
Chapter 10
How to Manipulate? Kinematics,
Dynamics and Architecture of Robot
Arms

Bruno Belzile and David St-Onge

Learning Objectives

The objective at the end of this chapter is to be able to:

• recognize the architecture and mobilities of a robot arm;
• solve the forward and inverse kinematics problem of serial and parallel manipu-
lators;

• obtain the Jacobian relating the velocities of the joints to the end-effector;
• analyze the Jacobian to obtain the different singularities and understand their
physical meaning;

• obtain the equations defining the dynamics of a robotic manipulator.

Introduction

Manipulators are not fundamentally different than any other robotic systems regard-
ing their kinematics and dynamics. They are defined by their number of degrees-
of-freedom (DoF) and their architecture, which are critical for the envisioned appli-
cation. This chapter will provide you with an overview of the kinematics of robot
arms, including the direct kinematics problem (DKP), the inverse kinematics problem
(IKP) and the different types of singularities and how to find them. As kinematics
alone is not sufficient for advanced control, you will need to understand also the
dynamics of a robotic manipulator; we will cover it briefly.
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An Industry Perspective

Juxi Leitner, Co-Founder

LYRO Robotics.

My background is in computer science. I started programming computerswhen
I was young (and there was not much else to do in my very tiny hometown in
the middle of the alps).

When I was about 15-16, I realised that most of my code lives in a computer
and did not really interact or change things in the real world. I started to become
more andmore interested in robotics and getting inspired by themovies coming
out then, such as The Matrix, I robot, and Minority Report (I wanted to build
those spider robots!) So, I looked for ways to learnmore about it, and I enrolled
in a Joint European Master Degree in Space Robotics.

I have researched robotics in academic settings for over a decade before trying
to transfer the technology into real-world applications with our current startup
LYRO Robotics.

Initially, I was looking at robot swarms andmulti-robot coordination (for space
exploration particularly), but I got lucky and was able to attend a summer
programme in Lisbon to work with the then in-development iCub European
Humanoid. I was fascinated by how easy certain tasks come to us, yet how
hard they are for robotic systems, like detecting the world around the robot
(even how to decide what to focus your "eyes"/cameras on) or how hard it is
to pick up an object, even a simple one from a table in front of the robot.

That was eye-opening, and I got excited by the topic of embodiment and how
to integrate perception and smarts with the physicality of the robotic system
to enable physical interaction with the world! I still find it fascinating, and it
is more than 17 years later :)

Another pivotal moment for me was entering and eventually winning the Ama-
zon Robotics Challenge in 2017. There are specific things that industrial robots
were designed for, and it’s not picking random objects out of dynamic clutter.
Building the team (we were 20+) and designing the robotic system was really
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just a lot of fun. The part of solving a real-world problem with fundamental
tech we researched for years was particularly exciting (and frustrating at the
same time ;)
The win showed that thinking about all the options from hardware to software,
is important for designing robots that work. So, we started looking for real-
world applications and founded LYRO in 2019 to bring robots to markets that
are currently underserved due to various reasons (robots too expensive or too
incapable is a big one).
Lot of the theory discussed in this chapter are relevant in the real world. For
example, the iCubwas inspired by the kinematics of a young child. In particular,
the hand has a lot of degrees of freedom, three in the shoulder, two in the elbow,
and two in the wrist. Then the hand has nine more (given it has five digits).
It highlighted an interesting issue for me that the forward kinematics is pretty
straightforward (if you have correct measurements), but inverse kinematics,
like when I have a position of an object I want to grasp, how do I need to
move my various joints, is a very hard and tricky problem with singularities
and non-linearities everywhere.
During my PhD, we regularly had to fix the cables in the iCub’s arm due to us
running into (or over) limits and breaking things!
I work in Robotic Grasping, and the advent of machine learning 20 years
ago, and deep learning ten years ago has clearly had an impact. However,
while “grasping is solved” is an often-cited quote, it is still non-trivial to get
a robotic arm to pick up any random object in any random configuration and
perform some useful task with it.
The area is expanding, which is good, but it lacks reproducibility which is
slowing down progress.
On the other hand, it is a very exciting time to enter as the whole field shifts
more towards robots that perform tasks in a smart fashion rather than "simply"
perform the same action over and over again.

Architectures

The physical embodiment of a roboticmanipulator (wewill use the term robot loosely
for this chapter) is a kinematic chain composed by a set of rigid bodies, called links,
connected in series together by joints (formally known as kinematic pairs). In other
words, a joint constrains the motion between two bodies. There are two types of
joints, namely lower kinematic pairs (LKP) and higher kinematic pairs (HKP). By
definition, the former involves “a contact taking place along a surface common to
the two bodies” (Angeles, 2014). You most likely encountered already the two most
common joints that belong to this category: the revolute (rotation, R) and prismatic
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(translation, P) joints. While there are also four other types of LKP, helical (screw,
H), cylindrical (C), universal (U) and spherical (S), all of them can be obtained
with a combination of revolute and prismatic joints. Therefore, the content of this
chapter will nearly exclusively focus on those two types of joints. While most joints
commonly used in robots only have a single degree-of-freedom (DoF), namely the
revolute and prismatic joints mentioned above, other types of joints, such as the
spherical and cylindrical joints, exist, with, respectively, three and two DoFs. As it
will be seen in the subsection on wrist-partitioned serial manipulators, the last three
revolute joints of this type of robot are equivalent to a spherical joint.

The architectures of robotic manipulators can be classified into two main cate-
gories: serial and parallel. The former, more common in the manufacturing industry,
consist of manipulators made of simple and open kinematic chains. They are known
for their reach and simplicity. The Kinova Gen3 lite, shown in Fig. 10.1, falls into
this category with its 6R kinematic chain,1 i.e., an open loop of six actuated revolute
joints in a serial array. The latter, parallel manipulators, are based on complex kine-
matic chains made of at least one loop. They are known for their structural rigidity,
speed and the ability to lift a larger payload with respect to the robot mass. While for
the serial manipulator, most actuators need to be moved during the robots’ motion,
the actuators of a parallel manipulator can all be attached rigidly to the base.

Manipulators can also be classified by their mobility, which include their DoFs
and the type ofmotion they can generate. For instance, one of themost important type
of robotic manipulators is the Schönflies-motion generators (SMG). These 4-DoF
robots, capable of three translations and one rotation about an axis of fixed direction
(usually the vertical axis), are commonly called SCARA-like robot, after one of
the first and well-known SMG, the Selective-Compliance Assembly Robot Arm
(SCARA), a serial robot with one prismatic and three revolute joints (Makino et al.,
2007). These manipulators can have a serial or a parallel architecture. Nowadays,
most industrial manipulator will have 5–7 DoFs, such as the Kinova Gen3 and Gen3
lite.

Kinematics of Serial Manipulators

Serial manipulators are considered simple kinematic chains, i.e., each link can be
coupled via one or two joints, to one or two links. The first link is the base and the
last link is the end-effector (EE), sometimes called tool. In the sequel, we will take
a closer look to the direct and inverse kinematics of serial manipulators.

