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Development of a cross-sectional finite
element for the analysis of thin-walled
composite beams like wind turbine
blades

Louis-Charles Forcier and Simon Joncas

Abstract
A method for structural analysis of thin-walled composite beams like wind turbine blades is presented. This method is based on the
Nonhomogeneous Anisotropic Beam Section Analysis (NABSA) which consists in discretizing the beam cross section using finite ele-
ments. The proposed implementation uses 3-node line cross-sectional finite elements with nodes having rotational degrees of freedom
to describe the cross-sectional warping displacements. Solutions obtained using this approach were verified against the corresponding
analytical or numerical solutions. Agreement was very good to excellent for the computation of cross-sectional properties and distri-
bution of stresses, strains and warping displacements for a broad range of possible composite beam behaviors including geometric and
material couplings, open sections, multicell sections, and arbitrary laminates. For thin-walled layered structures, the proposed method
provides models with fewer degrees of freedom than equivalent models based on a two-dimensional discretization of cross sections
using triangular or quadrilateral elements such as conventional NABSA or VABS which suggests that computation time could be
reduced.
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Introduction

Wind turbine blades, as well as airplane wings and helicopter rotor blades, are mostly composite beams. Unlike
classical metallic structures, these composite beams have cross-sectional non-homogeneity and offer the possibility
of enabling coupling between all deformation modes that may arise from fiber orientation. This latter phenomenon
can be used as a load alleviation system, for example when a bend-twist coupling exists in the behavior of a wind
turbine blade (Fedorov and Berggreen, 2014). As the structures mentioned earlier are often modeled as beams,
especially for aeroelastic analyses, their cross-sectional properties need to be computed. In order to consider all the
possibilities associated with composite beams, models more elaborate than the classical strength of material meth-
ods applied to homogeneous cross sections are needed.

To develop such models, the Variational Asymptotic Beam Section Analysis available in commercial VABS
software is a reference tool (Cesnik and Hodges, 1997; Hodges and Yu, 2007; Yu et al., 2002a, 2002b, 2012).The
beam cross section is discretized using two-dimensional finite elements and a 6 3 6 cross-sectional stiffness matrix
is calculated. Shear effects are therefore taken into account so the beam can be considered a Timoshenko beam.
Giavotto et al. (1983), based on a different methodology, have also developed a tool to compute a 6 3 6 cross-
sectional stiffness matrix for a Timoshenko beam using again a two-dimensional finite element discretization of
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the cross section. This framework is sometimes called Nonhomogeneous Anisotropic Beam Section Analysis
(NABSA). This work has been updated in software called BECAS that also includes optimization capabilities
(Blasques, 2011; Blasques et al., 2016; Blasques, 2012; Blasques and Stolpe, 2012).

However, as wind turbine blades, airplane wings and helicopter rotor blades are often thin-walled structures, it
is possible to use methods based on the theory of strength of materials. Of course, these methods have to be
adjusted to take into account the composite nature of these structures. These adjusted methods allow the compu-
tation of the cross-sectional stiffness matrix terms by evaluating integrals over the beam cross section based on
various deformation hypotheses.

The first distinction that can be made among models based on strength of materials is the way transverse shear
effects are taken into account. Formulations based on Timoshenko beams include such effects (Fernandes da Silva
et al., 2011; Librescu and Song, 2006; Massa and Barbero, 1998; Pluzsik and Kollar, 2002; Saravanos et al., 2006;
Saravia, 2014; Saravia et al., 2012; Sheikh and Thomsen, 2008; Zhang et al., 2012) whereas those based on Euler
beams ignore them (Cárdenas et al., 2012; Cardoso et al., 2009; Gökhan Günay and Timarci, 2017; Kollar and
Pluzsik, 2002; Victorazzo and De Jesus, 2016; Wang and Zhang, 2014; Wang et al., 2014; Zhang and Wang, 2014).

In both of these cases, different ways to model the torsional behavior of the beam are used. Some authors build
their model based on uniform torsion, that is, Bredt theory for thin-walled beams (Fernandes da Silva et al., 2011;
Kollar and Pluzsik, 2002; Saravanos et al., 2006; Saravia, 2014; Saravia et al., 2012; Victorazzo and De Jesus,
2016; Wang et al., 2014; Zhang et al., 2012). This means that the beam has a constant section loaded by torques at
the ends only and that support effects are neglected. However, this theory is still valid for slightly variable cross sec-
tions and slightly variable distributed torques as well as for sections away from the effects of supports. Other mod-
els are based on non-uniform torsion, that is, Vlasov torsion, where variable cross section, variable torque
distribution or support effects cause restraint to the out-of-plane warping of the cross section (Cárdenas et al.,
2012; Cardoso et al., 2009; Gökhan Günay and Timarci, 2017; Librescu and Song, 2006; Massa and Barbero,
1998; Pluzsik and Kollar, 2002; Sheikh and Thomsen, 2008; Wang and Zhang, 2014; Zhang and Wang, 2014).
According to Volovoi and Hodges (2000) and Yu et al. (2005), the Vlasov correction for restrained warping has
been found unnecessary for closed thin-walled beam as this effect has minimal impact on that kind of structure.

