectives (e.g., strate-
gic, tactical, operational). Furthermore, the use of simulation
techniques can equip organizations with means to evaluate In-
dustry 4.0 principles and technologies in a virtual environment
to enhance technology investment decision-making and aid the
transition toward the 4th Industrial Revolution.

Finally, despite the limitations of this review, we believe
it will contribute to the work of researchers and practitioners
striving to understand the state-of-the-art of research at the in-
tersection between the emerging field of Industry 4.0 and the
field of simulation by identifying, characterizing and analyzing
simulation-based research developed in the context of Industry
4.0 and by discovering opportunities for future research.
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