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Abstract— The use of multi-robot systems is increasing in
disaster response, industry, transport, and logistics. Humans
will remain indispensable to control and manage these fleets
of robots, particularly in safety-critical applications. However,
a human operator’s cognitive capacities can be challenged and
exceeded as the sizes of autonomous fleets grow, and more
sophisticated AI techniques can lead to opaque robot control
programs. In a user study (n = 40), we explore how autonomous
swarm intelligence algorithms and novel tangible interaction
modalities relate to subjective and physiological indices of
operator cognitive load (i.e., NASA Task Load Index, heart
rate variability). Our findings suggest that there are differences
in workload across conditions; however, subjective and cardiac
measures appear to be sensitive to different aspects of cognitive
state. The results hint at the potential of both tangible interfaces
and automation to engage operators and reduce cognitive load,
yet show the need for further validation of workload measures
for use in studying and optimizing human-swarm interactions.

I. INTRODUCTION

Unmanned robotic teams are growing in popularity for
many real world scenarios, such as search and rescue,
medicine, and space exploration. Despite the recent techno-
logical advancements, there are still numerous problems that
need to be addressed for robust multi-robot deployments. The
general problem of systematically designing reliable, robust,
and resilient large-scale multi-robot systems remains open,
and is one of the most important challenges of the decade [1].
On the path to fully autonomous swarms of robots, humans
will act as monitors and controllers for the robot fleet,
as technology gaps prevent us from performing all of the
required functions autonomously. The control of a networked
pool of autonomous robots by an individual or by a team is
challenging because of the complexity of the coordination
task [2] and of the information exchanged. The difficulty
of ensuring operational performance is compounded when
incoming information is scattered, delayed, or unreliable.
These factors lead to increased pressure on human operators’
cognitive resources and their ability to maintain situational
awareness, detect problems, and make successful decisions.
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Fig. 1: Six micro-UAVs (Crazyflies - red circles) in the flying
arena during a session. View from the participants’ position. A.
A sample view of the tablet interface. B. a sample view of the
tangible interface using the Zooids robots.

There is a long history of research in the neurobiological
correlates of task performance-related human cognition (and
its limitations) using techniques like functional magnetic res-
onance imaging and magnetoencephalography. These tech-
niques are used to measure brain activity associated directly
with cognitive processes and are valuable for neuroscien-
tists to study the neurobiological bases of cognitive load,
yet are impractical for most user applications as they are
bulky, expensive, and limit participant movement. However,
portable equipment is becoming available that can measure
physiological proxies of human workload and stress states.
One of the most promising biosignals that fulfill the criteria
of being non-invasive, wearable, reliable, and inexpensive
is heart-rate variability [3], [4]. Heart-rate variability (HRV)
can be used to objectively evaluate and compare operator
states caused by task conditions.

Our long term goal is to create control modalities that
maximize the ability of an operator to achieve mission
objectives using a large fleet of robots. Proxies of cognitive
load can be monitored during missions and used to improve
their design. In multi-robot systems, we identify two ways in
which the operator’s cognitive load can be reduced: by giving
more intelligence and autonomy to the robotic system, and
by designing a command interface that is intuitive and natural
to the operator. In this paper, as a stepping stone towards our
final goal, we investigate the impact of autonomous swarm
behaviors and (possibly more intuitive) tangible interfaces on
operator cognitive load in multi-robot missions.

We experimentally compare two types of interfaces
(graphical and tangible) and two robot control modalities
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(individual waypoints and group self-deployment) in a user
study (n = 40) in which operators controlled a fleet of
six micro-quadcopters during an exploration mission. We
hypothesize that the tangible interface demands more in-
volvement, but reduces cognitive load on the user (H1), and
that greater autonomy of the robotic fleet reduces operator
cognitive load (H2). We use subjective ratings and heart rate
variability to monitor the effects of these interface variations.

We believe this work underscores the potential for
complementary information provided by self-reported and
physiologically-based measures of workload in common use
in human-robot interface research, particularly to evaluate
and guide the development of new operator interfaces. In the
following sections, we first consider relevant previous work
II, then give an overview of the robotic system deployed in
section III. The user study is covered in section IV, and the
presentation of the results in section V.