Among the cited models, some are able to consider general composite plate stacking sequences along with all
coupling implied (Cárdenas et al., 2012; Gökhan Günay and Timarci, 2017; Kollar and Pluzsik, 2002; Librescu
and Song, 2006; Pluzsik and Kollar, 2002; Saravanos et al., 2006; Saravia, 2014; Saravia et al., 2012; Sheikh and
Thomsen, 2008; Victorazzo and De Jesus, 2016; Wang and Zhang, 2014; Zhang and Wang, 2014). This allows
modeling of the bend-twist coupling of the beam. With some exceptions (Cárdenas et al., 2012; Cardoso et al.,
2009; Fernandes da Silva et al., 2011; Wang et al., 2014; Zhang et al., 2012), these models take into account wall
bending rigidity.

All the cited models can be used to evaluate closed single-section beams. Some are also able to model open sec-
tion beams (Cardoso et al., 2009; Kollar and Pluzsik, 2002; Librescu and Song, 2006; Massa and Barbero, 1998;
Pluzsik and Kollar, 2002; Sheikh and Thomsen, 2008; Victorazzo and De Jesus, 2016; Zhang et al., 2012) and oth-
ers, closed multicell section beams (Cárdenas et al., 2012; Fernandes da Silva et al., 2011; Pluzsik and Kollar, 2002;
Victorazzo and De Jesus, 2016; Wang and Zhang, 2014; Wang et al., 2014; Zhang et al., 2012).

Coming back to the more complex VABS and NABSA methods, the modeling of thin-walled cross section with
these tools (using line finite elements instead of 2D finite elements) is also interesting. Thin-walled implementations
of the VABS method have already been proposed. Some are based on classical Euler beam model with (Yu et al.,
2005) or without (Volovoi and Hodges, 2000, 2002) the Vlasov correction. Others are based on Timoshenko beam
model (Ferede and Abdalla, 2014; Gupta and Hodges, 2017).

The contribution of this paper is a thin-walled implementation of the theory behind NABSA. This leads to a
6 3 6 Timoshenko cross-sectional stiffness matrix. Instead of discretizing the cross section with 2D elements with
three displacement degrees of freedom per node, the section is discretized with line elements containing three trans-
lational degrees of freedom and three rotational degrees of freedom per node. This reduced number of degrees of
freedom allows a reduction of computation time (not quantified herein), which is valuable in structural optimiza-
tion. It also allows, at the post-processing stage, the computation of the plate generalized stress (by integrating the
stress distribution over the wall thickness) which gives valuable information for the analysis of the beam under the
applied load. This thin-walled formulation can also be pre-processed more easily since the direction of laminate
stacking is already determined by the cross-sectional mesh.

In the following sections, we review the literature relevant to classical NABSA theory and then describe the pro-
posed finite-element implementation of our method, which we verify by comparison with analytical and numerical
(using 3D shell finite elements) solutions.
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Review of the theory underlying NABSA

This section presents the NABSA theory as developed by Giavotto et al. (1983) and extended for optimization by
Blasques and Stolpe (2012), Blasques (2012, 2011) and Blasques et al. (2016). The nomenclature adopted in this
article is similar to that used by the latter group. In this theory, it is assumed that the beam is straight, has a con-
stant cross section and is loaded at its ends only.

Coordinate systems

Figure 1 shows the different coordinate systems used: a global coordinate system xyz, an element coordinate sys-
tem rst and a material coordinate system 123. The x- and y-axes are in the cross-sectional plane and the z-axis is
the beam reference axis. The r-axis is parallel to z and the s- and t-axes are respectively parallel and normal to the
beam wall. Finally, the 3-axis of the material coordinate system is parallel to the t-axis and the 1- and 2-axes are
in the plane of the beam wall and constitute the material’s principal direction of orthotropy (1-axis being typically
aligned with the direction of the fibers).

Stress and strain

The stress and strain components are used in a vectorial form defined as

s= sx sy txy txz tyz sz½ �T

ε= ex ey gxy gxz gyz ez

� �T ð1Þ

and the stress-strain relationship is

s=Qε ð2Þ

where Q is the material constitutive matrix. The second half of the stress vector contains the out-of-plane compo-
nents of stress and is designated as

p= txz tyz sz½ �T ð3Þ

Internal loads

The beam internal load vector is defined as

V= Vx Vy N Mx My Mt½ �T ð4Þ

where Vx and Vy are the shear forces, N is the axial force, Mx and My are the bending moments and Mt is the tor-
sional moment. The internal loads are the resultants of the out-of-plane components of stress on the blade cross
section:

V=

ð
A

ZTpdA ð5Þ

Figure 1. The coordinate systems used in this study.
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where

Z=
1 0 0 0 0 �y

0 1 0 0 0 x

0 0 1 y �x 0

2
4

3
5 ð6Þ

Generalized strain

Defining the beam reference axis displacements xi and rotations ui as

r= xx xy xz ux uy uz

� �T ð7Þ

and defining the Timoshenko beam generalized strains as

k= x0x � uy x0y +ux x0z u0x u0y u0z
� �T ð8Þ

It can be shown that

k=Tr+ r0 ð9Þ

where

T=

0 0 0 0 �1 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2
6666664

3
7777775

ð10Þ

and the prime symbol ( 9) denotes a first derivative with respect to z.

