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ABSTRACT Machine Learning Operations (MLOps) is an approach to managing the entire lifecycle of a
machine learning model. It has evolved over the last years and has started attracting many people in research
and businesses in the industry. It supports the development of machine learning (ML) pipelines typical
in the phases of data collection, data pre-processing, building datasets, model training, hyper-parameters
refinement, testing, and deployment to production. This complex pipeline workflow is a tedious process of
iterative experimentation. Moreover, cloud computing services provide advanced features for managing ML
stages and deploying them efficiently to production. Specifically, serverless computing has been applied in
different stages of the machine learning pipeline. However, to the best of our knowledge, it is missing to
know the serverless suitability and benefits it can provide to the ML pipeline. In this paper, we provide
a systematic mapping study of machine learning systems applied on serverless architecture that include
53 relevant studies. During this study, we focused on (1) exploring the evolution trend and the main venues;
(2) determining the researchers’ focus and interest in using serverless on machine learning; (3) discussing
solutions that serverless computing provides to machine learning. Our results show that serverless usage is
growing, and several venues are interested in the topic. In addition, we found that the most widely used
serverless provider is AWS Lambda, where the primary application was used in the deployment of the
ML model. Additionally, several challenges were explored, such as reducing cost, resource scalability, and
reducing latency. We also discuss the potential challenges of adopting ML on serverless, such as respecting
service level agreement, the cold start problem, security, and privacy. Finally, our contribution provides
foundations for future research and applications that involve machine learning in serverless computing.
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INDEX TERMS Serverless, FaaS, function as a service, machine learning, systematic mapping, systematic
literature review, SM, SLR.

I. INTRODUCTION22

Cloud computing is beneficial to businesses of all sizes in the23

marketing sector. It offers the abstraction of online services24

hosted on the cloud rather than complex local infrastructure.25

These services include everything from simple cloud storage26

to cloud infrastructure platforms. Cloud computing offers dif-27

ferent benefits i.e.,high speed, efficiency and cost reduction,28

data security, scalability, back-up and data restore, control29

and level access, and unlimited storage capacity [1]. These30

The associate editor coordinating the review of this manuscript and

approving it for publication was Yongming Li .

services are offered in different proportions according to the 31

provided service, such as Infrastructure as a Service (IaaS), 32

Platform as a Service (PaaS), Software as a Service (SaaS), 33

Function as a Service (FaaS) or Serverless. 34

Moreover, these platforms have grown significantly over 35

the last decade and are widely adopted for the delivery of 36

computing services. In particular, serverless computing pro- 37

vides a simplified architecture in which code execution is 38

fullymanaged by the cloud provider , in such case, developers 39

can focus only on code writing, increasing their productivity. 40

Recently, serverless has been used as an infrastructure to build 41

total ML pipelines or partially with faster deployment and 42

elastic scalability. 43
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On the one hand, serverless popularity is increasing,44

and it is receiving attention from developers, especially45

after Amazon launched AWS Lambda in November 2014.146

Recently, Wen et al. [2] found that questions about Serverless47

on StackOverflow have grown 380% from 2015 to 2020.48

The size of the serverless market is estimated to grow from49

3.33 USD Billion in 2018 to USD 31.53 Billion in 2026 [3].50

On the other hand, ML has been widely used in cloud com-51

puting, mainly when it is divided into a small pipeline stage52

(ML as a Service). The need becomes to use Serverless since53

the high cost of cloud resource management.54

Thus, Serverless computing [4] is an interesting option55

regarding the resolution of small tasks, mainly when compa-56

nies cannot estimate the traffic of their ML applications, scal-57

ability, and cost accurately [5]. Furthermore, several studies58

are exploiting serverless computing to accomplish tasks of the59

ML pipeline, such as training [6], hyperparameter tuning [7],60

and model deployment [8].61

This paper aims to map the current state-of-the-art to62

understand how Serverless was used in the machine learning63

pipeline and the challenges and opportunities for different64

stakeholders.65

For achieving this goal, we perform a systematic mapping66

to answer three research questions by analyzing relevant67

studies. First, our study identified, classified, and evaluated68

the current state-of-the-art in machine learning on Serverless69

architecture. Next, we selected 50 primary studies from the70

Scopus database; then, we rigorously classified the studies to71

precisely categorize research results on ML and Serverless72

challenges.73

The audience of this study is composed of both74

(i) researchers interested in contributing to this research75

area and (ii) practitioners interested in understanding exist-76

ing research on machine learning applying Serverless77

architecture.78

The main contributions of this study is to respond these79

research questions:80

• WHAT ARE THE PUBLICATION TRENDS OF81

RESEARCH STUDIES ABOUT SERVERLESS ON82

MACHINE LEARNING?83

• WHAT IS THE FOCUS OF RESEARCH OF84

APPLIEDMACHINE LEARNING ON SERVERLESS85

COMPUTING ?86

• WHAT ARE THE POTENTIAL CHALLENGES OF87

ADOPTING MACHINE LEARNING ON88

SERVERLESS COMPUTING?89

The rest of the paper is organized as follows. In Section II90

we set the stage by giving the basic concepts around machine91

learning lifecycle and the serverless architecture. The design92

of the study is presented in Section III, whereas its results93

are elaborated in Sections IV. We have made a discussion94

in Section IV-C where we broadened our perspective and95

the potential implications for both researchers and practi-96

tioners. Threats to validity and related work are described in97

1https://docs.aws.amazon.com/lambda/latest/dg/lambda-releases.html

Sections V and VI. With Section VII, we close the paper and 98

discuss future work. 99

II. BACKGROUND 100

This section provides background information on defining 101

Serverless and ML pipeline, as we found during our system- 102

atic mapping. 103

A. MACHINE LEARNING PIPELINE 104

Microsoft team members introduced a typical ML pipeline 105

[10], where they show a series of steps chained together to 106

form the machine learning workflow essential stages. These 107

stages include data and model-oriented artifacts from data 108

collection and cleaning until model evaluation deployment. 109

These stages construct an ML pipeline lifecycle. Recently, 110

with the commercial use of AI, the MLOps field has been 111

introduced, aiming to automate the ML pipeline [11]. A stan- 112

dardML pipeline broadly consists of the following five stages 113

shown in Figure 1: 114

• Data retrieval: is the process of identifying and extract- 115

ing data from a database, based on a query provided by 116

the user or application. 117

• Data preparation: is the process of gathering, combin- 118

ing, structuring and organizing data. 119

• Model training: The process of training an ML model 120

involves providing the data features to an ML method or 121

algorithm to reduce errors and generalize the represen- 122

tations learned from the data. 123

• Model evaluation: is evaluating the built model against 124

certain criteria to assess its performance. Model per- 125

formance is usually a function defined to provide a 126

numerical value to help us decide the effectiveness of 127

any model. 128

• Hyperparameters tuning: is choosing a set of optimal 129

hyperparameters for a learning algorithm. A hyperpa- 130

rameter is a parameter whose value controls the learning 131

process. 132

• Model Deployment and monitoring: is the method by 133

which you integrate a machine learning model into an 134

existing production environment to make practical busi- 135

ness decisions based on data. 136

• Model Monitoring: is the close tracking of the perfor- 137

mance of ML models in production. 138

B. CLOUD PROVISIONING SERVICES 139

Cloud computing is a widely adopted paradigm for the deliv- 140

ery of computing services. Leading cloud platforms such as 141

AWS,2 Google Cloud,3 and Microsoft Azure4 offer a variety 142

of provisioning services that can be used for model serving. 143

In addition, they provide several architectures with different 144

access management. These are the list of the most common 145

cloud computing architecture. 146

2https://aws.amazon.com/
3https://cloud.google.com/
4https://azure.microsoft.com/en-us/

99338 VOLUME 10, 2022



A. Barrak et al.: Serverless on Machine Learning: A Systematic Mapping Study

FIGURE 1. Typical ML pipeline [9].