II. RELATED WORK

Human-Swarm Interaction (HSI) is a special case of
Human-Robot Interaction (HRI), due to the large numbers
of units involved and the presence of emergent group be-
haviours [5]. Controlling multiple robots can be cognitively
challenging, and its complexity is influenced by (a) the re-
quired level of attention of the operator [6], [7], (b) the degra-
dation of the robots’ performance when left unattended [8],
and (c) the need to manage the coordination between robots
to perform a task [9]. While robot teams are the subject of
many interaction studies, HSI has particular considerations
due the fundamental clash between a centralized control
element and the distributed nature of swarms [5]: a human
operator issues commands to a swarm whose behaviours are
governed by local interactions and self-organization.

In the emerging field of HSI, user studies are often
employed to investigate workload and performance [10].
Generally, these studies focus on specific interface media
and many are conducted in simulation only, suffering from
a reality-gap [11]. Such studies have demonstrated that
swarm behaviours are more challenging to visualize than
deterministic and predictable control strategies [12]. It is
worth noting that the collective movement of a swarm
can convey non-trivial, swarm-behavioural information to an
operator [12], and an effective communication strategy is
key [13]. Although humans are generally good at recognizing
patterns of collective motion [14], it is important to design
swarm motion dynamics [15] that are compatible with human
cognitive skills of interpretation and to which the operator
can properly react.

In particular, since human attention can fluctuate and the
capacity of human working memory is limited, the number
of robots a single operator can control is also limited [6], [7].
In fact, in tasks where operators have to recognize a common
type of swarm behaviour (e.g. flocking), the operators report
using a holistic approach to the perception of collective
motion inherent to emergent swarm behaviours. Walker [14]
observed operators applying strategies such as “unfocusing
their eyes” and “watching for a global pattern to emerge”.

Those strategies are a response to the increased demands of
swarm interaction [16], [17]. Following this line of research,
Podevijn et al. [18] successfully showed that the number of
robots does not influence the cognitive load required from a
user if the control is performed on the swarm as a whole.

Most current research on interfaces deals with tablets
and phones, but some studies consider tangible interfaces
as well. Research shows that tangible interfaces can benefit
cognitive performance, aiding performance through support
for memory and by decreasing cognitive load [19], [20].
Furthermore, there is evidence that tangible interfaces pro-
mote user engagement and immersion into the scenario or
problem [21]. Finally, for some problems, participants are
more likely to find a solution to a problem when using a
tangible interface compared to a tablet [22].

III. SWARM ROBOTIC SYSTEM

Our research interest targets exploration missions with un-
manned aerial vehicles (UAVs). While we conducted several
experiments in the field [23], prior design and validation in
an indoor arena, in which experimental parameters can be
better controlled, is preferable. This work is based on indoor
micro-UAVS (Crazyflies1). Figure 2 shows the experimental
overview and illustrates some of the features of the robotic
system, including communication between robots, safety
considerations, and human-robot communication. All tech-
nical aspects of the robotic system are thoroughly explained
in the work of St-Onge, et al. [24].

A. Deployment ecosystem

In several remote operation scenarios, such as planetary
exploration [23], sudden changes in the environment may
arise too quickly for the operator to send each robot a
timely command, due to communication delays. To limit the
exploration task to a manageable area, and for the more
practical reason of working within the limitations of the
arena, we used a virtual fence to set limits before take-off
(Fig. 2C). Additional layers of security are required to cope
with communication and human errors. For example, when
setting a goal, the destination’s distance is verified to be
reachable in less than 5 seconds (e.g., less than 5 meters,
if the UAV maximum velocity is 1m/s). This verification
is done on input, before sending the command, and again
verified by the receiving robot. As the robots generate their
own trajectories, they can use the known locations of their
neighbours to avoid each other, using a decentralized colli-
sion avoidance algorithm [25]. To minimize risk of collision,
we also flew UAVs at different altitudes.

In our user study, the goal was to locate simulated hidden
ground features within the flying area using two different
deployment methods. In the self-deployed group control
mode, participants assigned a marker (hotspot) around which
the UAVs distributed themselves and searched for the fea-
tures autonomously. In the individual waypoint deployment
method, participants assigned destination positions to each
UAV and the UAVs searched for features along their path.

1https://www.bitcraze.io/products/crazyflie-2-1/
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Fig. 2: Experiment overview: Operator cognitive load is measured by self-report and physiology (A). The operator controls the swarm in
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B. Tangible interface

Taking a step back, we looked at the origin of the
geographic information systems and mission planners; the
physical map. Collaborative logistics plans have been suc-
cessfully completed using a simple map for centuries. With
the help of miniature robots’ design, a portable localization
system, and image processing, we designed a smart, tangible,
map-based command center for exploration missions [26].