Kinematics of the cross section

The displacement of an arbitrary point in the cross section s= sx sy sz½ �T is separated into two terms:

s=Zr+ g ð11Þ

The term Zr represents the displacement due to the cross-sectional rigid body motion and the term
g= gx gy gz½ �T , the displacement due to cross section warping.

Strain-displacement relationships

By separation of the derivative with respect to x and y (in the cross-sectional plane) from the derivative with respect
to z (along the beam longitudinal axis), the strain-displacement relationship becomes

ε=Bs+Ss0 ð12Þ

where

B=

∂=∂x 0 0

0 ∂=∂y 0

∂=∂y ∂=∂x 0

0 0 ∂=∂x

0 0 ∂=∂y

0 0 0

2
6666664

3
7777775
,S=

0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1

2
6666664

3
7777775

ð13Þ
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Using equations (11) and (9), given that BZ=SZT, the strain vector becomes

ε=SZk+Bg+Sg0 ð14Þ

Finally, the warping function g is expressed using a finite element discretization of the cross section so that

g=Nu ð15Þ

where N is a matrix containing the shape functions and u is a vector containing the warping displacements at
nodes. The strain vector then becomes

ε=SZk+BNu+SNu0 ð16Þ

Principle of virtual work for a beam slice and solution

Based on the virtual work (per unit length of the beam) of a beam slice

ð
A

dεT sdA|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
dWi

=

ð
A

(dsTp)0dA|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
dWe

ð17Þ

Giavotto et al. (1983), Blasques and Stolpe (2012), Blasques (2012, 2011) and Blasques et al. (2016) show that the
following system is obtained for the center of the beam (far from the boundary conditions):

E R D

RT A 0

DT 0 0

2
64

3
75

u0

k0

l1

2
64

3
75=

0

TTV

0

2
64

3
75

E R D

RT A 0

DT 0 0

2
64

3
75

u0

k0

l1

2
64

3
75=

(C� CT )u0+Lk0

�LTu0+V

0

2
64

3
75

ð18Þ

Given the internal load vector V= ½Vx Vy N Mx My Mt�T , this system can be solved to obtain the beam
deformation vector k= ½g0

zx g0
zy e0

z kx ky kz�T and the nodal warping displacement vector u.
The D matrix adds constraints to rigid body motion of the cross section (already described by the k vector)

using the Lagrange multiplier method. Here, the retained solution differs from the one used by Giavotto et al.
(1983), Blasques and Stolpe (2012), Blasques (2012, 2011) and Blasques et al. (2016). Based on the fact that the lin-
ear relations to impose between the components of the warping vector are of the same type as the relations gener-
ated by an RBE3 element (Delmas, 2012; Reese et al., 2011), the proposed method is to use this kind of
interpolation element. This has the advantage of allowing the easy management of the rotation degrees of freedom
of the warping vector. The method consists of imposing that the displacements and rotations of a fictitious refer-
ence node (located at the origin of the global coordinate system) are zero. Only the displacement degrees of free-
dom of the connected nodes (all the mesh nodes) are used. An exception arises when all the model nodes are
aligned along the x-axis or the y-axis. In this particular case (see verification case 5 below, for instance), the rota-
tional degree of freedom of the connected nodes around the axis on which they are aligned is used. These con-
straints result in relations of the following form:

DTu= 0, DTu0= 0 ð19Þ

The other matrices needed for equation (18) are defined as
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A
6 3 6

=
X

e

ð
ZTSTQSZdA, R

n 3 6
=
X

e

ð
NT

e B
TQSZdA,

E
n 3 n

=
X

e

ð
NT

e B
TQBNedA, C

n 3 n
=
X

e

ð
NT

e S
TQBNedA,

L
n 3 6

=
X

e

ð
NT

e S
TQSZdA

ð20Þ

where n is the number of degrees of freedom in the model (six per node). The sums are performed over each ele-
ment e.

Cross-sectional stiffness matrix

To get the beam cross-sectional stiffness matrix Ks and compliance matrix Fs so that V=Ksk, k=FsV, and
Ks =F�1

s , we can solve equation (18) by replacing the V vector by a 6 3 6 matrix V̂, in which each column con-
tains a linearly independent load case. This consists in solving six different load cases at the same time. The result
for cross-sectional generalized strains k̂ is a matrix with six columns, each one containing the results of a particu-
lar load case. Then, V̂=Ksk̂ and

Ks = V̂k̂�1 ð21Þ

The simplest way to proceed is to choose V̂= I6, that is, the six different load cases contain each a unit load
component and all others are set to zero.

Note that this method of computing the beam cross-sectional stiffness matrix differs from that used by Giavotto
et al. (1983), Blasques and Stolpe (2012), Blasques (2012, 2011), and Blasques et al. (2016),which was based on the
principle of virtual work.

Implementation of the line finite element

In order to be able to perform a cross-sectional analysis, the matrices of equation (20) have to be evaluated. This
section presents the procedure for the computation of a general n-node line element based on a pure displacement
formulation similar to the one used for shell finite elements (Ahmad et al., 1970).

Shape functions and element coordinate system at nodes

Figure 2 shows an example of real and reference elements for a 3-node line element. The rst element coordinate sys-
tem is defined as follows. ŝ and t̂ are unit vectors, respectively in the s and t directions. They are respectively parallel
and perpendicular to the element reference axis. We define the components of vectors ŝ and t̂ at node i as as ŝ

i
and

t̂
i
.