• Infrastructure-as-a-Service (IaaS). It provides only the147

base infrastructure instances (VMs). The end-user must148

configure andmanage the platform and environment and149

deploy applications.150

• Container-as-a-Service (CaaS). It is a form of151

container-based virtualization in which container152

engines (e.g., Amazon ECS5 and Google Kubernetes153

Engine6), orchestration, and the underlying computing154

resources are delivered to users as a service from the155

cloud provider.156

• Function-as-a-Service (FaaS). With FaaS, customers157

run applications as serverless functions (e.g., AWS158

Lambda7 and Google Cloud Functions8) and let the159

cloud platform to handle resource provisioning and160

management.161

C. SERVERLESS COMPUTING162

Serverless cloud computing is a model in which the ser-163

vice provider handles many tasks to ease certain burdens164

from the software developer(s). The provider is expected to165

automatically handle the necessary administration, deploy-166

ment, andmanagement tasks with scaling up/down resources.167

Furthermore, it is fully managed: engineers no longer have168

to worry about building and maintaining any underlying169

architecture and can delegate all responsibilities to the cloud170

vendor. Serverless users are billed by execution and resource171

consumption, not by an hourly or hardware-based rate [12].172

However, compared to more traditional computing methods,173

serverless includes a laggy startup known as cold start [13].174

III. STUDY DESIGN175

In this research, we follow the guidelines for systematic176

mapping studies [14]. We present the procedure to review177

5https://aws.amazon.com/fr/ecs/
6https://cloud.google.com/kubernetes-engine
7https://github.com/aws/aws-lambda-go
8https://cloud.google.com/functions

the literature on machine learning usage on serverless archi- 178

tecture. In the following, we present the design of our 179

study, including the search keywords, search technique, data 180

sources, and inclusion and exclusion criteria are explained. 181

A. RESEARCH QUESTIONS 182

We set the following list of research questions as a guideline 183

during the systematic mapping review: 184

RQ1 - WHAT ARE THE PUBLICATION TRENDS 185

OF RESEARCH STUDIES ABOUT SERVERLESS ON 186

MACHINE LEARNING? 187

By answering this research question, we aim to charac- 188

terize the intensity of scientific interest in using machine 189

learning on top of serverless architecture, the relevant venues 190

where academics publish their results on the topic and their 191

types of contribution over the years. 192

RQ2 - WHAT IS THE FOCUS OF RESEARCH 193

OF APPLIED MACHINE LEARNING ON SERVERLESS 194

COMPUTING ? 195

By answering this research question, we aim to provide 196

a solid foundation to classify existing research on machine 197

learning in a serverless architecture. 198

RQ3 - WHAT ARE THE POTENTIAL CHALLENGES 199

OF ADOPTING MACHINE LEARNING ON 200

SERVERLESS COMPUTING? 201

By answering this research question, our objective is to 202

profile the state-of-the-art on challenges and opportunities to 203

use machine learning on serverless architecture. 204

B. DOMAIN EXPLORATION 205

In the following, we describe the interesting domain covered 206

by this research during the systematic mapping study. 207

Cloud infrastructure: The types of cloud computing ser- 208

vices vary, they provide access to IT infrastructure, hardware, 209

and software resources. Cloud computing is all about deliv- 210

ering computing services like databases, software, analytics, 211
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FIGURE 2. Peer-reviewed selection process.

FIGURE 3. Systematic literature mapping research focus.

servers, storage, networking, and intelligence. There are212

many benefits of cloud computing, including cost savings,213

scalability, and access to data centers around the world [15].214

Cloud computing services fall into four main categories:215

Infrastructure as a Service (IaaS), Platform as a Service216

(PaaS), Software as a Service (SaaS), and Functions as a Ser-217

vice (FaaS) which is a relatively new Cloud service model.218

Computing on machine learning pipeline: cloud ser-219

vices are a good option for anyone looking to train and220

deploy memory-intensive, complex Machine Learning/Deep221

Learning models. Cloud services are a cost-effective solution222

for both individual users and companies. The cloud allows223

employees to access files on any device [16].224

Serverless on Machine Learning: Serverless architec-225

ture gives many opportunities and advantages to make the226

machine learning model more efficient and smoother [17].227

As shown in Figure 3, we focus on this systematic literature228

mapping on collecting research papers on applying serverless229

on machine learning.230

C. SEARCH AND SELECTION PROCESS 231

As shown in Figure 2, we present our search and selec- 232

tion process. We designed a two-stage process, a system- 233

atic search similar to a previous study [18], to identify the 234

current literature on serverless usage of machine learning. 235

On Stage 1, we performed an automated search since it is 236

the typical search strategy to identify relevant studies for a 237

Systematic Mapping [19]. 238

Defining the review goal, keywords were carefully selected 239

to obtain relevant articles. In stage 1, several keywords 240

were formulated and later narrowed down based on the 241

research objectives. We designed our search query based 242

on ‘‘machine learning’’ and ‘‘serverless.’’ We executed the 243

following search query on Scopus9: 244

( ‘ ‘ s e r v e r l e s s ’ ’ OR ‘ ‘ lambda 245

a r c h i t e c t u r e ’ ’ OR ‘ ‘ f u n c t i o n as a 246

s e r v i c e ’ ’ ) AND 247

( ‘ ‘ machine l e a r n i n g ’ ’ OR ‘ ‘ deep 248

l e a r n i n g ’ ’ ) 249

Since we are looking for a particular subject, we applied 250

the default automatic search, including the title, abstract, and 251

keywords. We executed the query in June 2022, where we 252

found 198 studies. The papers were either included among 253

the relevant articles or excluded as irrelevant for the review 254

by studying their titles, abstracts, conclusions and complete 255

content. 256

To extract only relevant articles for review, certain inclu- 257

sion (IC) and exclusion (EC) criteria were set, specifically: 258

• IC1: The study must be an article, conference paper, 259

or workshop; 260

• IC2: The study must be in the Computer Science area; 261

• IC3: The study must be a primary study; 262

9https://www.scopus.com/
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TABLE 1. List of included peer-viewed studies.

• IC4: The study should address machine learning prac-263

tices using serverless;264

• EC1: The study is not written in English; 265

• EC2: The study is duplicate; 266
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FIGURE 4. Published papers per year.

• EC3: The study is published as part of textbooks,267

abstracts, editorials, and keynote speeches.268

After applying the IC1, IC2, EC1, EC2, we obtained 147269

studies. Then we analysed the title and abstract of each study270

and, after filtering by IC3, IC4 and EC3, we kept 51 studies.271

We read all 51 papers, filtering by IC3, IC4 and EC3 on272

the full text; we obtained the seed data set with 44 studies.273

In Stage 2, we used our seed data set to perform two rounds274

of snowballing, backward and forward, detailed in 2. The275

snowballing research comes out with 8 additional studies.276

Thus, we identify in the final dataset 52 studies for this277

systematic mapping (Table 1). Our work is shredded on a278

public repository for study reproducibility.10279

IV. RESULTS280

The final set of publications presented in Table 1 was care-281

fully read to answer the raised research questions. In the282

following, we are addressing carefully (1) the evolution trend283

of the set of papers and the different venues that were pub-284

lished; (2) the focus of the set of researchers on applying285

machine learning on Serverless architecture; (3) discussion of286

the challenges and opportunities to use Serverless onmachine287

learning.288

A. WHAT ARE THE PUBLICATION TRENDS OF RESEARCH289

STUDIES ABOUT SERVERLESS ON MACHINE LEARNING?290

This research question aims at (1) characterizing the intensity291

of scientific interest and (2) the active publication venue on292

the usage of machine learning on serverless architecture.293

1) PUBLICATION FREQUENCY294

The selected papers of this study were analyzed to deter-295

mine the trends in publication and the thematic evolution.296

Figure 4 shows the number of publications per year where297

researchers start exploring machine learning usage on server-298

less architecture. The results show that the average number of299

publications per year is approximately 12 from 2018 to 2021,300

starting with five papers in 2018 until 20 published papers301

in 2021.302

10https://github.com/AmineBarrak/Serverless-on-ML

TABLE 2. Number of published papers per each venue type.