Direct Kinematics

Kinematics are used to describe themotion of a robotwithout considering the dynam-
ics, namely the forces and the torques causing the motion. Therefore, kinematics

1 An underline letter representing a joint means it is actuated.
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Fig. 10.1 Kinova Gen3 lite,
a serial 6-DoF robotic
manipulator

problems are geometric problems. First, we consider the direct kinematics (DK),
sometimes called forward kinematics (FK), of a serial robot. The DK equations are
used to map the joint variables, called the posture or configuration of the robot,
into the position and the orientation of the EE, namely its pose. In the end, you
will obtain an explicit system of nonlinear equations to compute p = [px py pz]T ,
the three-dimensional vector representing the Cartesian position of the EE, as well as
a 3 × 3 orthogonal orientation (rotation) matrixQmade of three unit vectors parallel
to the X -, Y - and Z-axes of the EE (expressed in the base reference frame). Both p
and Q can be assembled into a single 4 × 4 homogeneous matrix, as you will see.

Denavit-Hartenberg Convention

It is impossible to discuss the subject of direct kinematics of serial robots without
bringing up the Denavit-Hartenberg convention. It is a powerful tool that will help
you solve the forward kinematics of a serial manipulator in a systematic way. Since
thismethodwas first introduced byHartenberg andDenavit (Hartenberg andDenavit,
1964), some variations were proposed. Here, we use Paul’s notation, also known as
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the distal variant (Lipkin, 2008). Each link is numbered from 0 to n, 0 being the base,
while n is the nth link, namely the flange of the robot to which the end-effector is
attached. The ith joint is defined as the one connecting the (i − 1)th and ith links.
While the forward kinematics of a serial robot can be solved without the use of the
DH convention (or any other), it simplifies considerably the process and can be easy
understood by other engineers familiar with the DH notation. Brace yourself, the
following lines cover several definitions and formulas, but the procedure quickly
become easy to use after trying some examples. For each link, a Cartesian frame is
defined. Two such frames are shown in Fig. 10.2. You should note that the (Xi,Yi,Zi)
axes are rigidly attached to the (i − 1)th link. The following convention is used:

1. Zi is the axis of the ith kinematic pair/joint.
2. Xi is the common normal between Z(i−1) and Zi. Contrary to Zi, which does

not have a prescribed direction, Xi is oriented from Z(i−1) toward Zi. If they
intersect, resulting in an undefined direction for Xi, the convention is to use the
cross product of unit vectors parallel to Z(i−1) and Zi ii = k(i−1) × ki. In the case
the former and the latter are parallel, Xi is arbitrarily chosen to complete the
Cartesian frame, i.e., orthogonal to Z(i−1) and Zi.

3. with the right-hand rule,2 Yi is defined.

With these frames and their respective axes, four parameters are defined for i =
1 . . . n: θi, αi, di, ai, i = 1 . . . n, being respectively the joint angle, the link twist, the
link offset and the link length. They are defined below:

1. ai is the distance3 between Zi and Z(i+1) along X(i+1).
2. di is the coordinate,4 along Zi, from the origin of the ith frame to the intersection

with X(i+1).
3. αi is the angle between Zi and Z(i+1), measured with respect to the positive

direction of X(i+1).
4. θi is the angle between Xi and X(i+1), measured with respect to the positive

direction of Zi.

An homogeneous transformation matrix, as defined in Chap. 6 (Section 6.4.4), is
obtained from these parameters, i.e.,

Hi
i−1 ≡

⎡
⎢⎢⎣
cos θi − sin θi cosαi sin θi sin αi ai cos θi
sin θi cos θi cos θi − cos θi sin αi ai sin θi
0 sin αi cosαi di
0 0 0 1

⎤
⎥⎥⎦ (1)

2 As explained in Chap. 4 the thumb of the right hand points along the direction of the Z-axis; the
curl of the fingers while closing the hand represents a motion from the X -axis toward the Y -axis.
3 Always positive by definition.
4 Being a signed distance, it can be negative.
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Fig. 10.2 Frames’ representation in the DH convention

where subscript refers to the reference frame in which the coordinates are given,
(i − 1) in this notation. It can also be separated into the rotation matrixQi

i−1 and the
displacement vector ai, i.e.,

Hi
i−1 =

[
Qi

i−1 a
i
i−1

0T 1

]
(2)

The orientation and position of the EE are thus obtained by multiplying the indi-
vidual transformation matrices associated with the DH parameters, giving us
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6
5 (3a)
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[
Q p
0T 1

]
= H1
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5
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6
5 (3d)

where H is the homogeneous transformation matrix representing both the position
and orientation of the EE. For the sake of brevity, in the sequel, if only a subscript is
given for a rotation/transformation matrix, it is given in the previous reference frame.
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Fig. 10.3 DH frames for each joint for the Kinova Gen3 lite (extracted from the manipulator user
manual)

For a joint with a single DoF, such as a revolute or a prismatic joint, only one of
the four parameters (ai, di, θi, αi) is a variable, the others are constant. As previously
mentioned, a homogeneous transformation matrix is characterized by six parameters
in 3D space. Here, this number is reduced to four since, with the DH convention,
the location of the origin of frame i is not arbitrarily chosen. Indeed, we have two
constraints for the X -axis of each subsequent frame: (1) Xi must be normal to Zi
and (2) it must also intersect it. The frame is rigidly attached to link i, but it is
not necessarily located at the end of the link, as one may expect. In fact, it may lie
outside the link itself. The reduced number of parameters defining the transformation
matrices is one of the main assets of the DH notation.

The DH frames applied to the Kinova Gen3 lite are shown in Fig. 10.3, and the
corresponding DH parameters are detailed in Table 10.1. Since the six joints of the
Gen3 lite are revolute, all θi are unknowns. In Chap. 18, more precisely in Project 3,
you will have to find the DH parameters of a 3-DoF version of this manipulator,5 as
well as compute its forward and inverse kinematics.

5 Three of its six joints will be locked.

http://dx.doi.org/10.1007/978-981-19-1983-1_18
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Table 10.1 DH parameters of the Kinova Gen3 lite

i 1 2 3 4 5 6

ai 0 a2 0 0 0 0

di d1 d2 d3 d4 d5 d6
αi π/2 π π/2 π/2 π/2 0

Inverse Kinematics

As mentioned at the beginning of this chapter, solving the IKP allows the engi-
neer to obtain the set of joint coordinates, namely the posture of the robot, from a
position and orientation of the end-effector, namely the pose. Contrary to the DKP,
which give only one EE pose from a set of joint coordinates, there may be more
than one solution to the IKP, i.e., more than one posture that corresponds to a posi-
tion/orientation of the EE. However, an analytical (symbolic and exact) solution to
the inverse kinematics is not necessarily always obtainable, depending on the archi-
tecture of the robotic manipulator. In some cases, a numerical approach is preferable.
Numerical approaches are also better fit for simulator compatiblewith variousmanip-
ulator architectures. The different solutions to the IKP are called configuration types.
Usually, while moving, a manipulator will keep the same configuration type, as alter-
nating from one configuration type to another requires large joint angle variations to
obtain, in the end, the same EE coordinates. Switching configuration can also risk
passing through a singularity, which we will discuss later. The controller of commer-
cially available manipulators takes these elements into account while computing the
positions and velocities of the joints.