Figure 2. Real and reference elements (example for nn = 3).
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Coordinate of a point in the element

The x-, y-, and z-coordinates of a point in an element can be computed as a function of the s- and t-coordinates as
(shape functions Ni are functions of s) (Bathe, 2006; Cook et al., 2002):

x=
Xnn

i= 1

Nixi +
ta

2

Xnn

i= 1

Nît
i
x

y=
Xnn

i= 1

Niyi +
ta

2

Xnn

i= 1

Nît
i
y

z=
Xnn

i= 1

Nizi +
ta

2

Xnn

i= 1

Nît
i
z

ð22Þ

where nn is the number of nodes in the element. xi, yi, and zi are respectively the x-, y-, and z-coordinates of the ith
node. a = a(s) is the element thickness (along the t-direction) and zi is the z-coordinate of the ith node.

Jacobian matrix

The Jacobian matrix J is defined as:

∂=∂s

∂=∂t

� �
=

∂x=∂s ∂y=∂s

∂x=∂t ∂y=∂t

� �
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

J

∂=∂x

∂=∂y

� �
ð23Þ

Using equation (22), this matrix can be expressed as follows:

J=
Xnn

i= 1

Ni, sxi +
ta
2

Ni, ŝt
i
x Ni, syi +

ta
2

Ni, ŝt
i
y

a
2

Nît
i
x

a
2

Nît
i
y

� �
ð24Þ

Displacement field, shape function and derivative of shape function matrices

The displacement field can be evaluated by subtracting the final and initial positions of each node using equation
(22) (Bathe, 2006).The warping displacement field is then:

g=Neue ð25Þ

where the shape function matrix is

Ne =

Ni 0 0 0 0 � ta
2

Nît
i
y

. . . 0 Ni 0 0 0 ta
2

Nît
i
x . . .

0 0 Ni
ta
2

Nît
i
y � ta

2
Nît

i
x 0

2
4

3
5 ð26Þ

The nodal displacement vector is

ue = . . . ui
x ui

y ui
z ui

x ui
y ui

z . . .
h iT

ð27Þ

i ranges from 1 to nn, the number of nodes in the element.
Differentiating the shape function matrix using equation (23) yields:

BeNe =

Ni, x 0 0 0 0 a
2

t̂i
x(tNi), y

0 Ni, y 0 0 0 a
2

t̂i
x(tNi), y

. . . Ni, y Ni, x 0 0 0 � a
2

t̂i
y(tNi), y +

a
2

t̂i
x(tNi), x . . .

0 0 Ni, x
a
2

t̂i
y(tNi), x � a

2
t̂i
x(tNi), x 0

0 0 Ni, y
a
2

t̂i
y(tNi), y � a

2
t̂i
x(tNi), y 0

0 0 0 0 0 0

2
66666664

3
77777775

ð28Þ
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where

Ni, x = j11Ni, s, (tNi), x = j11tNi, s + j12Ni,
Ni, y = j21Ni, s, (tNi), y = j21tNi, s + j22Ni

ð29Þ

and i again ranges from 1 to nn. j11, j12, j21, and j22 are the components of the j matrix, which is the inverse of the
Jacobian matrix, that is, j= J�1.

Material properties

Since the stress–strain relationship of the material must be expressed in the global coordinate system (xyz) whereas
the elastic properties are known in the material coordinate system (123), a transformation of the material constitu-
tive law is required. The stress-strain relationship of a specially orthotropic lamina is

Q123 =

E1

1�n12n21

n12E2

1�n12n21
0 0 0 0

E2

1�n12n21
0 0 0 0

G12 0 0 0

0 5
6

G13 0 0

sym: 5
6

G23 0

0

2
666666664

3
777777775

ð30Þ

where n21 =
E2

E1
n12. The 1- and 2-axes are the principal direction of the material properties of the lamina, where

the 1-axis is typically the direction of the fibers and the 3-axis is normal to the plate plane. The 5=6 factor in front
of the shear modulus in planes 13 and 23 is a correcting factor for the transverse shear stress. This value is correct
for homogeneous plates and may be adjusted for composite plates (Berthelot, 2012), which was not done here.
According to the plane stress hypothesis, there is no rigidity in the thickness direction. Note that a generally
orthotropic stress-strain relationship (with no rigidity in the 3-direction) could be used as well.

The transformation of the constitutive matrix to the global coordinate system is achieved in two steps. The first
step consists of a transformation in the element coordinate system:

Qrst =TT
bQ123Tb ð31Þ

and the second step, in the global coordinate system:

Q=TT
aQrstTa ð32Þ

for which the transformation matrices Ta and Tb depend respectively on the angles a and b defined in Figure 1.

Numerical integration

The integration of equation (20) over the area of the elements is computed numerically using Gauss formula. A full
integration is used in the s-direction and two integration points per layer are used in the t-direction.

Fictitious rigidity for drilling degrees of freedom

Since no stiffness is associated with the node drilling degree of freedom (rotation about the t̂-axis, normal to the
beam wall), singular or ill-conditioned matrices can arise when two adjacent elements are parallel. To avoid this
problem, small stiffness terms are added to the E matrix (in equation (18)) using a procedure similar to the one pre-
sented by Cook et al. (2002).