TABLE 3. List of journals (each of the following journals was mentioned
once in the set of reviewed articles).

Serverless computing has trended a significant engagement 303

over the past years [2]. This boost has been caused by indus- 304

try, academia, and developers for several reasons [69]. With 305

the appearance of MLOps that include continuous and repet- 306

itive tasks (i.e.,code integration, training, deployment [70]), 307

Serverless has started attracting ML developers. 308

2) PUBLICATION VENUE 309

Researchers have been contributing on the usage of server- 310

less on ML pipelines. Table 2 shows the various publication 311

venues we find in the selected research papers. 312

The percentages of publications in conference papers, 313

journal papers, workshop papers, and symposium papers 314

are approximately 60% (31/53), 16% (10/53), 14% (7/53), 315

and 10% (5/53), respectively. The topic Serverless for ML 316

practices has started attracting more researchers, we found 317

ten journal papers that were published which reveal the 318

subject relevance where more studies can present additional 319

contributions. 320

Following the interpretation of publications, the most pro- 321

ductive and primary journals, symposiums, conferences, and 322

workshop venues related to serverless computing can be clar- 323

ified. The list of journals we found is shown with their full 324

names in Table 3. All eight journal venues were mentioned 325

only once each. 326

The list of conferences is shown in Table 4. The ‘‘Cloud’’, 327

‘‘WOSC’’, ‘‘ICPE’’, ‘‘IC2E’’, ‘‘USENIX’’, ‘‘CCGRID’’, 328
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TABLE 4. List of conferences.

‘‘Middleware’’, ‘‘ATC’’ and ‘‘Big Data’’ are considered the329

most active conferences held 19/42 (45%).330

B. WHAT IS THE FOCUS OF RESEARCH OF APPLIED331

MACHINE LEARNING ON SERVERLESS332

COMPUTING ?333

In this research question, our objective is to provide a solid334

classification of the existing research.335

1) RESEARCH STRATEGIES OF SERVERLESS USAGE336

ON ML PIPELINE337

Machine Learning pipelines are composed of four main338

stages, as shown in Figure 1 (1) data processing, (2) model339

training, (3) Hyperparameter tuning, and (4) model deploy-340

ment. We examine the papers to determine the main goal341

and the main solution each study proposes. As shown in342

Table 5, the most recurrent usage targeted by the primary343

studies are in deploying ML models on Serverless (33/53),344

followed by model training (16/53), hyperparameter tuning345

(9/53) and data preprocessing (9/53). There are (6/44) studies346

TABLE 5. Serverless applied on machine learning pipeline.

TABLE 6. Serverless platforms usage.

that tried to employ Serverless in the end-to-endML pipeline. 347

These results confirm that the use of serverless benefits in the 348

different stages of ML is advantageous. 349

2) THE DIFFERENT SERVERLESS PROVIDERS 350

Table 6 presents the serverless platforms used in the con- 351

sidered research papers included in this study. It can be 352

noticed that ‘‘AWSLambda’’ has significant usage in 39 stud- 353

ies. We also found that ‘‘Apache OpenWhisk’’, ‘‘IBM Cloud 354

Function’’ and ‘‘Google Cloud Function’’ are used with 4, 355

4, and three published papers, respectively. Each platform 356

has its own set of features and differs from others. We later 357

compare the different providers in RQ3 IV-C. 358

3) THE MAIN RESOLVED/DISCUSSED CHALLENGES 359

AND ISSUES 360

The main solved / discussed challenges are cost / 361

pricing (37/53) and resource scalability (30/53), as reported 362

in Table 7. The high number of studies that discussed 363

(1) cost/price and (2) scalability might indicate that Server- 364

less provides a fair price architecture that provides a pay- 365

per-use model that auto-scales in needs. Researchers seem 366

to be interested in using Serverless for model deployment 367

and make sure to keep a rational inference latency (22/53), 368
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TABLE 7. Machine learning & serverless challenges and issues.

TABLE 8. Machine learning frameworks used in the studies.

in contracts (6/53), (2/53) and (2/53) focused on the storage,369

network, and training latencies, respectively. There were pro-370

posed solutions to reduce latency and improve performance371

by varying the batch size; this solution was present in (16/53).372

The cold start was discussed in (10/53) studies trying to373

TABLE 9. Type of machine learning algorithms used to train models.

mitigate it since Serverless containers have start-up latencies 374

in the hundreds of milliseconds to several seconds, leading 375

to the cold-start problem [71]. A significant number of stud- 376

ies (10/53) discussed the Service Level Objective (SLO). 377

We mention that the SLO is an agreement set by a Server- 378

less provider where there is the pre-defined service mini- 379

mum response time [40]. Interestingly, few papers considered 380

security and privacy with (4/53) and (4/53), respectively. 381

However, only (2/53) paper mentioned the portability and 382

reproducibility of the run-time environment. 383

4) MACHINE LEARNING FRAMEWORKS USED IN 384

THE STUDIES 385

The machine learning frameworks helped the researchers 386

to test their proposed solution easily, without understand- 387

ing the underlying algorithms. Therefore, the choice of 388

framework depends on the complexity of the targeted 389

task. As reported in Table 8, the predominant ML frame- 390

works are: Tensorflow (22/53), Keras (10/53) and MXNet 391

(9/53). Indeed, other frameworks have been used in recent 392

studies such as Pytorch (8/53) since it can be used for 393

distributed training in parallel machines [61], Numpy (5/53) 394

and OpenCV (3/53). 395

5) TYPE OF MACHINE LEARNING ALGORITHM USED TO 396

TRAIN MODELS 397

The type of machine learning used to train the models 398

depends on the research goals. Table 9 shows what type of 399
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TABLE 10. Comparison between the most known providers for Function
as a Service (Serverless).