To solve the IKP symbolically for the explicit equations, we start with the same
equations used above, i.e., the ones defined by the 4 × 4 homogeneous transformation
matrix, i.e., H. Since the last line is always [0 0 0 1], we thus have 12 nonlinear
equations, but only six unknowns in the case of a non-redundant6 spatial manipulator.
Of course, if the robot has additional joints, for example, to reach a target within
a cluttered workspace (ex. welding operations), the number of potential solutions
increases. Within this chapter, only non-redundant manipulators are considered.

As previously mentioned, while we have nine equations for the orientation of
the EE, only thhree are independent, giving us a system of six equations with six
unknowns (three for the orientation, three for the position). Solving the IKP for a
general serial manipulator is thus a challenging mathematical problem considering
the nonlinearity of the equations. However, you will find that most commercially

6 A spatial serial redundant manipulator has more than six joints. Notwithstanding the mechanical
limits of the joints, the limits of the reachable workspace and singularities, only six joints are needed
to reach any point with any orientation of the EE. You should be careful if you come across the
term “redundant,” as it can have different meanings depending on the context. A parallel robot can
be redundantly actuated, i.e., more actuators than DoFs, and any manipulator can be kinematically
redundant with respect to its task, for example, pointing tasks, which only require two DoFs.
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available manipulators fall in the special category of wrist-partitioned, greatly sim-
plifying the problem, as we will show below.

Wrist-Partitioned Manipulators
The architecture of decoupled serialmanipulator (wrist-partitioned)makes it possible
to separate the orientation problem from the position problem. Therefore, we obtain
explicit equations, avoiding the need for a numerical method to solve the IKP. The
problem is thus split into the inverse position kinematics and the inverse orientation
kinematics. By definition, the axes of the last three joints of decoupled manipulators
intersect. This point is known as thewrist center. Looking back to theDHparameters,
thismeans that a4 = a5 = a6 = 0. This alsomeans that the last threeDH frames share
the same origin. The coordinates of the latter are given by vector pw in frame 0, i.e.,

pw = a1 + Q1a2 + Q1Q2a3 + Q1Q2Q3a4 (4)

Since a4 = 0, a4 is not a function of θ4, as the equation of pw above. With Eq. (3b),
we can rewrite the above equation as

pw = p − Q1Q2Q3Q4a5 − Q1Q2Q3Q4Q5a6 (5)

which can be simplify, knowing that with a decoupled wrist, a5 = 0, as

pw = p − QQT
6 a6 (6)

This equation is solely function of constant DH parameters and the target position
and orientation coordinates of the EE in the case of an IKP. Therefore, the location
of the wrist, pw, can be computed in the base frame without the joint coordinates,
decoupling the position from the orientation.

In short, we solve the position problem by first computing the location of the wrist
with Eq. (6), then by isolating the first three joint coordinates in Eq. (4), which is a
simpler 3-DoF problem with three equations and three unknowns.
Example: 3-DoF Serial Manipulator
As an example, we can solve 3-DoF inverse position problem for a generic serial
manipulator with three revolute joints. It should be noted that the procedure below
may need to be slightly adapted in certain special cases (null DH parameters, certain
angles, division by zero, etc.). First, we need to rewrite Eq. (4):

QT
1 (pw − a1) = a2 + Q2a3 + Q2Q3a4 (7)

This can be done because rotation matrices are orthogonal, thus Q−1
i = QT

i . Devel-
oping the above equation in terms of its components, we have

A cos θ2 + B sin θ2 = xw cos θ1 + yw sin θ1 − a1 (8a)

A sin θ2 − B cos θ2 = cosα1(yw cos θ1 − xw sin θ1) + (zw − b1) sin α1 (8b)

C = sin α1(xw sin θ1 − yw cos θ1) + (zw − b1) cosα1 (8c)
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with

A =a2 + a3 cos θ3 + b4 sin α3 sin θ3 (8d)

B = − a3 cosα2 sin θ3 + b3 sin α2 + b4 cosα2 sin α3 cos θ3 + b4 sin α2 cosα3 (8e)

C =b2 + a3 sin α2 sin θ3 + b3 cosα2 − b4 sin α2 sin α3 cos θ3 + b4 cosα2 cosα3

(8f)

We can see that the right-hand side of Eqs (8a–8c) is only function of θ1, the
position of the wrist and the DH parameters. Let

D =xw cos θ1 + yw sin θ1 − a1 (9)

E = cosα1(yw cos θ1 − xw sin θ1) + (zw − b1) sin α1 (10)

we can cast Eq. (8a–8b) in matrix form, i.e.,

[
A −B

−B A

] [
cos θ2
sin θ2

]
=

[
D
E

]
(11)

We are now able to compute explicit functions of sin θ2 and cos θ2:

cos θ2 = (AD − BE)/(A2 + B2) (12)

sin θ2 = (BD − AE)/(A2 + B2) (13)

which leads to
θ2 = arctan2(sin θ2, cos θ2) (14)

Obviously, θ2 cannot be computed right away since the values of the other two
joint angles are needed. To this aim, we need to make θ2 disappear. This is done
by calculating the sum of squares of each side of Eq. (8a–8c). Knowing sin2 θ2 +
cos2 θ2 = 1, we obtain

A2 + B2 + C2 = x2w + y2 + (zw − b1)
2 + a21 − 2a1xw cos θ1 − 2a1yw sin θ1 (15)

The left-hand side of the above equation is only a function of DH parameters and
θ3, while the right-hand side is only dependent on DH parameters and θ1. Moreover,
Eq. (15) is linear in sin θ1, sin θ3, cos θ1 and cos θ3. Computing the sum of the squares
of Eq. (8a–8b) would not have been useful, here, to eliminate θ2, as the resulting
equationwould not have been linear in the termsmentioned above,which is necessary
for the following steps. Therefore, Eq. (15) is rewritten as

F1 cos θ1 + G1 sin θ1 + H1 cos θ3 + I1 sin θ3 + J1 = 0 (16)

where F1, G1, H1, I1 and J1 are only functions of DH parameters and the position of
the wrist, all these terms being known at this stage. Then, Eq. (8c) is rewritten in a
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similar form, i.e.,

F2 cos θ1 + G2 sin θ1 + H2 cos θ3 + I2 sin θ3 + J2 = 0 (17)

Again, F2, G2,H2, I2 and J2 are only functions of DH parameters and the position of
the wrist. Having two linear equations and four unknowns, the next step is obtaining
explicit expressions of cos θ1 and sin θ1, as we did with θ2. Thus, we obtain

cos θ1 = −G2(H1 cos θ3 + I1 sin θ3 + J1) + G1(H2 cos θ3 + I2 sin θ3 + J2)

F1G2 − F2G1
(18)

sin θ1 = F2(H1 cos θ3 + I1 sin θ3 + J1) − F1(H2 cos θ3 + I2 sin θ3 + J2)

F1G2 − F2G1
(19)

θ1 = arctan2(sin θ1, cos θ1) (20)

Finally, we eliminate θ1 by computing the sum of the sin2 θ1 and cos2 θ1, which
results in

K cos2 θ3 + L sin2 θ3 + M cos θ3 sin θ3 + N cos θ3 + P sin θ3 + Q = 0 (21)

where the coefficients in front of the trigonometric functions of θ3 are functions of
Fi, Gi, Hi, Ii and J2i, for i = 1, 2, which are in turn functions of DH parameters
and the position of the wrist. We, therefore, have a nonlinear equation with known
coefficients where the only unknown is θ3. To solve this implicit equation, we use
a well-known identity in the field of kinematics, the Weierstrass substitution (also
known as the tangent half-angle substitution):

cos θ3 ≡ 1 − T 2
3

1 + T 2
3

, sin θ3 ≡ 2T3
1 + T 2

3

, T3 = tan(θ3/2) (22)