Post-processing

For a given load case, once the nodal displacements u, their derivatives u0 and the beam generalized strains k are
known, the strains and stresses in each element can be computed using respectively equations (16) and (2).

The stresses and strains can be computed in the element and material coordinate systems as:
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srst =T�T
a s, s123 =T�T

b srst,

εrst =Taε, ε123 =Tbεrst

ð33Þ

The shell internal loads can then be computed as integrals of the stress components over the element thickness:

Nm =

ða=2

�a=2

sm d̂t,Qn =

ða=2

�a=2

sn d̂t,Mm =

ða=2

�a=2

t̂sm d̂t ð34Þ

for m=(r, s, rs) and n=(rt, st). These integrations are evaluated numerically using two integration points per
layer.

Implemented elements

For the verification presented in the next section, a three-node element (nn = 3) was implemented using the Python
programming language. This element has ns = 3 integration points along the element length (full integration) and
nt = 2 integration points along each layer in the thickness direction. Preliminary results not presented here have
shown that the three-node element yields better performance than its two-node counterpart by allowing better rep-
resentation of actual geometry of a curved cross section wall. Its convergence rate is thus much faster.

Verification of the implemented element

This section proposes different verification cases intended to verify the performance of the proposed method for
the analysis of different types of nonhomogeneous anisotropic thin-walled beams. The pre- and post-processing of
the models is done with the Gmsh software (Geuzaine and Remacle, 2009). Note that all the gradient results pre-
sented (stresses, strains and shell internal loads) are computed at the center of the element, that is, at s= 0.

Concerning computation time, the proposed model being coded using Python, all matrices assembly and derived
result calculations are done using scripts in an interpreted language (slow) and solution of the equation system is
done using a compiled function (fast). It is therefore impossible to get realistic computation time data to compare
to the 2D cross-sectional discretization. However, we can suppose that the 1D proposed model will result in smaller
computation times for cross section using laminated wall with several layers. 2D models need one element per layer
through the thickness, while the proposed 1D model needs only one node through the thickness, resulting in a
model with fewer degrees of freedom.

The results presented in the next sections are shown dimensionless but use the International System of Unit:
lengths, forces and stresses are respectively in m, N and Pa.

Preliminary verification cases

Some preliminary verification tests on circular and rectangular thin-walled homogeneous sections have shown that
the proposed model is able to correctly manage these kinds of problems. All components of the cross-sectional
stiffness matrices are the same as the corresponding analytical solutions. For the computation of the analytical
transverse shear behavior, the Cowper (1966) shear correction factor is used because it is defined for static analysis
such as the one performed here. Stress and strain values returned by the proposed model are also correct.

A convergence analysis has been performed on a homogeneous thin-walled circular cross section of radius
R= 1 and thickness t = 0:01 made of an isotropic material with E=E1 =E2 = 207 3 109,
G =G12 =G13 =G23 = 79:3 3 109, and n= n12 =E=(2G)� 1= 0:3052. This cross section is centered at the ori-
gin of the global coordinate system. This kind of geometry has the advantage of allowing the computation of ana-
lytical results to compare against numerical solutions. When looking at the convergence rate for the different
terms of the cross-sectional stiffness matrix, we get values of 3.77 for transverse shear stiffness (Ks11 and Ks22),
3.86 for axial stiffness (Ks33), 3.98 for bending stiffness (Ks44 and Ks55) and 3.94 for torsional stiffness (Ks66).
Figure 3a shows the convergence of the torsional cross-sectional stiffness Ks66 against element length where ele-
ment lengths of 1.571, 0.7854, 0.3927, 0.1963, and 0.09817 correspond respectively to 4, 8, 16, 32, and 64 elements
along the circumference. When looking at the stresses and shell internal loads, they show a lower convergence
rate, as expected. For this case, Figure 3b shows the convergence of the maximum axial stress (sz) value for a unit
bending moment against element length.

Forcier and Joncas 9



Based on this same thin-walled circular cross section, it is also interesting to study how the proposed model per-
forms when the shell thickness is increased. Figure 4a compares the transverse shear cross-sectional stiffness with
respect to element thickness for numerical and analytical solutions. Results show that the numerical results match
the analytical result even for a solid cross section (t=R= 2). Other cross-sectional stiffness terms as well as stress
results associated with axial, bending, and torsional loads show similar trends. When looking at maximum shear
flow under a unit shear force (Figure 4b), more discrepancy is observed as the thickness increases. However, the
error stays under 10% for thickness to radius ratios up to 0.5, which shows that the proposed model is able to ana-
lyze relatively thick structures. Those numerical results were obtained using 200 elements and convergence of these
models was verified. It’s worth noting that the analytical results presented here are those of the real section geome-
try, not the thin-walled approximation.

Verification case 1

For verification case 1, a thin-walled circular cross section of radius R= 1 and thickness t = 0:01 is studied. This
cross section is centered at the origin of the global coordinate system and is made with one layer of an orthotropic
material (fiber reinforced polymer) with fibers rotated by an angle of 45� relative to the beam longitudinal axis as
illustrated in Figure 5. The material properties are E1 = 39:0 3 109, E2 = 14:5 3 109, n12 = 0:290, and
G12 = 4:24 3 109.