machine learning was used. The results show that neural400

network models dominate the studies with (22/53). Neural401

network models are more challenging to be used, especially402

in distributed environment i.e.,distributed ML training [54].403

Surprisingly, we found the use of supervised ML, such as404

logistic regression, random forest, and SVM, in (14/53) stud-405

ies. These models are not resources costly in the training406

phase. Their usage is mostly for comparison purposes of the407

proposed architecture [30]. There are several other machine408

learning algorithms. We mention ResNet (12/53) and Incep-409

tion with different versions (8/53). These models are based on410

a conventional neural network used for intensive computing411

i.e.,image recognition [73].412

C. WHAT ARE THE POTENTIAL CHALLENGES OF413

ADOPTING MACHINE LEARNING ON414

SERVERLESS COMPUTING?415

In this research question, our objective is to profile state of416

the art on challenges of machine learning usage on serverless417

architecture.418

1) SERVERLESS PROVIDERS419

It is interesting to see Serverless providers evolving their420

services over the years. Carreira et al. [20] discussed about421

the Serverless capacity as they were not able to run Tensor-422

flow [76] or Spark [77] functions on AWS lambda due to size423

limits (3GB RAM). Today the limit RAM size has increased424

to 10 GB for each serverless function [78]. We present in425

Table 10 the Serverless performance functionalities offered426

by the different providers we found in the primary studies.427

This table was filled in January 2022. We did not include428

Kubeless in the comparison table, since it is not an active429

project. In the previous RQ, we found that 77% of the studies430

(34/44) were using AWS Lambda. We can explain that result431

because this tool provides a high Random Access Memory432

allocation to reach 10Gb. Moreover, since the serverless433

function works only on demand, it has a timeout where the434

instance is shutdown after a timeout set by the provider.435

We can see that Amazon has the longest function timeout.436

We noticed that the deployment package size is small and 437

differs from one provider to another. It is the total size allowed 438

for the function source code i.e.,model. Providers offer the 439

possibility of hosting the deployed model in extra storage if 440

the model exceeds the limit for the serverless package size. 441

For example, there is an option to use an external database 442

or S3 bucket to store large payloads and pass the data iden- 443

tifier to the function calls. However, this option will cause 444

additional latency to the system. 445

For better services, the serverless providers may ensure 446

better user performance, especially the timeout function, 447

to keep the instance warm and avoid the cold start latency. 448

2) SERVICE LEVEL AGREEMENT/OBJECTIVE 449

A Service Level Agreement/Objective is an agreement set by 450

the serverless provider. Cloud providers claim different SLAs 451

due to their unique technics. In such case, the performance 452

may vary for the same code from one cloud service provider 453

to another [40]. We found that all the studies discussing the 454

SLO agreement use the serverless for ML model deployment 455

[24], [29], [38], [40], [42], [48], [56], [67]. They ensured that 456

the inference model in their proposed solution was respected. 457

For example, Amazon SLO regarding inference latency is that 458

at least 98% of inference queries must be served in 200 ms. 459

However, failing to acquiesce with the SLOs results will lead 460

to compromised quality of service or even financial loss, e.g., 461

end users will not be charged for queries not responded in 462

time [79]. Regarding the machine learning models inference, 463

the execution of small models (e.g., MNIST, Textcnn-69) 464

can respond within 50ms under each memory configuration, 465

but for the other large models, such as Bert-v1, ResNet-50 466

and VGGNet, a small memory configuration leads to quite 467

a long execution time (exceeding hundreds of milliseconds). 468

If configured with the maximum allowable memory size, the 469

execution time for a single request exceeds 200ms, which 470

makes it challenging to meet the latency SLO in the pro- 471

duction environment [67]. Therefore, providers should share 472

such agreements and statistics of service violations to help 473

customers choose the best one, leading to a competitive envi- 474

ronment for better services. 475

3) ENSURE RESOURCE SCALABILITY AND 476

PREDICTIVE SCALING 477

In general, serverless architecture provides autoscaling 478

features to handle workload spikes smoothly. Forecasting 479

resource usage is no longer necessary to ensure that we 480

always have the right amount of resources to host our appli- 481

cations. Compared with cluster computing, a serverless base 482

model enables a rapid adjustment on-demand of the number 483

of workers overtime [61]. Moreover, in multithread compu- 484

tation, a single-machine solution quickly degrades when the 485

number of threads exceeds the number of available cores, 486

while in a serverless base solution, the scale-up is faster 487

regarding the execution time [66]. 488

However, serverless functions do not support customized 489

scaling. Barista uses predictive scaling to achieve low-latency 490
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inference serving in the serverless cloud [24]. Moreover,491