During the experiment, we used table-top robots, called
Zooids [27]. The Zooids are a group of small cylindrical
robots, 2.6 cm in diameter and 5 cm in height, localized
using structured light emitted by a ceiling projector. We
selected the Zooids for the minimal setup time, their low cost
of manufacturing, their open-source controller code, and the
simplicity of their manipulation.

The command centre consisted of a tent under which
Zooid robots imitated the movements of the UAV fleet, by
moving over a map of the deployment area. The Zooids were
equipped with short-range radio communication devices and
an RGB LED on the top. Each robot knew its position and,
after initialization, was assigned a unique micro-quadcopter
counterpart (i.e., a Crazyflie) on the field. Communication
with the fleet passed through a central communication node
for long-range transmission. The LED color showed the
aircraft battery level in real time (green, yellow, or red) with
different blinking patterns for different behavioural states.
For individual waypoint control (Fig. 2B right), command
was sent to a flying robot by holding its wheeled coun-

terpart to the desired position for two seconds. For group
self-deployment (Fig. 2B left), the tangible interface has
specially-marked robots with which a user can input focal
points. Using these focal points, a region of interest is created
by the union of these focal points and the robots distribute
evenly around this region.

IV. METHOD

A. Study design

To establish a controlled environment, we conducted our
study indoors using a fleet of six micro-quadcopters with
global localization. The code for the robot behaviour is
available online2. Details of the algorithm for the deployment
behaviour and the software infrastructure for the general
control of the swarm are presented in [24]. Details of the
algorithm for the individual versus group control strategies
are presented in [23]. Participants were asked to stand in
a designated area at the border of our flying arena. For
immersion reasons, no glass or net was added between them
and the flying arena. Each participant completed the four
conditions in random order, controlling the fleet from: 1.
a tablet using group control (self-deployment), 2. a tablet
using individual waypoints, 3. a tangible interface using
group control (self-deployment), and 4. a tangible interface
using individual waypoints. When using the tablet interface,
participants stood facing the flying arena and controlling the
swarm required little movement. When using the tangible

2https://github.com/MISTLab/ROSBuzz
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interface, participants controlled the swarm at a table beside
the flying arena and looked up to observe the UAVs, moving
the Zooids with their hands.

The objective of each of the four missions was to find
as many hidden ground features (simulated) as possible in
the flying area, up to a maximum of five features, within
five minutes. In the tablet/group condition, participants ma-
nipulated a user interface on a tablet to assign one or
two markers around which the UAVs distributed themselves
autonomously. When in the tablet/individual condition, par-
ticipants again used a tablet but assigned a position to each
UAV individually. Commands were entered into the interface
and transmitted to the fleet when the participant pressed a
“send” button. In the tangible interface setting, UAVs were
controlled using Zooids that replicated the movements of the
robots in the flying arena. When using the tangible/group
control mode, one or two Zooids (used to input a region of
interest) were picked up and placed at the desired location
around which the UAVs distributed themselves evenly. In
the tangible/individual condition, each UAV was controlled
by moving and holding its respective table-top robot to
the desired location until the command had been received
(indicated by LED lights changing colors). While being held,
the Zooids cannot illustrate the drone motion, but as soon
as the operator releases it, the Zooid resumes its behaviour
by going back to the respective drone’s current location on
the map. Once released, the table-top robot mimicked the
movement of the UAV.

The experiment was performed by 40 adult participants.
All participants (F: 13 M: 27 Age: 18-55 years) were able to
complete the four missions. The user study and recruitment
process had the approbation of the ethical committee of all
three universities involved in the project. After each of the
four conditions, participants were asked to rate their subjec-
tive workload level with the NASA Task Load Index (NASA-
TLX) [28] for self-assessment of their interaction. As an
objective, physiological measure of cognitive workload, heart
rate variability was analyzed.

B. NASA Task Load Index

Subjective ratings of workload were recorded using a
slightly modified version of the NASA-TLX with the fol-
lowing dimensions and questions: Effort (How hard did
you have to work?), Frustration (How insecure, discouraged,
irritated, stressed, and annoyed were you?), Hurried (How
hurried or rushed was the pace of the task?), Mental Demand
(How mentally demanding was the task?), Physical Demand
(How physically demanding was the task?), and Successful
(How successful were you in accomplishing what you were
asked to do?). Participants rated each dimension for each
task on a 7-point Likert scale. Recent studies have used the
NASA-TLX not only as a combined metric, but as a multi-
dimensional tool, considering dimensions separately [29],
[30]. Based on these studies, we investigated each factor
separately and combined.