The cross-sectional compliance matrix can be obtained analytically by computing the generalized strain vector
for six unit internal force load cases. For that analysis, a shear correction factor of 0.5 is used. The resulting com-
pliance matrix is as follows:

Fs =

3485 0 0 689:5 0 0

0 3485 0 0 689:5 0

0 0 1256 0 0 �344:9
689:5 0 0 2511 0 0

0 689:5 0 0 2511 0

0 0 �344:9 0 0 1743

2
6666664

3
7777775

3 10�12 ð35Þ

The solution obtained from the proposed model using 100 quadratic elements (mesh shown in Figure 5b) is

Fs =

2864 0 0 689:5 0 0

0 2864 0 0 689:5 0

0 0 1256 0 0 �344:8
689:5 0 0 2511 0 0

0 689:5 0 0 2511 0

0 0 �344:8 0 0 1742

2
6666664

3
7777775

3 10�12 ð36Þ

Figure 3. Convergence rate of: (a) torsion cross-sectional stiffness Ks66 and (b) maximum axial stress sz under a unit bending
moment. h is the element length and E is the error of the numerical solution defined as E= abs(u� uan)=uan where u is the
numerical solution and uan is the analytical solution.
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These solutions are very similar, with differences of less than 0.1% except for the transverse shear compliances
(Fs11 and Fs22), which differ by about 18%, due probably to the incorrect evaluation of the shear correction factor
in the analytical solution which is hard to evaluate due to the presence of off-axis fibers. This shows that the pro-
posed model is able to manage correctly the transverse shear-bending and the extension-torsion couplings due to
the presence of off-axis fibers.

Verification case 2

In this verification load case, we study an open thin-walled section. The cross-sectional shape is the same as verifi-
cation case 1 excepted that the section is open at the point of coordinate x=R and y= 0. This section is now
made of an isotropic material with E=E1 =E2 = 207 3 109, G =G12 =G13 =G23 = 79:3 3 109, and
n= n12 =E=(2G)� 1= 0:3052.

Using the proposed model with 100 quadratic elements, we obtain the following cross-sectional stiffness matrix:

Figure 4. Comparison of the proposed model solution with analytical solution for increasing thickness to the radius ratio.
(a) transverse shear cross-sectional stiffness Ks11 and (b) maximum shear flow Nrs under a unit shear force. t is the wall thickness and
R is the circular cross section mean radius (t=R= 2 means a solid circular section with a radius of 2).

Figure 5. Verification case 1: (a) model geometry and (b) mesh.
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Ks =

2820 0 0 0 0 0

0 0:8472 0 0 0 �1:694

0 0 13:01 0 0 0

0 0 0 6:503 0 0

0 0 0 0 6:503 0

0 �1:694 0 0 0 3:389

2
6666664

3
7777775

3 109 ð37Þ

As expected, we can observe a coupling between the shear force in the y-direction and the torsion (Ks26). If we
compute the position of the shear center, we get the same values as the analytical solution for an open thin-walled
beam: xs = � 2 and ys = 0. If we transfer the cross-sectional stiffness matrix to an origin located at the shear cen-
ter, the stiffness matrix becomes:

Ks =

2820 0 0 0 0 0

0 847:2 0 0 0 0

0 0 13010 0 �26010 0

0 0 0 6503 0 0

0 0 �26010 0 58520 0

0 0 0 0 0 0:1658

2
6666664

3
7777775

3 106 ð38Þ

and there is now a coupling between the extension and the bending about y-axis (Ks35), as expected.
As we can see, the torsional stiffness Ks66 = 165:8 3 103 is very close to the analytical solution of

GJ = 166:1 3 103 (0.18% difference). It is also possible to compute analytically the warping displacement at the
cross section opening. This analytical solution predicts that the upper and lower parts have respectively warping
displacement of uz =618:91 3 10�6. As we can see in Figure 6, the proposed model solution is really close to this
value (0.16% difference). If we look at the torsional flow, the analytical solution yields Mrs = � 79:58 3 10�3

which is exactly what the numerical model returns.
All of the differences observed here could be reduced by increasing the number of finite elements in the mesh.

This verification case shows that the proposed model correctly manages open sections and geometric shear-torsion
coupling.

Verification case 3

This verification case consists of a thin-walled multicell cross section. The geometry is represented in Figure 7a
and the material is the same as verification case 2. The analytical solution to this problem shows that the torsional
stiffness of this cross section is GJ = 10:86 3 109. When a unit torsional moment is applied, the shear flow in the

Figure 6. Verification case 2. Warping displacement uz for Mt = 1.
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left cell is Nrs1 = 0:08088 and the shear flow in the right cell is Nrs2 = 0:09324. The shear flow in the central wall is
Nrs2 � Nrs1 = 0:01236.

With 124 quadratic elements, the proposed model locates the shear center at x= 0:3788 and y= 0. Transferring
the cross-sectional stiffness matrix to this point yields Ks66 = 10:86 3 109, which is the same as computed by the
analytical solution (GJ). Figure 7b shows the shear flow distribution calculated by the proposed model. With val-
ues of 0.08089, 0.09324 and 0.01235, respectively for the left cell, right cell and central wall, the error relative to
the analytical solution is limited to less than 0.1%. This shows that the proposed model correctly models multicell
cross sections.