With this substitution, Eq. (21) is rewritten as an equation of degree four in T3:

RT 4
3 + ST 4

3 +UT 2
3 + VT3 + W = 0 (23)

All four possible values for T3 are thus obtained by computing the roots of the above
equation. These values are then used to calculate the solutions for θ3 with

θ3 = 2 arctan T3 (24)

The values for the remaining joint coordinates are then computed with first Eq. (20)
thenEq. (14), for θ1 and θ2, respectively. Therefore,we have solve the inverse position
problem for a 3-DoF serial manipulator, obtaining four sets of joint coordinates.
If we replace the revolute joints with prismatic joints, the problem becomes less
challenging to solve, as two prismatic joints (and one revolute) lead to a maximum
of two solutions to the inverse position problem and three prismatic joints lead to
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only one solution to the inverse position problem. The position of the wrist now
known; the next step is to find the solutions for the remaining three joints.

Spherical Wrist
The first three rotation matrices Q1, Q2, Q3 now fully known; the next step is to
compute the solutions for the last three transformationmatrices,which are function of
the last three joint coordinates. First, we recall Eq. (3a) and rewrite it with everything
known on the right, i.e.,

Q4Q5Q6 =R (25a)

R = QT
3Q

T
2Q

T
1Qd =

⎡
⎣
r11 r12 r13
r21 r22 r23
r31 r32 r33

⎤
⎦ (25b)

Now you should remember that according to the DH notation, the angle between
the axes Z5 and Z6 is α5. These two axes are defined by the unit vectors e5 and e6.
Therefore, according to the dot product, we have

e5 · e6 = cosα5 (26)

We need to express these two vectors in one single reference frame. The DH frame 4
is chosen since it simplifies the equations. In this frame, e5 is simply the last column
of Q4. As for e6 is the last column of Q4Q5. To avoid introducing more than one
unknown in the equation, we use the fact that

Q4Q5 = RQT
6 (27)

We thus obtain an equation where θ4 is the only unknown variable:

X cos θ4 + Y sin θ4 = Z (28a)

where

X = − sin α4(r22 sin α6 + r23 cosα6) (28b)

Y = sin α4(r12 sin α6 + r13 cosα6) (28c)

Z = − cosα4(r32 sin α6 + r33 cosα6) + cosα5 (28d)

Using the Wieirstrass substitution introduced previously, the above equation is then
transformed into a quadratic equation in T4, where the roots are computed and sub-
stituted in θ4 = 2 arctan T4. To find the possible values for the remaining to joint
angles, we need to go back to Eq. (25a). We keep only the unknown terms on the
lefthand side by premultiplying by QT

4 , resulting in

Q5Q6 = QT
4R (29)
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By developing the components of the above equation and by simple inspection, we
find

cos θ6 = r12 sin α4 sin θ4 − r22 sin α4 cos θ4 + r32 cosα4 − cosα5 sin α6

sin α5 cosα6
(30a)

sin θ6 = r11 sin α4 sin θ4 − r21 sin α4 cos θ4 + r31 cosα4

sin α5
(30b)

As previously done, we put both values into

θ6 = arctan2(sin θ6, cos θ6) (31)

Finally, θ5 is found in a similar fashion but with Eq. (27) instead. By inspection, we
find

cos θ5 =cosα4 cosα5 − r32 sin α6 − r33 cosα6

sin α4 sin α5
(32a)

sin θ5 = r31 cos θ6 − r32 cosα6 sin θ6 + r33 sin α6 cos θ6

sin α4
(32b)

and we compute
θ5 = arctan2(sin θ5, cos θ5) (33)

Other Manipulators
In the case of a serial manipulator without a decoupled wrist, there is no simple
recipe to solve the IKP. In some case, a numerical solver is necessary to obtain the
joint coordinates from a set of EE coordinates. In other cases, explicit equations can
be obtained, for instance, the Kinova Gen3 lite, but they are unique to the robots
with the same architecture. However, while the solutions are different, the approach
to solve the IKP of non-wrist-partitioned manipulators is generally similar, which
is reducing the number of unknowns to only one to obtain the roots of a univariate
polynomial equation to compute the values for one joint coordinate, then computing
those for the other joints by backsubstitution, as we did with the inverse position
problem of the wrist-partitioned manipulator. Indeed, this approach relies mostly on
trigonometric identities, e.g.:

• sin2 θ + cos2 θ = 1
• sin α sin β + cosα cosβ = cos(α − β)

• cosα cosβ − sin α sin β = cos(α + β)

• sin α cosβ + cosα sin β = sin(α + β)

• sin α cosβ − cosα sin β = sin(α − β)

and the concept of dyalitic elimination. The latter is used to reduce the number of
unknowns in a system of non-homogeneous equations. The procedure consists of
four steps:
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1. Rewrite the equations as polynomial expressions where one of the variables is
included into the coefficients; this variable is dubbed the eliminated variable.

2. As many equations as the number of unknowns is needed; therefore, we may
need to generate a new one by multiplying one of the equations by one of the
unknowns, for instance, the equations are then casted into matrix form Ax = 0,
where A is a function of powers of the eliminated variable only, and x of the
other unknowns; it should be noted that the last component of x is equal to 1.

3. Since one component of x is not equal to zero by definition, Amust be singular;
thus, its determinant has to be equal to zero; the next step is thus to compute the
roots of det(A) = 0 to find the possible values of the eliminated variable.

4. The last step is to compute the null space of A; knowing the last component
must be equal to 1, we simply need to scale the obtain vector to make sure its
last component is equal to 1.

Example: IKP of the Kinova Gen3 lite
The inverse kinematics problem of the Kinova Gen3 lite can be solved without
the use of a numerical approach. Considering the number of joints, a large set of
solutions are obtained for each feasible position and orientation of the end-effector.
The methodology to solve the IKP of the Kinova Jaco manipulator, which shares an
architecture similar to the Gen3 Lite, can be found in the literature (Gosselin and
Liu, 2014). The feasible solutions for an arbitrarily chosen pose of the EE are shown
in Fig. 10.4. Four are shown here, but more solutions could have been obtained if
we did not take into account the joint rotational limitations. One unique solution can
be chosen with a particular criterion, for instance, to minimize the joint rotations,
to minimize the torque generated by joint actuator to lift a payload, to simply avoid
obstacle, etc. While the topic of the optimal solution to the IKP will not be covered
in this chapter, numerous criteria can be found in the literature.