a hybrid architecture between Serverless and VM is pro-492

posed, and even machine learning models to predict scal-493

ing to reduce over-provisioning to the best execution494

environment [29], [40].495

The machine learning inference services are commonly496

latency critical, and the auto-scaling ability of serverless497

computing could deal with bursty workloads well [8].498

Yang et al. [67] presented a solution called INFLess that499

reduces the allocation of resources for each serverless500

instance to reach optimal performance in inference services.501

The resource scalability is a critical property of any ML502

training system since only the active workers at any given503

time will be billed. ML training is typically an iterative504

process in which a higher number of workers is desirable505

during the first training steps to diminish loss. When loss506

reduction stagnates and reaches convergence, the number of507

workers scales down once the learning curve starts to flatten508

out [54], [68].509

4) SERVERLESS VS. IaaS FOR ML SERVING510

Several works in primary studies (37/53) developed the idea511

of reducing costs by using serverless in their ML solu-512

tion (deployment, testing, etc.) instead of an infrastructure513

environment.514

Serverless providers are proposing pay-as-you-go services,515

only paying for those resource usage - compared to other516

cloud resources such as the IaaS compute service AWS EC2,517

where customers would be paying for the instance even when518

there is no traffic. Concretely, it is not all the time that Server-519

less is better than IaaS. When a company’s traffic is known520

to deploy their model online, they must choose the service521

that performs their business model. If the traffic is unknown,522

it is better to use serverless since the payment is only for523

executions [80]. A hybrid architecture can be considered as524

an additional solution [29].525

5) COLD START526

Cold start in serverless is somehow expensive and causes527

significant performance degradation for serverless func-528

tions [81]. However, it is still better than other cloud resources529

i.e.,VM. There were several solutions for the cold start, for530

example, periodically warming the instance [56] or predicting531

the window timing where a request is expected, or scheduling532

the tasks [45]. To reuse against the cold start, in [28] pre-533

sented a switchboard architecture composed of 6 serverless534

with the principle to warm the first function and trigger the535

rest of the functions. Another proposed to keep the instance536

warm for several minutes [82]. In [29], authors showed that537

keeping the instance warm has a low cost. They explained538

how $1 could spin up 7K inception-v3 Lambda instances,539

which can serve more than 20K requests per second.540

To avoid the cold start latency, Yang et al. [67] proposed a541

Long-Short Term Histogram (LSTH) to track application idle542

times and draw two histograms. The two histograms represent543

the request patterns in the last short (e.g., 1 hour) and long544

durations (e.g., one day). By tracking the application, they 545

can select the pre-warmingwindow to send inference requests 546

to continuously keep the function instance alive. Their 547

method helped to reduce resource waste while avoiding cold 548

starts. 549

6) SECURITY AND PRIVACY 550

Privacy and security are always major concerns in serverless 551

computing, especially for managing and analyzing sensitive 552

data, such as healthcare data. 553

We observed that it is essential to set roles for every cloud 554

function with specific security policies to provide only neces- 555

sary access and prevent non-permitted operations. For exam- 556

ple, Kaplunovich and Yesha [49] applied special protection 557

to the hyperparameter metadata spreadsheet, where metadata 558

is loaded directly during the startup and stored safely and 559

securely in the protected Cloud location. 560

The Federated Learning-based architecture was proposed 561

in the primary dataset [46], [55], [65]. This computing model 562

supports edge computing, where the processing edges can 563

learn from a shared machine learning model while keeping 564

the model training on remote clients, followed by global 565

aggregation of the updated model parameters. This keeps 566

the training data local, which provides privacy and security 567

benefits. Grafberger et al. [55] considers that the challenges 568

of FL systems, such as scalability, complex infrastructure 569

management, and wasted computing, can be solved with 570

the Function-as-a-Service (FaaS) paradigm. However, it is 571

necessary to be aware of the threats caused by malicious 572

participants. For example, Tolpegin et al. [83] showed that a 573

malicious subset of participants could decrease the accuracy 574

of themodel by injecting poisoned data when sending updates 575

to the global model. 576

Several additional security measures can be applied, where 577

only authorized and authenticated entities can invoke client 578

functions. A practice of security between clients was applied 579

in [55], where the FL server allows clients authenticated to 580

read only from a shared global model and write back results 581

without access to other clients. Another security measure was 582

applied in [55], where HTTP function requests exchanges can 583

be encrypted using Transport Layer Security (TLS). 584

Rausch et al. [34] chose to transmit the base model to an 585

edge device to refine the base model locally using a serverless 586

function with the private data to ensure data privacy. The edge 587

computing paradigm allows training distributed machine 588

learning models between local edge data to secure data pri- 589

vacy and save resources in the cloud [65]. Bac et al. [65] 590

applied a federated learning approach on serverless edge 591

computing, where they saved bandwidth and ensured the data 592

privacy of the edge nodes. 593

Moreover, Anthony S. Deese [12] handled the used access 594

by applying AWS Cognito and Identity Access Management 595

services. These services allow a user to access and mon- 596

itor only the lambda function instances he created, which 597

maintains the privacy of user training data and machine 598

results. 599
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7) BATCHING600

Another essential factor that heavily impacts both the cost601

and the performance of ML serving inference is batching.602

For example, the batch size cannot be arbitrarily increased,603

as it leads to longer queuing latency and batch inference604

latency [84]. Tuning batch or resource configuration adap-605

tively can improve the model performance. Clipper [84]606

introduces caching, batching, and adaptive model selection607

techniques to reduce the latency. INFaaS [85] automatically608

adapts the model variant batch size and hardware according609

to the required model performance.610

For smaller batch sizes, the processing time increases lin-611

early, but for larger batch sizes, it increases exponentially in612

an on-premise environment [8]. Deese [12] used the batch613

mode (maximum size) read and write requests within AWS614

and found a significant speed increase from batch write615

operations, but a relatively small benefit from batch reads.616

Carreira et al. [26] finds that data fetching latency becomes617

low when applied mini-batches buffers. Wang et al. [27]618

considered that machine learning serverless functions should619

have a different size of data batch since many training sam-620

ples need to be processed by different workers in parallel.621

Zhang et al. [29] showed that inference serving could benefit622

significantly from batching using costly hardware accelera-623

tors (e.g., GPU and TPU). The appropriate batch size with624

GPU instances can achieve a lower cost and shorter inference625

latency. However, serving inference queries using GPUs is626

not economically justified when there is not enough load.627

MLLess [68] kept the same mini-batch size in their dis-628

tributed workers architecture to avoid changing the number of629

workers incurring costly data repartitioning transfers to adjust630

the mini-batch size.631

Depending on the usage purpose of serverless computing in632

the machine learning pipeline phase, batching size can play633

an important role in reducing processing time, deployment634

latency, and data fetching.635

8) SERVERLESS PORTABILITY636

When using platform services from public cloud providers,637

there is a risk of dependence on the services and products638

they offer. This case is named the ’vendor lock-in’ since639

switching technologies and vendors can be costly due to tech-640

nical incompatibilities. Naranjo et al. [47] proposed to use641

open-source frameworks instead of public cloud providers.642

Most open-source serverless platforms rely on Kubernetes643

for orchestration and management of function pods, which644

makes the portability task more affordable [86]. Unfortu-645

nately, portability did not take enough chances in the set of the646

studied papers. We found only two journal papers [36], [47]647

that took into account the level of portability of the run-time648

environment.649

Portability is an important aspect; only when portability is650

ensured is a helpful simulation to test if the function shows651

better performance on another platform [69]. The Serverless652

Framework [87] offers plug-ins to simplify the deployment653

and execution of serverless functions across multiple clouds654

and FaaS environments. Junfeng Li et al. [86] compared the 655

performance of four open-source serverless platforms using 656

CloudLab testbed. Their work was provided to help devel- 657

opers to differentiate and select the appropriate serverless 658

platform for different demands and scenarios. 659

9) EDGE COMPUTING 660

Edge computing is a distributed computing paradigm that 661

brings computation and data storage closer to the data 662

sources, especially popular with IoT device architecture. 663

Edge computing has several benefits, such as reducing 664

latency and bandwidth associated with public cloud [53], 665

ensuring data privacy [34], and reducing computational 666

resources relative to public and private clouds [45]. 667

The serverless edge computing platform that provides the 668

appropriate support to define AI workflow functions has 669

been extended to work at the edge of the network to reduce 670

response latency and bandwidth associated with the public 671

cloud [34], [53], [65]. 672

The ML module can be placed on the edge devices, or it 673

can be placed on the Cloud or Fog layer for live or in-depth 674

analysis of the data [33]. Zhang et al. [45] proposed a hybrid 675

cloud system consisting of edge and cloud resources and 676

integrating GPU acceleration. The usage of edge computing 677

depends on the user requirements and the analysis of available 678

capacity. 679

10) COST REDUCTION 680

One of the primary purposes of using serverless with machine 681

learning is cost reduction. High service costs are the major 682

issue that papers try to reduce in different ways. Serverless 683

usage is adopted to reduce unnecessary costs and improve 684

manageability, like the allocation of virtual machines without 685

full resource usage. For example, Wang et al. [27] demon- 686

strated that a substantial amount of cost savings can be 687

achieved by replacing dedicated IaaS cloud clusters with 688

a serverless architecture. They proposed a solution called 689

SIREN to reduce the training cost comparedMXNet architec- 690

ture. The AMPS-Inf achieves up to 98% cost savings without 691

degrading response time performance [48]. Chahal et al. [59] 692

presented an architecture based on load balancing the ML 693

inference workload to reduce costs. 694

Cost reduction is a primary concern for developers and 695

researchers. The cost is related to the design architecture, 696

computing, inference deployment, and read/write queries. 697

Depending on the machine learning project, a serverless- 698

based architecture could be an effective option to reduce the 699

cost. 700

11) INFERENCE LATENCY 701

Inference latency was well studied in the primary set of 702

papers. Yu et al. [56] showed that the inference latency 703

increases as the model grows. They proposed a serving model 704

and generated a parallelization scheme deployed on server- 705

less platforms to achieve optimal inference latency. 706
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Zhang et al. [39] required a benchmark analysis to find an707