Verification case 4

In the previous verification cases, the mesh line always represented the middle of the shell thickness. However, the
reference geometry is often located on one of the shell surfaces. Wind turbine blades and airplane wings are exam-
ples where the reference geometry is the exterior surface. In such cases it may be more useful to be able to build the
model in order for the mesh to represent the bottom of the plate, that is, the thickness is built only on one side of
the mesh. This can be achieved by integrating in the thickness direction from t = 0 to t = 2 instead of integrating
from t = � 1 to t = 1.

By modeling verification case 2 this way, the mesh being located on the outer surface, the predicted shear center
location is xc = � 1:995 and yc = 0 and the cross-sectional stiffness matrix, when transferred to a coordinate sys-
tem centered at the shear center becomes

Ks =

2824 0:0 0:0 0:0 0:0 00:0
0:0 975:1 0:0 0:0 0:0 0:00

0:0 0:0 13010 0:0 �25950 00:0
0:0 0:0 0:0 6503 0:0 00:0
0:0 0:0 �25950 0:0 58270 0:00

0:0 0:0 0:0 0:0 00:0 0:1659

2
6666664

3
7777775

3 106 ð39Þ

The only considerable error is for transverse shear stiffness in the y-direction (Ks22, + 15:1 %). All other results
are exactly the same as those obtained for verification case 2.

Verification case 5

With this verification case, we want to see if the model reacts correctly to a nonsymmetrical and unbalanced
layup. Considering the difficulty of obtaining an analytical solution for that kind of layup, the problem studied

Figure 7. Verification case 3: (a) geometry and (b) shear flow Nrs for Mt = 1.
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here consists of a simple plate of unit width in the global xz-plane. The beam cross section is then a line lying along
the global x-axis and 12 quadratic elements are used as mesh. The layup is made of four layers of the same mate-
rial as verification case 1 with orientation ½0=15=� 30=90� for a total thickness of 0.01 (each layer having a thick-
ness of 0.0025). Classical lamination theory allows us to see that the A, B and D matrices (not to be confused with
the matrices of equations (13), (19), and (20)) of this laminate are fully populated indicating that couplings exist
between each of the deformation modes. Subjecting this beam section to a unit axial force is equivalent to subject-
ing the plate to a membrane force Nrr = 1. The stress distribution in this plate should then vary only along its
thickness. Table 1 shows the stress distribution along the plate thickness expressed in the layer coordinate system
as computed using the classical lamination theory.

The proposed model gives the same results up to four significant digits. These results are also obtained when
using the option to place the nodes at the bottom of the laminate as explained in verification case 4.

Verification case 6

As a final verification case, a nonsymmetrical multicell cross section like that of wind turbine blades is analyzed.
As represented in Figure 8a, the cross section uses unbalanced laminates to induce bend-twist coupling (Fedorov
et al., 2009). All laminates are centered on the mesh line. So, the nodes of the airfoil contour (laminates 1–4) are
shifted toward the interior in order to get the correct geometry. All layers are made of the same material as in veri-
fication case 1 with a thickness of 0.001. Using the proposed methodology, when this cross section is meshed using
200 nodes and 101 quadratic elements (see Figure 8b), the resulting cross-sectional stiffness matrix is

Table 1. Stress distribution in the plate for verification case 5.

Location s1 s2 t12 location s1 s2 t12

layer 1, bot. 63.38 212.68 27.535 layer 3, bot. 102.6 16.18 20.49
layer 1, mid. 87.13 29.590 25.069 layer 3, mid. 112.3 23.40 23.74
layer 1, top 110.9 26.504 22.604 layer 3, top 122.1 30.62 27.00
layer 2, bot. 95.34 21.908 211.08 layer 4, bot. 222.69 73.47 27.259
layer 2, mid. 123.0 0.02439 210.11 layer 4, mid. 218.69 82.39 29.724
layer 2, top 150.6 1.957 29.144 layer 4, top 214.68 91.32 212.19

Figure 8. Verification case 6. The airfoil is a DU 97-W-300 (Timmer and van Rooij, 2003). Both shear webs are perpendicular to
the airfoil chordline and are located at 0.15 on each side of the origin of the coordinate system. For the airfoil contour (laminate 1–
4), the bottom of the laminate is toward the airfoil exterior and the top of the laminates are toward the airfoil interior. For the
shear webs, the bottom of the laminates are toward the leading edge and the top of the laminates are toward the trailing edge:
(a) geometry and (b) mesh.
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Ks =

121:8 �18:06 44:09 1:355 8:296 1:076

�18:06 40:314 �8:490 �0:9221 �1:641 1:535

44:09 �8:490 480:8 12:36 74:18 0:3842

1:355 �0:9221 12:36 6:545 8:888 �0:7557

8:296 �1:641 74:18 8:888 47:69 0:1570

1:076 1:535 0:3842 �0:7557 0:1570 4:294

2
6666664

3
7777775

3 106 ð40Þ

These results are compared with those of a 3D shell finite element model of a beam of length 50.0. For that
model that uses the Altair OptiStruct solver (see Figure 9), the beam is meshed with 299,200 nodes and 101,000 8-
node shell elements (101 in the cross section and 1000 along beam length). RBE2 elements are used at both ends
to apply loads and supports. The cross-sectional stiffness matrix resulting from this 3D shell finite element model
is as follows:

Ks =

124:8 �18:25 45:20 1:383 8:506 1:123

�18:25 42:28 �8:669 �0:9712 �1:681 1:631

45:20 �8:669 481:3 12:38 74:30 0:3971

1:383 �0:9712 12:38 6:546 8:895 �0:7576

8:506 �1:681 74:30 8:895 47:72 0:1589

1:123 1:631 0:3971 �0:7576 0:1589 4:299

2
6666664

3
7777775

3 106 ð41Þ

These results are obtained by computing the displacements and rotations of groups of nodes at different cross sec-
tion and differentiate these distributions with respect to the longitudinal axis. This methodology is presented in
Forcier and Joncas (2022).