Numerical Approach to the IKP
Themethod presented above to find the symbolic solution to the IKP is not necessarily
adequate to all practical use cases. For instance, computing the roots of a high-degree
polynomial, which is often the case with manipulators with several DoFs, may lead
to numerical instabilities; thus, imprecision on the values of the joint coordinates
obtained. The analytical approach may not be fast enough as well. Therefore, to
avoid numerical instabilities and finding the symbolic solution to a challenging IKP,
the numerical approach is often used in the industry. To this regards, we introduce the
Newton-Gauss algorithm, but other avenues are possible. You first need to use the
orientation and position of the end-effector to obtain a system of nonlinear equations
that can be written as

f(x) = 0 (34)

Let the desired orientation matrix (defined for instance by Euler angles) and desired
position vector

Qd = [
qd ,1 qd ,2 qd ,3

]
, pd = [

px,d py,d pz,d
]T

(35)
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Fig. 10.4 Possible postures
for the same EE pose

(a) Solution #1 (b) Solution #2

(c) Solution #3 (d) Solution #4

and the solution to the forward kinematics defined in Eq. (3a–3b). The former can
also be shown in a format similar to Qd and pd :

Q = [
q1 q2 q3

]
, p = [

px py pz
]T

(36)

For a generic 6-DoF serial manipulator, we thus have a system of 12 equations:
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f =

⎡
⎢⎢⎣
q1 − qd ,1

q2 − qd ,2

q3 − qd ,3

p − pd

⎤
⎥⎥⎦ = 0 (37)

where f is a 12-dimensional vector, 0 is the null vector of the same dimension and
the six unknowns are the joint coordinates we are looking for. The Newton-Gauss
algorithm can now be applied to find x. Through this process, we will find a sequence
of approximations of x, denoted x1, x2, . . . , xk converging toward the solution of the
IKP. The next estimation is denoted xk+1. This algorithm is based on the Taylor series
of the first degree; therefore, we have

xk+1 = xk + �xk (38a)

and
f(xk+1) = f(xk + �xk) = f(xk) + Jf (xk)�xk = 0 (38b)

where Jf (xk) is the mathematical Jacobian of f with respect to x (Section 6.6.2), i.e.,
Jf = ∂f/x), evaluated at xk . It should not be confused with the Jacobian(s) of the
manipulator, which will be introduced later in this chapter. Equation (38b) can be
rewritten as

Jf (xk)�xk = −f(xk) (39)

To be able to compute the next increment�xk to obtain�xk+1, we thus need to solve
the overdetermined system of equation defined by the above equation (Jf being a
tall matrix, i.e., more rows than columns). Since you nearly never have an exact
solution for an overdetermined system, we will find the solution minimizing the
least squares of the error, known as the least square solution. This is done with the
left Moore-Penrose generalized inverse JLf (Section 6.3.3), i.e.,

JLf =(JTf Jf )
−1JTf (40a)

�xk = − JLf (xk)f(xk) (40b)

You should not compute the generalized inverse per se with the equation above,
since it is known to generate numerical issues (the condition number of JTf Jf is,
roughly, the square of that of matrix Jf itself, resulting into a badly conditioned
system (Forsythe, 1970)). Instead, algorithms such as the QR decomposition and
the householder reflections are used, achieving the same results while minimizing
potential numerical issues.7 Depending on the value ofx1, the algorithmwill converge
toward one feasible solution (if any). To obtain at least some of the other potential
solutions (thus different configuration types), several starting pointsx1 must be tested.

7 Section 6.10.
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Jacobian

The forward and inverse kinematics derived in the previous sections relate the joints
coordinates to the position and orientation of the end-effector and vice-versa. Now,
we consider the velocity of theEE and the joint rates.Mathematically, the relationship
between both is the Jacobian of the function defining the FKP. The Jacobian is useful
to plan smooth trajectory, to compute the wrench applied by the EE, to determine
singular postures, etc. For your understanding, awrench is the six-dimensional vector
representation of forces andmoments. Similarly, a twist is the six-dimensional vector
representation of linear and angular velocities. The expressions of the twist and the
wrench are, respectively,

t ≡
[
ω

ṗ

]
, w ≡

[
n
f

]
(41)

where ṗ, ω, f and n are the 3-dimensional linear velocity, angular velocity, force and
moment, respectively.

The Jacobian for a n-link serial manipulator is a (6 × n) matrix mapping the n
joint velocities into the six-dimensional vector consisting of the linear and angular
velocities of the EE, i.e., the twist mentioned above. Let uss assume only revolute
joints for now. Given the angular velocity vector of each link

ω0 = 0 (42a)

ω1 = q̇1e1 (42b)

ω2 = q̇2e2 + ω1 (42c)

ω3 = q̇3e3 + ω2 (42d)

. . .

ωn = q̇nen + ω(n−1) (42e)

where q̇i is the velocity of the ith joint, ei is a unit vector parallel to the axis of the
ith joint, namely the Zi-axis of the ith DH frame, and 0 is the three-dimensional
null vector. The angular velocity of the end-effector, ω, is simply equal to ωn. As
previously mentioned, the position of the EE is

p =
n∑

i=1

ai (43)

Differentiating the above equation with respect to time, we obtain

ṗ =
n∑

i=1

ȧi, where ȧi = ωi × ai, i = 1, . . . , n (44)

Substituing Eqs. (42a) into (44), and with some manipulation, we obtain
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ṗ =
n∑

i=1

q̇iei × ri, ri ≡
n∑
j=i

aj (45)

where ri is defined as the vector from the ith DH frame to the last DH frame attached
to the EE. We can rewrite the previous equations in a more compact matrix form:

ω = Aq̇, ṗ = Bq̇ (46)

with
A ≡ [

e1 e2 . . . en
]
, B ≡ [

e1 × r1 e2 × r2 . . . en × rn
]

(47)

Therefore, the Jacobian mapping q̇ into t is

J =
[
A
B

]
= [

j1 j2 . . . jn
]
, ji =

[
ei

ei × ri

]
(48)

where (3 × 6) submatrices A and B are, respectively, known as the orientation and
position Jacobians.

Earlier in this section, we assumed only revolute joints to compute the Jacobian of
a serial manipulator. If a ith joint is prismatic instead, the angular and linear velocities
of the ith link are written as

ωi = ωi−1, ȧi = ωi−1 × ai + ḋiei (49)

We can then prove that the contributing member of the ith joint to the Jacobian, i.e.,
the ith column, is expressed as

ji =
[
0
ei

]
(50)

Example: Jacobian of a 6-DoF Wrist-Partitioned Serial Manipulator
Since the axes of the last joints of a wrist-partitioned serial manipulator intersect at
one point, known as the spherical wrist, its Jacobian matrix is simplified, resulting
in

J =
[
J11 J12
J21 0

]
(51)

where 0, J11, J12 and J21 are (3 × 3) matrices. You should note that to simplify the
equations, the Jacobian matrix given here maps the joint rates into the twist of Pw,
namely the location of the intersection of the axes of the last three joints. Therefore,
we have

tw = Jq̇ (52)

where tw = [ωT ṗTw]T . As you can see, the angular velocity vectorω is not a function
of the location of Pw. The linear velocity of Pw, which is only a function of the first
three joint velocities, is computed with the following equation, i.e.,
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ṗw = q̇1e1 × r1 + q̇2e2 × r2 + q̇3e3 × r3 (53)

where ri is defined as the vector from the ith DH frame to the Pw and ei is the unit
vector parallel to the axis of the ith joint, as mentioned above. The angular velocity
of the EE is computed with the formula given earlier in this section, i.e.,

ω = q̇1e1 + q̇2e2 + q̇3e3 + q̇4e4 + q̇5e5 + q̇6e6 (54)

Therefore, we can determine that the submatrices included in expression (51) are

J11 = [
e1 e2 e3

]
(55a)

J12 = [
e4 e5 e6

]
(55b)

J21 = [
e1 × r1 e2 × r2 e3 × r3

]
(55c)

Singularities

In robotics, when a manipulator is in a singular posture, or simply in a singularity, it
cannot displace its EE along at least one direction. Mathematically, this corresponds
to a singular Jacobian matrix use to compute joint velocities. We assumed previ-
ously this matrix was non-singular, i.e., for a robot with six DoFs, its Jacobian is
inversible and its determinant is not equal to zero (Section 6.4). It might not be the
case for certain configurations. Beyond the numerical issue of inverting a singular
matrix, the corresponding posture of the robot also has a physical meaning related
to the limits of the workspace of the robot or a loss of mobility, as mentioned
above. Moreover, if we refer back to the configuration types discussed earlier in this
chapter, the singularities correspond to boundaries between these entities within the
workspace of the robot.