efficient inference workload. They found that the amount of708

memory allocated for each serverless function instance plays709

an important role in inference latency time reduction.710

The latency can be influenced by the serverless cold start,711

or continued serverless warming [43]. Moreover, the hard-712

ware usage, such as GPU instances with the appropriate batch713

size, can have shorter inference latency compared to the CPU714

instances [29]. Gujarati et al. [88] proposed an autoscaling715

framework that aims to minimize resource waste for ML716

inference by using a predictive provision model. BATCH [38]717

designed a buffer layer on top of the serverless platform718

and bundles requests with batching for cost-saving serverless719

inference. Moreover, inference latency can be dominated by720

data fetching when there are queries involving cross-machine721

requests [22].722

12) MLOps AND SERVERLESS723

The MLOps is modeled to make the intersection between724

machine learning, data engineering, and DevOps practices725

that associate software developers (the Devs) with IT oper-726

ations teams (the Ops) to collaborate [89].727

The machine learning pipeline contains several repetitive728

steps (data collection, data integration, data preparation and729

cleaning, model retraining, predictions) that need special730

operations to be automated in MLOps environments. The731

serverless architecture can be used to (1) automate the infras-732

tructure; (2) build event-driven applications; (3) build APIs733

i.e.,API with Amazon gateway.734

Serverless with data preprocessing: The serverless can735

be scheduled to pull data from the backend; trigger a736

serverless function when objects are written in data buckets737

i.e.,AWS S3; build APIs to transform and clean data.738

Serverless with model retraining: Schedule or trigger739

new training when conditions are met.740

Serverless with model inference: Schedule a serverless741

function for batch predictions; use step functions for ensem-742

ble predictions.743

The serverless architecture can be feasible and optimal for744

projects adapting the MLOps approach. We plan as future745

work to explore how serverless can fit and optimise the746

MLOps-based projects.747

V. RELATED WORK748

This section presents related work that realised a literature749

review on serverless computing and cloud computing applied750

to machine learning.751

A. LITERATURE REVIEWS ON SERVERLESS752

serverless computing is getting more popular. Wen et al. [2]753

mined and analyzed serverless-based questions from Stack754

Overflow to show an increasing popularity trend of the sub-755

ject and presented a list of challenges that present an overhead756

for developers during the usage of serverless computing, such757

as programming language support, database connection, and758

Resource Configuration to Security.759

Several studies have searched on serverless challenges. 760

For example, Khatri et al. [90] presented a review of the 761

potential bottleneck and measured the performance of server- 762

less computing. Their work was more related to serverless 763

limitations such as peak and spike scenarios, scalability, cold 764

start, and portability. They showed especially the difficulties 765

of testing and performance measurement of serverless appli- 766

cations and how machine learning can monitor and predict 767

performance. Moreover, Hassan et al. [69] applied a survey 768

including 275 research papers that examined the challenges 769

that serverless computing faces nowadays and how future 770

research could enable its implementation and usage. Further- 771

more, Wu et al. [91] presents several practical recommenda- 772

tions for data scientists on using serverless for scalable and 773

cost-effective model serving. 774

The main challenge in serverless computing is repro- 775

ducibility. Scheuner and Leitner [92] conducted a multivocal 776

literature review on the evaluation of function as a service 777

performance, covering 112 studies. They evaluated these 778

studies from the reproducibility perspective and found that 779

most studies do not follow reproducibility principles in 780

cloud experimentation. More challenges were discussed by 781

Sadaqat et al. [93]. They conducted a multivocal literature 782

review to define the core components of serverless comput- 783

ing, its benefits, and its challenges. They found that serverless 784

computing is a solution that allows users to create functions 785

that intercept and operate on data flows in a scalable manner 786

without the need to manage a server, discussing that vendor 787

lock-in, skilled workers, testing complexity, and monitor- 788

ing are the most recurrent challenges. They also presented 789

the expected evolution of serverless computing, such as the 790

adoption of serverless by companies and the expected market 791

growth. 792

Tiabi et al. [94] identified 32 patterns composing and 793

managing serverless functions by applying for a multivocal 794

literature review on 24 selected papers. They classified the 795

patterns as orchestration, aggregation, event management, 796

availability, communication, and authorization. They show 797

that depending on the serverless provider. The pattern may 798

not be the same, i.e.,AWS lambda adapted their queue service 799

(SQS) to enable FIFO messages. However, FIFO messages 800

still need to be manually managed in Azure. They present 801

their work as a pattern catalog that provides a valuable basis 802

for practitioners and researchers on serverless computing. 803

The different challenges identified in the literature related 804

to the serverless were discussed in our set of papers on 805

machine learning perspectives. 806

B. LITERATURE REVIEWS ON MACHINE LEARNING & 807

CLOUD COMPUTING 808

Machine learning has been used in several architectures of 809

cloud computing. John et al. [95] conducted a systematic 810

literature review of 13 primary studies related to AI deploy- 811

ment in the context of edge/cloud/hybrid architectures. They 812

presented a list of practices and challenges of practition- 813

ers related to the design, integration, deployment, operation, 814
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and model evolution. They conclude their work by propos-815

ing an end-to-end model deployment framework. Moreover,816

Kuhlenkamp et al. [96] conducted a systematic literature817

review on machine learning operationalization. They investi-818

gate the techniques, tools, and infrastructures to operational-819

ize ML models. They reviewed 24 studies that discussed820

the presence of several tools for model operationalization821

i.e.,Polyaxon,11 and MLflow.12 They found that cloud com-822

puting is widely used in model deployment due to resource823

hardware heterogeneity and the possible variety of network824

connection quality. Furthermore, Jauro et al. [97] realised825

a survey on the usage of deep learning algorithms to solve826

complex problems in emerging cloud computing architec-827

tures. Their study included 34 studies focusing on edge,828

fog, serverless, volunteer, and software-defined computing.829

During their study, they identified the strengths and limita-830

tions of the different deep learning algorithms regarding their831

suitability to the problem of solving i.e.,image processing,832

time series, and regression. Distributed machine learning is833

widely used, especially with IoT devices. Filho et al. [98]834

realised a systematic literature review on 106 research papers835

about the distributed machine/deep learning intelligent algo-836

rithms in edge devices i.e.,IoT. They investigated the chal-837

lenges of running ML/DL on edge devices in a distributed838

way, such as limited resources, communication efficiency,839

and ensuring data privacy and security. They found several840

techniques to mitigate the challenges related to edge com-841

puting i.e.,caching, training, inference, and offloading. Setti842

Cassel et al. [99] analyzed 60 research papers on serverless843

IoT devices during a systematic literature review. They find844

that serverless computing is a promising technology for IoT845

applications that can bring functions closer to the devices to846

reduce latency and avoid unnecessary energy and resource847

consumption.848

In this work, we focus mainly on studies realised on849

machine learning usage on top of serverless computing850

architecture.851

VI. THREATS TO VALIDITY852

We applied Peterson guidelines to make our systematic map-853

ping study [14]. However, threats to validity are unavoidable.854

This section presents the main threats to the validity of our855

study and how we mitigated them.856

External validity.. External validity relates to the general-857

izability of our results. The most severe external threat is that858

finding all the relevant studies on machine learning applied859

to serverless architecture from the designed query is absurd.860

As a solution, we applied a search strategy to the initial set of861

papers consisting of both automatic search and recursively862

backward-forward snowballing. Additionally, we applied a863

well-established peer-reviewed analysis to ensure that we864

have high-quality publications. We carefully defined the865

11https://polyaxon.com/
12https://mlflow.org/

inclusion/exclusion rules that respect the requirements of our 866

study with the agreement of all authors. 867

Internal validity. Internal validity relates to the exper- 868

iment errors and biases. We mitigate the internal validity 869

threats caused by author bias when selecting and interpreting 870

data by applying well-assessed descriptive statistics of the 871

collected data. Several re-verification steps between authors 872

were performed to ensure a good classification dataset. 873

Construct validity. Construct validity is related to the 874

degree to which an evaluation measures what it claims. 875

We mitigated this potential bias by carefully defining the 876

research query on the Scopus database. This database was 877

preferred since it offers a more extensive list of modern 878

sources [100]. In the keywording process, we included differ- 879

ent taxonomies that can be mentioned to refer to the server- 880

less, i.e.,lambda architecture, function as a service. Also, 881

we are fairly confident about constructing the search string 882

since the automatic search has been followed by snowballing. 883

Also, we rigorously selected the potentially relevant stud- 884

ies according to well-documented inclusion and exclusion 885

criteria. The first author performed this selection stage, and 886

randomly a sample set was verified by the second author and 887

agreement was ensured. 888

Conclusion validity. Conclusion validity is related to ran- 889

dom variations and inappropriate use of statistics. To mitigate 890

it, we rigorously defined and iteratively refined our classifica- 891

tion framework, such as suggested by [101], so that we could 892

reduce potential biases during the data extraction process. 893

In addition, we ensured that we aligned with our research 894

question and our main research objectives. We mitigated 895

potential threats to conclusion validity by applying the verifi- 896

cation agreement between authors in case of disambiguating 897

cases. We provide a public repository for the reproducibility 898

of the study to determine whether other researchers could 899

obtain similar results from this study.13 900

VII. CONCLUSION 901

This study aims to provide a broader survey investigating 902

the relationships among research contributions on Machine 903

Learning usage on Serverless architecture. Specifically, 904

we performed a systematic mapping on 50 primary studies 905

and produced an overview of the state of the art on machine 906

learning applications on serverless architecture. We found 907

that (1) serverless usage on machine learning applications is 908

a growing field starting from 5 on 2018 until 20 published 909

papers on 2021, and more publication venues are interested 910

to the subject; (2) serverless was adopted on the different 911

MLpipeline, especially onMLmodel deployment with 33/53 912

papers. The most used serverless provider is usually AWS 913

lambda, and the used ML model was the neural network. 914

The main challenge of using serverless on ML was reducing 915

cost and pricing (37/53), ensuring enough scalable resources 916

(30/53), and reducing inference latency (22/53). There are 917

several potential challenges of adopting ML on serverless, 918

13https://github.com/AmineBarrak/Serverless-on-ML
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such as respecting the service level agreement, serverless919