When comparing both models, the differences are (absolute value of the difference normalized by the average of
both values):

2:3 0:3 2:1 2:3 2:5 4:0
0:3 4:8 1:2 4:9 2:2 5:6
2:1 1:2 0:1 0:1 0:1 3:1
2:3 4:9 0:1 0:0 0:0 0:2
2:5 2:2 0:1 0:0 0:0 1:4
4:0 5:6 3:1 0:2 1:4 0:1

2
6666664

3
7777775
% ð42Þ

For the extension-bending behavior (Ks33, Ks44, Ks55, Ks34, Ks35, and Ks45), the differences are well under 1%. The
differences are more significant for terms associated with transverse shear and torsion but are, however, limited to
6%, which is considered satisfactory.

Figure 10 shows the warping displacement results under a torsional load for both of these models. The warping
displacement fields are very similar on both models and the extreme values are within a 5% difference range.

Finally, it is interesting to compare these results with those obtained when using offset nodes on the airfoil con-
tour (nodes on the outside surface and thickness built toward the interior). When using the proposed model, the
differences with the solution obtained with mid-surface nodes (equation (40)) are

Figure 9. 3D shell finite element model of verification case 6: (a) full model and (b) close-up.
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2:9 1:1 2:9 0:9 3:5 39:9
1:1 8:6 1:7 18:4 4:7 53:5
2:9 1:7 0:4 1:4 1:2 38:5
0:9 18:4 1:4 0:4 1:4 10:3
3:5 4:7 1:2 1:4 1:4 30:5

39:9 53:5 38:5 10:3 30:5 10:0

2
6666664

3
7777775
% ð43Þ

The difference for extension and bending is small, being limited to 1.4%. When looking at transverse shear and tor-
sion, the differences are higher but limited to 10%. Higher error values are experienced for coupling terms of lower
importance (Ks16, Ks24, Ks26, Ks36, and Ks56).

When comparing the difference between the mid-surface node solution (Eq. 41) and the offset node solution of
the 3D shell finite element model, the extension and bending behavior are still correctly modeled, but the error is
now 36% on the torsional stiffness (Ks66) and in the same range for transverse shear stiffness (Ks12, Ks22, and Ks12).
This result is not surprising since the difficulty of obtaining good results for torsion from a shell finite element
model using offset shells has been reported by Laird et al. (2005), Branner et al. (2007), Fedorov and Berggreen
(2014), and Tavares et al. (2022).

It is interesting to note that the proposed cross-sectional finite element model is less affected by this problem
than 3D shell finite elements. Furthermore, as suggested by Tavares et al. (2022), increasing the drilling degree of
freedom stiffness reduces the error. In this particular case, the difference between the offset node solution and the
mid-surface node solution resulting from the proposed cross-sectional finite element model presented in equation
(43) can be reduced to maximum values of 1.4% for extension and bending terms (Ks33, Ks44, Ks55, Ks34, Ks35, and
Ks45), 1.0% for transverse shear terms (Ks11, Ks22, and Ks12), 1.2% for torsion term (Ks66) and 10.6% for all other
coupling terms. These results are satisfactory, but more research needs to be done to optimize the drilling degree
of freedom stiffness values of the proposed cross-sectional finite element.

Conclusion

In this paper, a thin-walled implementation of the Nonhomogeneous Anisotropic Beam Section Analysis
(NABSA) method has been proposed using a finite element formulation similar to the pure displacement formula-
tion used for shell elements. After a recall of the NABSA method, its thin-walled implementation was presented
for a general n-node line element.

Figure 10. Verification case 6: Warping displacement uz for Mt = 1: (a) proposed cross-sectional finite element model and (b) 3D
shell finite element model (a slice of elements at beam mid-length is presented).
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A 3-node element implementation was then verified against different cases for which an analytical or numerical
solution was obtained. These verification cases covered a broad range of possible composite beam behaviors: geo-
metric coupling, material couplings due to off-axis fiber, open sections, multicell sections, nodes located on the
shell bottom surface, nonsymmetrical, and unbalanced laminates. The results obtained from the proposed model
showed very good agreement with the analytical and numerical solutions.

The proposed method allows the computation of the beam cross-sectional stiffness matrix as do the classical
NABSA or VABS methods does, but facilitates model construction by providing a natural through-the-thickness
direction to define the material coordinate system. It also facilitates the computation of the stresses and strains in
different laminate layers and of shell internal loads (such as shear flow, for instance). Finally, it provides models
that are smaller and compute faster than do classical NABSA or VABS methods using two-dimensional discretiza-
tion of cross sections with triangular or quadrangular elements.
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