A posture close to a singularity is also problematic for a manipulator and a robot
in general, as the determinant of its Jacobian matrix will be close to zero, yielding
a division by a number close to zero. This will result in significantly high joint
velocities, which raises safety concerns and reduces the trajectory-tracking accuracy.
Let

t = J(q)q̇ (56)

where q̇, t and J(q) are, respectively, the n-dimensional joint-rate vector, the six-
dimensional EE twist and the 6 × n Jacobian matrix, where n is the number of joints.
It is thus trivial to see that any given feasible EE twist, namely its linear and angular
velocity, as defined in Sect. 10.4.4, is a linear combination of the joint velocities. To
be able to achieve any arbitrary value of t, the rank of J, which is a function of the
posture of the robot, i.e. q, must be equal to six for a robot in 3D space. If it is the
case, any given twist of the EE is feasible. However, it should be noted that since
the Jacobian is posture-dependent, it is not always the case. If the rank(J) becomes

http://dx.doi.org/10.1007/978-981-19-1983-1_6
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lower than six, this is call a singular posture, or, for brevity, a singularity. Depending
on which part of the Jacobian matrix generates a singularity, we can have a position
or an orientation singularity, each having a different physical interpretation.

Singularity of the Position Jacobian
For a 6-DoF wrist-partitioned serial manipulator, a singularity of the submatrix J21
causes a position singularity, corresponding to the impossibility of computing the
joint rates for this location. This occurs when the determinant of J21 is equal to zero.
Considering Eq. (51), the determinant can be written as

det(J21) = (e1 × r1) × (e2 × r2) × (e3 × r3) = 0 (57)

This situation occurs in two situations. First, you will find this type of singularity
when one column of J21 is equal to zero, for instance, when ei and r1 are parallel,
which is commonly called a shoulder singularity. This particular case corresponds
physically to the wrist center being located on the first joint axis, resulting in the
instantaneous loss of one DoF. It can also be true for the second or third joint (wrist
center being located on the ith joint axis), but this is usually avoided by carefully
designing the manipulator.

Otherwise, we can also have det(J21) = 0 when two columns of J21 become
coplanar, resulting in a rank-deficiency.Multiple postures/configurations of the robot
can lead to this, notably, but not only, a fully extended arm at the limit of the reachable
workspace. This includes elbow singularities, which occurs for vertically articulated8

manipulators such as the Meca500 sold by Mecademics.9 when the wrist center lies
on the plane passing through the second and third axes. This can also happen in theory
with the manipulator folded on itself, but mechanical limits normally prevents this
situation from occurring.

Singularity of the Orientation Jacobian
In the case of a wrist-partitioned manipulator, an orientation singularity occurs when
det(J12) = 0. This can only happen when e4, e5 and e6 are coplanar. In this con-
figuration, only angular velocity vector on the plane generated by the three vectors
mentioned above are possible at the EE. Considering the typical kinematic chain of
a serial wrist-partitioned manipulator, it generally occurs when the axes of the fourth
and sixth revolute joints are coincident. This type of singularity is sometimes called
a wrist singularity.

Singularities with a Non-Wrist-Partitioned Manipulators
We now have seen the different singularities within the workspace of a serial wrist-
partitioned manipulator thought an analysis of its Jacobian. Mathematically, you

8 A vertically articulated architecture is common for commercially available wrist-partitioned six-
axis serial manipulators: the axes of the second and third joints are parallel, the axes of the first and
fourth joints are orthogonal to the axes of the second and third joints and the axis of fifth joint is
orthogonal to the axes of fourth and sixth joints.
9 https://www.mecademic.com/en/what-are-singularities-in-a-six-axis-robot-arm.
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Fig. 10.5 Singular postures of the Kinova Gen3 lite (extracted from user manual)

can apply the same process to find singularities in the workspace of a non-wrist-
partitioned manipulator. However, we will look at the full Jacobian matrix in this
case, since we do not have decoupled kinematics for the orientation and position.
To this aim, we will use the Kinova Gen3 lite previously mentioned to illustrate the
process. Potential singular postures are shown in Fig. 10.5.

In this figure, from left to right, we have four different configurations correspond-
ing to singularities of Jacobian matrix that differ from a fully extended arm, another
singular configuration. We have, from left to right (all axes mentioned are illustrated
in red in the figure),

1. The axis of the first joint and the X -axis of the third DH frame, i.e., the common
perpendicular between the axes of joints 2 and 3, are parallel; the axes of joints
4 and 6 are also parallel.

2. The axes of the first and fourth joints are both parallel to the common perpen-
dicular between the axes of joints 2 and 3.

3. The axes of the third and fifth joints are parallel; the fourth joint is also parallel
to the common perpendicular between the axes of joints 2 and 3.

4. The axis of the third joint is parallel with the fifth joint axis and the fourth joint
axis is parallel with the sixth joint axis.

All four cases illustrated above involve a double alignment in the posture of the Gen3
Lite, which loses a DoFmomentarily. For example, in the second case, the EE cannot
move in the direction of the fourth joint axis. In the third and fourth cases, motion is
impossible in the direction of the axis of the third joint.

Kinematics of Parallel Manipulators

As we mentioned at the beginning of this chapter, parallel manipulators are known
for their structural rigidity, speed and the ability to lift a larger payload compared to
serial manipulators with similar mass and size. While their architecture is composed
of at least one loop, they commonly have more. Among the well-known parallel
architectures, the three-limb Delta (sometimes with a telescopic Cardan shaft to add
a fourth DoF) (Clavel, 1990) as well as the four-limb Par4 (Pierrot et al., 2003)
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Fig. 10.6 PPR-2PRP parallel robot, from (Joubair et al., 2012)

(Adept Quattro) have been patented and commercialized. Before starting with the
kinematics of parallel manipulators, you should know that the EE of a parallel robot
is commonly called the mobile (or moving) platform, considering it is attached to
the base with several limbs.

Direct and Inverse Kinematics

While solving the forward kinematics of a serial kinematic chain is generally a simple
task, it is not the case with parallel robots. Indeed, the tool we used in Sect. 10.4.2,
the Denavit-Hartenberg convention, is not appropriate for parallel manipulators, as
it only accepts a maximum of two joints for each link. In general, it is not possible
to obtain an explicit function of the Cartesian coordinates of the EE with respect to
the joint coordinates, even for a simple parallel robot. Therefore, iterative methods
are commonly used for this purpose.