provider, cold start problem, security and privacy, serverless920

portability, resource scalability, batch size, edge computing,921

cost reduction, and inference latency.922

Depending on the targeted architecture and the solution,923

a trade-off between inference latency, serverless cold start,924

cost, scalability, batch size, and portability must be consid-925

ered. For example, an open source provider would be a good926

solution if portability is essential. The results of this studywill927

benefit both researchers willing to contribute further to the928

area and practitioners willing to understand existing research.929

In future work, we plan to explore the effectiveness of930

serverless benefits with MLOps practices, especially in a931

distributed computing environment. Moreover, hybrid cloud932

architecture for machine learning pipeline phases can be a933

subject to study its validity depending on the user objectives934

and their data flow type.935

REFERENCES936

[1] (Jul. 2018). 13 Benefits of Cloud Computing for Your Business937

| Globaldots. Accessed: Apr. 16, 2022. [Online]. Available:938

https://www.globaldots.com/resources/blog/cloud-computing-benefits-7-939

key-advantages-for-your-business/940

[2] J. Wen, Z. Chen, Y. Liu, Y. Lou, Y. Ma, G. Huang, X. Jin, and X. Liu,941

‘‘An empirical study on challenges of application development in server-942

less computing,’’ in Proc. 29th ACM Joint Meeting Eur. Softw. Eng. Conf.943

Symp. Found. Softw. Eng., Aug. 2021, pp. 416–428.944

[3] ReportsandData. (Oct. 2021). Function-as-a-Service (FAAS) Market945

Size Worth USD 31.53 Billion at CAGR of 32.3%, by 2026—Report946

and Data—EIN Presswire. Accessed: Jan. 20,2022. [Online]. Available:947

https://www.einnews.com/pr_news/552783688/function-as-a-service-948

faas-market-size-worth-usd-31-53-billion-at-cagr-of-32-3-by-2026-949

report-and-data950

[4] M. Ribeiro, K. Grolinger, and M. A. M. Capretz, ‘‘MLaaS: Machine951

learning as a service,’’ in Proc. IEEE 14th Int. Conf. Mach. Learn. Appl.952

(ICMLA), Dec. 2015, pp. 896–902.953

[5] P. Castro, V. Ishakian, V. Muthusamy, and A. Slominski, ‘‘The rise954

of serverless computing,’’ Commun. ACM, vol. 62, no. 12, pp. 44–54,955

Nov. 2019, doi: 10.1145/3368454.956

[6] K. Kanagaraj and S. Geetha, ‘‘A hybrid framework for effective predic-957

tion of online streaming data,’’ J. Phys., Conf., vol. 1767, no. 1, 2021,958

Art. no. 012016.959

[7] A. Kaplunovich and Y. Yesha, ‘‘Refactoring of neural network models960

for hyperparameter optimization in serverless cloud,’’ in Proc. IEEE/ACM961

42nd Int. Conf. Softw. Eng. Workshops, Jun. 2020, pp. 311–314.962

[8] D. Chahal, M. Ramesh, R. Ojha, and R. Singhal, ‘‘High performance963

serverless architecture for deep learning workflows,’’ in Proc. IEEE/ACM964

21st Int. Symp. Cluster, Cloud Internet Comput. (CCGrid), May 2021,965

pp. 790–796.966

[9] Standard ML Workflow | Hands-on Transfer Learning With Python.967

Accessed: Jan. 26, 2022. [Online]. Available: https://subscription.968

packtpub.com/book/big-data-and-business-intelligence/9781788831307/969

1/ch01lvl1sec05/standard-ml-workflow970

[10] S. Amershi, A. Begel, C. Bird, R. DeLine, H. Gall, E. Kamar, N. Nagappan,971

B. Nushi, and T. Zimmermann, ‘‘Software engineering for machine learn-972

ing: A case study,’’ in Proc. IEEE/ACM 41st Int. Conf. Softw. Eng., Softw.973

Eng. Pract. (ICSE-SEIP), May 2019, pp. 291–300.974

[11] MLOPS : Pipelines De Livraison Continue et d’Automatisation Dans Le975

Machine Learning | Google Cloud. Accessed: Mar. 9, 2022. [Online].976

Available: https://cloud.google.com/architecture/mlops-continuous-977

delivery-and-automation-pipelines-in-machine-learning978

[12] A. Deese, ‘‘Implementation of unsupervised K-means clustering algorithm979

within Amazon web services Lambda,’’ in Proc. 18th IEEE/ACM Int.980

Symp. Cluster, Cloud Grid Comput. (CCGRID), May 2018, pp. 626–632.981

[13] P. Silva, D. Fireman, and T. E. Pereira, ‘‘Prebaking functions to warm982

the serverless cold start,’’ in Proc. 21st Int. Middleware Conf., Dec. 2020,983

pp. 1–13.984

[14] K. Petersen, S. Vakkalanka, and L. Kuzniarz, ‘‘Guidelines for conducting 985

systematic mapping studies in software engineering: An update,’’ Inf. 986

Softw. Technol., vol. 64, pp. 1–18, Aug. 2015. 987

[15] The 4 Types of Cloud Computing Services | Exitcertified. Accessed: 988

Jul. 13, 2022. [Online]. Available: https://www.exitcertified.com/blog/4- 989

cloud-computing-services 990

[16] Introduction to Cloud Computing for Machine Learning Beginners. 991

Accessed: Jul. 13, 2022. [Online]. Available: https://www. 992

analyticsvidhya.com/blog/2022/01/introduction-to-cloud-computing- 993

for-machine-learning-beginners 994

[17] How Serverless Architecture Can Impact the Future of AI and ML 995

Industries | Engineering Education (Enged) Program | Section. Accessed: 996

Jul. 13, 2022. [Online]. Available: https://www.section.io/engineering- 997

education/how-serverless-architecture-can-impact-the-future-of-ai-and- 998

ml-industries/ 999

[18] E. Mendes and F. Petrillo, ‘‘Log severity levels matter: A multivocal 1000

mapping,’’ 2021, arXiv:2109.01192. 1001

[19] S. Keele, ‘‘Guidelines for performing systematic literature reviews in 1002

software engineering,’’ EBSE, Tech. Rep., Version 2.3, 2007. 1003

[20] J. Carreira, P. Fonseca, A. Tumanov, A. Zhang, and R. Katz, ‘‘A case for 1004

serverless machine learning,’’ in Proc. Workshop Syst. ML Open Source 1005

Softw. (NIPS), 2018, pp. 1–7. 1006

[21] L. Feng, P. Kudva, D. Da Silva, and J. Hu, ‘‘Exploring serverless computing 1007

for neural network training,’’ in Proc. IEEE 11th Int. Conf. Cloud Comput. 1008

(CLOUD), Jul. 2018, pp. 334–341. 1009

[22] Z. Tu, M. Li, and J. Lin, ‘‘Pay-per-request deployment of neural network 1010

models using serverless architectures,’’ inProc. Conf. North Amer. Chapter 1011

Assoc. Comput. Linguistics, Demonstrations, 2018, pp. 6–10. 1012

[23] V. Ishakian, V. Muthusamy, and A. Slominski, ‘‘Serving deep learning 1013

models in a serverless platform,’’ in Proc. IEEE Int. Conf. Cloud Eng. 1014

(ICE), Apr. 2018, pp. 257–262. 1015

[24] A. Bhattacharjee, A. D. Chhokra, Z. Kang, H. Sun, A. Gokhale, and 1016

G. Karsai, ‘‘BARISTA: Efficient and scalable serverless serving system 1017

for deep learning prediction services,’’ in Proc. IEEE Int. Conf. Cloud Eng. 1018

(ICE), Jun. 2019, pp. 23–33. 1019

[25] D. Damkevala, R. Lunavara, M. Kosamkar, and S. Jayachandran, ‘‘Behav- 1020

ior analysis using serverless machine learning,’’ in Proc. 6th Int. Conf. 1021

Comput. Sustain. Global Develop. (INDIACom), 2019, pp. 1068–1072. 1022

[26] J. Carreira, P. Fonseca, A. Tumanov, A. Zhang, and R. Katz, ‘‘Cirrus: 1023

A serverless framework for end-to-end ML workflows,’’ in Proc. ACM 1024

Symp. Cloud Comput., 2019, pp. 13–24. 1025

[27] H. Wang, D. Niu, and B. Li, ‘‘Distributed machine learning with a server- 1026

less architecture,’’ in Proc. IEEE INFOCOM Conf. Comput. Commun., 1027

Apr. 2019, pp. 1288–1296. 1028

[28] M. Fotouhi, D. Chen, and W. J. Lloyd, ‘‘Function-as-a-service application 1029

service composition: Implications for a natural language processing appli- 1030

cation,’’ in Proc. 5th Int. Workshop Serverless Comput., 2019, pp. 49–54. 1031

[29] C. Zhang, M. Yu, W. Wang, and F. Yan, ‘‘MArk: Exploiting cloud 1032

services for cost-effective, SLO-aware machine learning inference 1033

serving,’’ in Proc. USENIX Annu. Tech. Conf. Renton, WA, USA: 1034

USENIX Association, Jul. 2019, pp. 1049–1062. [Online]. Available: 1035

https://www.usenix.org/conference/atc19/presentation/zhang-chengliang 1036

[30] D. Barcelona-Pons, M. Sánchez-Artigas, G. París, P. Sutra, and 1037

P. García-López, ‘‘On the FaaS track: Building stateful distributed appli- 1038

cations with serverless architectures,’’ in Proc. 20th Int. Middleware Conf., 1039