C. Heart rate variability

Heart rate variability (HRV) was measured using a Biopac
MP35 with a 3-lead ECG electrode set (SS2L, Biopac Sys-
tems Inc.). Measurements were taken according to the Biopac
Student lab Pro manual [31] at 1000 Hz, with a 35 Hz low
pass filter applied during recording. 3M Red Dot electrodes
with a built-in abrader (3M, ID: 7000128699) were placed on
the recently cleaned right wrist and both ankles. To analyze
the ECG data, we used the Python package hrvanalysis
made for the Aura Healthcare project [32]. Out of the 40
participants, 8 experienced technical issues with the BioPac
recording and were removed from the analysis. A first step
of outlier removal, ectopic beats removal, and linear interpo-
lation was conducted to prepare the remaining datasets. We
used the SDNN measure (i.e., the standard deviation of the
interval between normal heartbeats) to investigate cognitive
load, as research has shown that SDNN decreases with
increased cognitive load [33], [34] and that there is a positive
correlation between SDNN and cognitive performance [35].

V. RESULTS

In the user study, we compared a classic tablet-based
mission planner with a novel tangible interface and validated
the comparison with two sets of control algorithms in a
controlled environment. For all analyses, assumptions were
met for statistical procedures, and a Bonferroni correc-
tion was used as a conservative method of type I error
control. The results of the mission goals (i.e., number of
features found and number of actions performed; see Fig. 3)
show that participants were able to achieve the mission
goals with a high rate of success in each condition. The
analysis of variance (ANOVA) on the average number of
features found showed significant main effects of interface
and control algorithm and a significant interaction between
interface and control algorithm (see Table I). Follow-up t-
tests for showed that participants found more features in the
tablet/group, tablet/individual, and Zooid/group conditions
compared to the Zooid/individual condition (p-values <0.004
for all comparisons). Analyses on the average number of
actions (i.e., control inputs) performed showed significant
main effects of interface and control algorithm, and a sig-
nificant interaction (see Table II). Follow-up t-tests showed
a significant difference between all conditions (p <0.001
for all comparisons), with the most actions performed in
the Zooid/group condition. For above and all subsequent
analyses, a Bonferroni correction was used due to multiple
t-tests in the analyses. The corrected p-value that would
indicate statistical significance is 0.0083.

TABLE I: Number of Features Found

F -value p-value df
Interface 5.91 0.02 (1, 35)

Control algorithm 27.50 <0.001 (1, 35)
Interaction 6.90 0.013 (1, 35)

Figure 4 illustrates the subjective ratings for each dimen-
sion of the NASA-TLX for each combination of interface
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TABLE II: Number of Actions Performed

F -value p-value df
Interface 94.74 <0.001 (1, 35)

Control algorithm 67.70 <0.001 (1, 35)
Interaction 179.71 <0.001 (1, 35)

and control algorithm. As seen in Figure 4, the individual
waypoint control was rated more mentally demanding and
more hurried than the self-deployed group control mode.
Participants rated the Zooid interface more frustrating than
the tablet interface. The Zooid/individual condition was
rated as requiring most effort and least successful of the
conditions. This is complementary to the performance re-
sults, which showed that fewer features were found in the
Zooid/individual condition compared to the rest. The com-
bined NASA-TLX scores were analyzed in a 2 (interface)
x 2 (control algorithm) ANOVA. This analysis showed a
significant main effect of interface (F(1, 27) = 5.14, p =
0.032) and a significant main effect of control algorithm
(F(1, 27) = 11.28, p = 0.002). In the combined metric,
participants rated the Zooid interface higher than the tablet

interface, and rated the individual waypoint control higher
than the self-deployed group control.