Contrary to the forward kinematics, solving the IKP of a parallel robot is usually
less challenging than with a serial robot. We will obtain an implicit function equal
to zero where q and p are the variables, i.e.,

f(q,p) = 0 (58)

Example: Kinematics of a PPR-2PRP Parallel Robot
Here is a planar parallel robot with three prismatic actuated joints connected to three
limbs attached to the mobile platform, shown in Figs. 10.6 and 10.7. One is a PPR
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Fig. 10.7 Geometry of a
PPR-2PRP parallel robot,
from (Joubair et al., 2012)

chain, while the other two are PRP chains. The mobile platform’s coordinates are
(x, y, θ), and the joint coordinates are (ρ1, ρ2, ρ3). We thus need to find expressions
of the former as a function of the latter. Using simple geometric relationships, we
have:

θ = arctan

(
ρ3 + d3 − ρ2

s

)
(59a)

x =ρ1 + d1 (59b)

For the last Cartesian coordinate, knowing

h

x
= l

s
(60)

we can compute

y = ρ2 + (ρ1 + d1)
ρ3 + d3 − ρ2

s
(61)

These three expressions above represent the solution to the FKP. The solution to
the IKP is straightforward from this point:

ρ1 =x − d1 (62a)

ρ2 =y − x tan θ (62b)

ρ3 =y + (s − x) tan θ − d3 (62c)
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Jacobians

As mentioned above, the kinematics model of a parallel robot is generally expressed
as an implicit function, namely Eq. (58). By differentiating it with respect to time,
we have

Jṗ = Kq̇ (63)

where both J and K are Jacobian matrices.

Singularities

From these two Jacobian matrices, we can define three types of singularities:

1. Type I: WhenK is singular, i.e., det(K) = 0. This usually corresponds to a limit
of the reachable workspace or an internal limit of the workspace where two
branches of solutions to the IKP meet. Therefore, certain Cartesian velocities at
the EE will not be possible to generate.

2. Type II:WhenJ is singular, i.e., det(J) = 0. These singularities occur at locations
within the reachable workspace where two branches of solutions to the FKP
meet. Therefore, even for a fixed joint coordinates, an infinitesimal motion of
the end-effector is possible. This alsomeans that the robot cannot balance certain
external wrenches applied to the EE, thus resulting in a loss of control, which
must be absolutely avoided.

3. Type III: A combination of both types above, thus when det(J) = det(K) = 0.
In this case, Eq. (58) degenerates, resulting in an unusable EE. This kind of
singularity only exists for certain architectures.

Figure 10.8 depicts singular postures of a pantograph, a common five-bar mech-
anism that can be used as a planar parallel manipulator. The EE is on the middle
revolute joint and the two revolute joints attached to the base are actuated. As can
be seen in this figure, the EE cannot move further up since the mechanism is fully
extended for the illustrated type-I singularity. In the case of the type II singular pos-
ture depicted, it is impossible to control the vertical motion of the EE. With a small
perturbation, the EE could move up or down for the same velocities of the actuated
base joints.

Dynamics

According to the Merriam-Webster dictionary, dynamics is “a branch of mechanics
that deals with forces and their relation primarily to the motion but sometimes also to
the equilibrium of bodies.”10 Forces can be linear, but also rotational, namely torque.
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Type-I singularity Type-II singularity

non-singular posture

end-effector

actuated joint

Fig. 10.8 Pantograph, a 2-DoF planar parallel manipulator

The second Newton’s law is particularly significant when it comes to the quantitative
analysis of the dynamics of a system, as it states that “the time rate of change of the
momentum of a body is equal in both magnitude and direction to the force imposed
on it.”11 Similarly to kinematics, we can define two different problem:

• forward dynamics, from the actuators to the motion, useful for simulations;
• inverse dynamics, from the motion to the actuators, essential for control.

In this chapter, a brief overview of two approaches to compute the dynamics model
of a robot is given, namely the Euler-Lagrange and the Newton-Euler methods.

Euler-Lagrange

The Euler-Lagrange method is based on energy. The Lagrangian is defined as

L = T − V (64)

where T and V are, respectively, the total kinetic and potential energies in the sys-
tem. From the Lagrangian, the dynamics equations defining the robot’s motion are
computed with

d

dt

(
∂L

∂ q̇i

)
− ∂L

∂qi
= τi (65)

10 www.merriam-webster.com/dictionary/dynamics.
11 Definition from www.britannica.com/science/Newtons-laws-of-motion.
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Fig. 10.9 Geometry of a
2-DoF serial robot
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where the individual qi and τi are, respectively, the generalized joint coordinates and
torque (or force for a prismatic joint).

Example: Euler-Lagrange Applied to a 2-DoF Planar Manipulator
A simple 2-DoF serial planar manipulator is illustrated in Fig. 10.9. For the purpose
of this example, only the mass of each link is considered and not their moment of
inertia. The expression of total kinetic is

K = K1 + K2 = 1

2
m1v

2
1 + 1

2
m2v

2
2 (66)

where v1 and v2 are the magnitude of the linear velocity of masses m1 and m2,
respectively. We know, considering the geometry, that

v21 =ẋ21 + ẏ21 = r21 θ̇
2
1 (67a)

v22 =ẋ22 + ẏ22 (67b)

ẋ2 =(−l1 sin θ1 − r2 sin(θ1 + θ2))θ̇1 − r2 sin(θ1 + θ2)θ̇2 (67c)

ẏ2 =(l1 cos θ1 + r2 cos(θ1 + θ2))θ̇1 + r2 cos(θ1 + θ2)θ̇2 (67d)
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where m1, r1, l1, l2, r2, m2 and g are, respectively, the masses, distances between
the origin of each link and its CoM and lengths of the first and second links and the
gravitational acceleration. The total kinetic energy is thus

K = 1

2
m1r

2
1 θ̇

2
1 + 1

2
m2

(
(l21 + 2l1l2 cos θ2 + l22)θ̇

2
1 + 2(l22 + l1l2 cos θ2)θ̇1θ̇2 + l22 θ̇

2
2 )

)

(68)

Finally, again considering the geometry, the total potential energy is

T = T1 + T2 = m1gl1 sin θ1 + m2g (l1 sin θ1 + l2 sin(θ1 + θ2)) (69)

You can complete the procedure as an exercise.

Newton-Euler

The Newton-Euler approach is a recursive method. You first compute the angular
and linear velocities and accelerations of each link individually in the inertial frame,
starting from the base. Then, the forces and torques applied by each link on the
previous one are computed, starting from the end-effector. It is used here to solve
the inverse dynamics of serial manipulators.