While the performance results and subjective ratings tend
to indicate that a higher level of cognitive load is required
to operate the tangible interface, the HRV measurement does
not corroborate this conclusion. Figure 5 shows the average
SDNN for each condition. The 2 (interface [tablet/tangible])
x 2 (control algorithm [individual/group]) ANOVA of the
SDNN data showed significant main effects of interface and
control algorithm, as well as a significant interaction (see
Table 3). Follow-up t-tests confirmed the significant main
effects and showed significant differences between tablet
and Zooid interfaces at both levels of control algorithm (p
<0.001 for all significant comparisons) but no other signifi-
cant differences. We also explored correlations between the
NASA-TLX ratings (both the combined NASA-TLX and
each dimension individually) and SDNN. There were no
significant correlations between the combined NASA-TLX
ratings and SDNN for any of the experimental conditions
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TABLE III: SDNN

F -value p-value df

Interface 33.21 <0.001 (1, 26)
Control algorithm 2.18 0.151 (1, 26)

Interaction 7.05 0.013 (1, 26)

(all p-values >0.06). There was a significant negative cor-
relation between the Successful dimension (i.e., the rating
of successful performance on the task) and SDNN for the
Zooid/individual condition only (r(26) = 0.42, p = 0.024).
Our primary measure was SDNN due to its use in similar
works [33], [34], [35]. We also explored other relevant HRV
metrics known to relate to cognitive workload, including
pNN50 (which showed the same pattern of results as SDNN),
RMSSD, LF/HF, LF (all of which showed a significant
main effect of interface only), and HF (which showed no
significant results).

VI. DISCUSSION AND CONCLUSIONS

The robotic swarm presented in this paper allowed us to
compare, in a controlled setting, a classic tablet-based mis-
sion planner with a novel tangible interface and validate the
comparison with two sets of control algorithms – individual
and group. Participants controlled the UAVs with a tablet
and tangible Zooids to find hidden simulated features. We
expected that the tangible Zooid interface would demand
more involvement but reduce cognitive load on the user
(H1). We found that the Zooid interface did result in more
involvement, as shown by a higher number of actions in
the Zooid/group condition. Also in-line with our hypotheses,
the results from the SDNN measure suggest that the Zooid
interface may be less cognitively demanding, as SDNN was

higher when participants were using the Zooid interface
compared to the tablet interface. Previous research has shown
that SDNN decreases when cognitive load increases [33],
[34]. We should also consider that the SDNN results for the
Zooids may be confounded with physicality, as the Zooid
interface required participants to bend over the table and
reach for and move the Zooids, whereas with the tablet
interface, participants stood while controlling the tablet. In
contrast, the combined subjective ratings from the NASA-
TLX and the ratings in the frustration dimension showed
that participants rated the Zooid interface higher (i.e., more
demanding across the six dimensions, and more frustrating)
than the tablet interface. In other contexts, it has been noted
that while performance, subjective, and objective measures
are all valuable measures, they do not always track together,
and may differ in their sensitivity and variability across
research domains and task scenarios [36], [37], [38]. These
results underscore the need for further work to assess which
subjective and objective measures are most apt to measure
operators’ cognitive load during swarm robotic control.

We predicted that greater autonomy of the robotic fleet
would reduce operator cognitive load (H2). Robotics engi-
neers generally agree that more embedded intelligence allows
for a decrease of dependency on the operator, thus most
likely reducing the operator task load. As shown in Fig. 4,
the control mode in which UAVs organised themselves based
on a single general user input (i.e., self-deployment group
control mode) was perceived by participants as being less
physically and mentally demanding, required less time to
complete the task, and overall less cognitively demanding
than the individual waypoint control mode, as demonstrated
by the combined ratings on the NASA-TLX. As shown in
Fig. 3, increased automation by the robots did not consis-
tently reduce the amount of work (i.e., the number of actions)
across interfaces, nor did it consistently improve performance
on the mission goals (i.e., the number of features found). This
result may be due to the mission, task environment and even
the specifics of how automation is implemented.

Our work represents a first human user study with a
swarm of UAVs, simultaneously looking at subjective and
objective measures of cognitive workload, across conditions
that differ in their level of automation and user interface.
The results hint at the potential of both tangible interfaces
and automation to engage operators and reduce cognitive
load, yet to be fully realized, all aspects of a particular
application must be considered. In the present case, specific
design choices in the interface implementation and the nature
of the control algorithms, as well as the degree of familiarity
people have with tangible vs. tablet-based controls, would all
affect the user’s cognition and experience. To derive a more
general solution to the problem of assessing cognitive load
in HSI, we require a solid methodology that will allow us
to test and guide each design choice during development,
based on performance, subjective and objective measures.
Important next steps will be to validate additional physio-
logical measures (e.g., pupil dilation, skin conductivity) and
their combinations as indicators of workload in the context



of swarm control applications, and evaluate their relationship
to users’ subjective experience and to objective measures of
mission success. With more accurate wearable sensors and
a flexible user-centric control methodology, we expect to
increase the safety and effectiveness of human-swarm teams
across many applications.
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