Velocities and Accelerations
First, it should be noted that in this procedure, it is the velocity and acceleration
of the center of mass (CoM) of each body, not frame, that you need to compute.
The velocities and accelerations are obtained with the Algorithm 1. In this table, the
components of vectors ai and ei (cf. Fig. 10.2) in frame (i + 1) are

[ei]i+1 = [
0 sin αi cosαi

]T
(70a)

[ai]i+1 = [
ai bi sin αi bi cosαi

]T
(70b)

Forces and Moments
The next step is to compute the forces and moments on each link, starting with the
EE. The wrench applied by the (i − 1)th link on the ith link is defined as

wi = [
nT
i fTi

]T
(71)

where the three-dimensional vectors nT
i and fTi , are, respectively, the force and

moment associated to this wrench. One component of each wrench is the actua-
tion associated to the corresponding joint, namely the third component for a revolute
joint and the sixth joint for a prismatic joint. The remaining components are the
reaction force and moment between the two links. The procedure to compute the
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Algorithm 1 Velocities and accelerations
Require: [ω0]1, [ċ0]1, [ω̇0]1 and [c̈0]1
for i = 1 to n do

if ith joint is revolute then
[ωi]i+1 ← QT

i [ωi−1]i + θ̇i[ei]i+1

[ċi]i+1 ← QT
i [ċi−1]i + [ωi]i+1 × [(ai + si)]i+1 − QT

i [ωi−1 × si−1]i
[ω̇i]i+1 ← QT

i [ω̇i−1]i + θ̈i[ei]i+1 + θ̇i(QT
i [ωi−1]i) × [ei]i+1

[c̈i]i+1 ← QT
i [c̈i−1]i + [ω̇i]i+1 × [(ai + si)]i+1 + [ωi]i+1 × [ωi]i+1 × [(ai + si)]i+1 −

QT
i [ω̇i−1 × (ωi−1 × si−1)]i
else if ith joint is prismatic then

[ωi]i+1 ← QT
i [ωi−1]i

[ċi]i+1 ← QT
i [ċi−1]i + [ωi]i+1 × [(ai + si)]i+1 + ḋi[ei]i+1 − QT

i [ωi−1 × si−1]i
[ω̇i]i+1 ← QT

i [ω̇i−1]i
[c̈i]i+1 ← QT

i [c̈i−1]i + [ω̇i]i+1 × [(ai + si)]i+1 + [ωi]i+1 × [ωi]i+1 × [(ai + si)]i+1 −
QT

i [ω̇i−1 × (ωi−1 × si−1)]i + 2[ωi]i+1 × ḃi[ei]i+1 + b̈i[ei]i+1
end if

end for

wrench on each link is detailed in Algorithm 2. You may wonder where the effect of
gravity appears in the algorithm. To simplify the procedure while still obtaining an
equivalent solution, we use a simple trick. Here, we suppose a virtual acceleration
−g at the base of the robot, namely the first link. Therefore, even though the base is
fixed and not moving, we have

[c̈0]1 = [−g]1 (72)

where −g is the gravitational acceleration.

Algorithm 2Wrench on each link
[fn]n ← Qn[mnc̈n − f ]n+1
[nn]n ← Qn[Inω̇n + ωn × Inωn − n + (an + sn) × fn]n+1
for i = n − 1 to 1 do

[fi]i ← Qi[mi c̈i + fi+1]i+1
[fi]i+1 ← Qi[fi]i
[ni]i ← Qi[Iiω̇i + ωi × Iiωi + ni+1 + (ai + si) × fi − si × fi+1]i+1

end for

We now have all forces fi and moments ni; the final step is thus to compute what
we were looking for at the beginning, the actuation torques for revolute joints and
actuation forces for prismatic joint. This is done with the following two equations:

τi =eTi ni, for revolute joints (73a)

τi =eTi fi, for prismatic joints (73b)
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Chapter Summary

In this chapter, an introduction to the fundamentals of robotics manipulators, from
themechanics point-of-view, was given.We first introduced the typical architectures,
serial and parallel, their pros and cons, as well as notable characteristics such as their
DoFs and the type of motion they can generate. Then, we focused on the kinematics
of both categories, from the joints to the end-effector (direct kinematics) and the
other way around (inverse kinematics). While standard approaches exist for both
the forward and inverse kinematics of a serial manipulator, notably if it is wrist-
partitioned, it is not the case for their parallel counterparts. However, the IKP of
a parallel robot can generally be solved more easily. We have studied the relations
between the joint velocities and the twist of the EE, which includes its angular and
linear velocities. These equations can be put together to obtain the Jacobian matrix,
an useful tool in the analysis of serial and parallel robots. Indeed, from this matrix,
singular postures of the robot can be found: these configurations must be avoided,
because they may cause safety and control issues. Finally, we did a brief overview
of the dynamics of robotic manipulators, namely two common approaches, Euler-
Lagrange and Newton-Euler.

Revision Questions

Question #1
Which equations are valid (there could be more than one or none)?

1. Hworkshop
tool = H0

workshopH
0
1H

1
2H

2
3H

3
tool

2. Hworkshop
tool = H0

workshopH
0
1H

1
2H

2
3H

workshop
0

3. H0
3 = H0

1H
1
2H

2
3

4. H3
0 = H0

1H
1
2H

2
3

5. Hworkshop
EE = H0

workshopH
1
0H

2
1H

3
2H

EE
3

Question #2
Inverse kinematics makes it possible to obtain. . .

Please choose an answer:

1. the pose of the robot effector, based on its parameters and joint coordinates;
2. the values of the joint coordinates of the robot, from the pose of the effector and

the parameters of the robot;
3. the position of the robot effector, based on its parameters and joint coordinates.

Question #3
The kinematic chains of parallel robots are made of:

1. passive and active joints;
2. only passive joints;
3. only active joints.
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Table 10.2 DH parameters of a wrist-partitioned 6R manipulator

i 1 2 3 4 5 6

ai 0 135 mm 38 mm 0 0 0

di 135 mm 0 0 120 mm 0 70 mm

αi −π/2 0 −π/2 π/2 π/2 0

θi q1 q2 − π/2 q3 q4 q5 + π q6

Question #4
Regarding the computation of the Jacobian matrix of a serial manipulator, the vector
eworkshopi−1 represents:

1. the unit vector parallel to the X -axis of the (i − 1)th frame with respect to the
workshop;

2. the unit vector parallel to the Y -axis of the (i − 1)th frame with respect to the
workshop;

3. the unit vector parallel to the Z-axis of the (i − 1)th frame with respect to the
workshop.

Question #5
The DH parameters of a wrist-partitioned manipulator are given in Table 10.2.
First, compute the six homogeneous transformations matrices. Then, compute
the solution(s) to the inverse kinematics for a Cartesian position of the wrist of
(250, 0, 150) mm and an orientation with the Euler angles of (0◦, 90◦, 0◦) according
to the XYZ mobile convention.

Further Reading

This chapter only gave you a short summary on the mechanics of robotic manip-
ulators. If you want to learn more, you can first take a look into the original DH
notation and its variants. To this aim, you can refer to a paper published by Harvey
Lipkin (Lipkin, 2008). Moreover, given the fact that we did not go into the details of
the dynamics of robots, extensive literature can be found on this topic. Notably, you
can look into the Kane’s equations, similar to Lagrangian approach. Also, (Angeles,
2014) introduced an alternative method to solve the inverse dynamics of a robotic
system, the natural orthogonal complement (NOC). Regarding mathematical tools
useful for the analysis of the mobility, kinematics and dynamics of robotic systems
and mechanisms, you can take a look into group theory (Angeles, 2014), screw the-
ory (Davidson, 2004; Müller, 2017), where the twist and wrench concept originate,
and dual-numbers algeabra, useful to combine a translation and a rotation into one
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single variable. Finally, you can also look into the concept of constraint singularities
for parallel mechanisms (Zlatanov et al., 2002).
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