Dec. 2019, pp. 41–54. 1040

[31] M. Zhang, C. Krintz, M. Mock, and R. Wolski, ‘‘Seneca: Fast and low cost 1041

hyperparameter search for machine learning models,’’ in Proc. IEEE 12th 1042

Int. Conf. Cloud Comput. (CLOUD), Jul. 2019, pp. 404–408. 1043

[32] A. Christidis, R. Davies, and S. Moschoyiannis, ‘‘Serving machine learn- 1044

ing workloads in resource constrained environments: A serverless deploy- 1045

ment example,’’ in Proc. IEEE 12th Conf. Service-Oriented Comput. Appl. 1046

(SOCA), Nov. 2019, pp. 55–63. 1047

[33] A. Bhattacharjee, Y. Barve, S. Khare, S. Bao, A. Gokhale, and 1048

T. Damiano, ‘‘Stratum: A serverless framework for the lifecycle 1049

management of machine learning-based data analytics tasks,’’ in 1050

Proc. USENIX Conf. Oper. Mach. Learn. (OpML). Santa Clara, CA, 1051

USA: USENIX Association, May 2019, pp. 59–61. [Online]. Available: 1052

https://www.usenix.org/conference/opml19/presentation/bhattacharjee 1053

[34] T. Rausch, W. Hummer, V. Muthusamy, A. Rashed, and S. Dustdar, 1054

‘‘Towards a serverless platform for edge AI,’’ in Proc. 2nd USENIX 1055

Workshop Hot Topics Edge Comput. (HotEdge). Renton, WA, 1056

USA: USENIX Association, Jul. 2019, pp. 1–7. [Online]. Available: 1057

https://www.usenix.org/conference/hotedge19/presentation/rausch 1058

99350 VOLUME 10, 2022

http://dx.doi.org/10.1145/3368454


A. Barrak et al.: Serverless on Machine Learning: A Systematic Mapping Study

[35] A. Dakkak, C. Li, S. G. D. Gonzalo, J. Xiong, and W.-M. Hwu,1059

‘‘TrIMS: Transparent and isolated model sharing for low latency1060

deep learning inference in function-as-a-service,’’ in Proc. IEEE 12th1061

Int. Conf. Cloud Comput. (CLOUD), Jul. 2019, pp. 372–382, doi:1062

10.1109/CLOUD.2019.00067.1063

[36] Á. L. García, J. M. De Lucas, M. Antonacci, W. Zu Castell, and M. David,1064

‘‘A cloud-based framework for machine learning workloads and applica-1065

tions,’’ IEEE Access, vol. 8, pp. 18681–18692, 2020.1066

[37] A. Kaplunovich and Y. Yesha, ‘‘Automatic tuning of hyperparameters for1067

neural networks in serverless cloud,’’ in Proc. IEEE Int. Conf. Big Data,1068

Dec. 2020, pp. 2751–2756.1069

[38] A. Ali, R. Pinciroli, F. Yan, and E. Smirni, ‘‘BATCH: Machine learning1070

inference serving on serverless platforms with adaptive batching,’’ in1071

Proc. Int. Conf. High Perform. Comput., Netw., Storage Anal., Nov. 2020,1072

pp. 1–15.1073

[39] U. Elordi, L. Unzueta, J. Goenetxea, S. Sanchez-Carballido,1074

I. Arganda-Carreras, and O. Otaegui, ‘‘Benchmarking deep neural network1075

inference performance on serverless environments with MLPerf,’’ IEEE1076

Softw., vol. 38, no. 1, pp. 81–87, Jan./Feb. 2021.1077

[40] C. Zhang, M. Yu, W. Wang, and F. Yan, ‘‘Enabling cost-effective, SLO-1078

aware machine learning inference serving on public cloud,’’ IEEE Trans.1079

Cloud Comput., vol. 10, no. 3, pp. 1765–1779, Sep. 2022.1080

[41] S. Shillaker and P. Pietzuch, ‘‘Faasm: Lightweight isolation1081

for efficient stateful serverless computing,’’ in Proc. USENIX1082

Annu. Tech. Conf. Renton, WA, USA: USENIX Association,1083

Jul. 2020, pp. 419–433. [Online]. Available: https://www.usenix.org/1084

conference/atc20/presentation/shillaker1085

[42] J. R. Gunasekaran, C. S. Mishra, P. Thinakaran, M. T. Kandemir, and1086

C. R. Das, ‘‘Implications of public cloud resource heterogeneity for infer-1087

ence serving,’’ in Proc. 6th Int. Workshop Serverless Comput., Dec. 2020,1088

pp. 7–12.1089

[43] D. Chahal, R. Ojha, M. Ramesh, and R. Singhal, ‘‘Migrating large deep1090

learningmodels to serverless architecture,’’ in Proc. IEEE Int. Symp. Softw.1091

Rel. Eng. Workshops (ISSREW), Oct. 2020, pp. 111–116.1092

[44] J. Choi, J. Lee, and W. J. Cho, ‘‘Prognostics by classifying degradation1093

stage on Lambda architecture,’’ in Proc. IEEE Int. Conf. Prognostics1094

Health Manag. (ICPHM), Jun. 2020, pp. 1–9.1095

[45] M. Zhang, C. Krintz, and R. Wolski, ‘‘STOIC: Serverless teleoperable1096

hybrid cloud for machine learning applications on edge device,’’ in Proc.1097

IEEE Int. Conf. Pervasive Comput. Commun. Workshops (PerCom Work-1098

shops), Mar. 2020, pp. 1–6.1099

[46] M. Chadha, A. Jindal, and M. Gerndt, ‘‘Towards federated learning using1100

FaaS fabric,’’ in Proc. 6th Int. Workshop Serverless Comput., Dec. 2020,1101

pp. 49–54.1102

[47] D. M. Naranjo, S. Risco, G. Moltó, and I. Blanquer, ‘‘A serverless gate-1103

way for event-driven machine learning inference in multiple clouds,’’1104

Concurrency Comput., Pract. Exper., p. e6728, Dec. 2021. [Online].1105

Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.6728, doi:1106

10.1002/cpe.6728.1107

[48] J. Jarachanthan, L. Chen, F. Xu, and B. Li, ‘‘AMPS-Inf: Automatic model1108

partitioning for serverless inference with cost efficiency,’’ in Proc. 50th Int.1109

Conf. Parallel Process., 2021, pp. 1–12.1110

[49] A. Kaplunovich and Y. Yesha, ‘‘Automatic hyperparameter optimization1111

for arbitrary neural networks in serverless AWS cloud,’’ in Proc. 12th Int.1112

Conf. Inf. Commun. Syst. (ICICS), May 2021, pp. 69–76.1113

[50] N. Shahidi, J. R. Gunasekaran, and M. T. Kandemir, ‘‘Cross-platform1114

performance evaluation of stateful serverless workflows,’’ in Proc. IEEE1115

Int. Symp. Workload Characterization (IISWC), Nov. 2021, pp. 63–73.1116

[51] M. S. Kurz, ‘‘Distributed double machine learning with a serverless1117

architecture,’’ in Proc. Companion ACM/SPEC Int. Conf. Perform. Eng.,1118

Apr. 2021, pp. 27–33.1119

[52] J. Thorpe, Y. Qiao, J. Eyolfson, S. Teng, G. Hu, Z. Jia, J. Wei,1120

K. Vora, R. Netravali, M. Kim, and G. H. Xu, ‘‘Dorylus:1121

Affordable, scalable, and accurate GNN training with distributed1122

CPU servers and serverless threads,’’ in Proc. 15th USENIX Symp.1123

Operating Syst. Design Implement. (OSDI). Renton, WA, USA:1124

USENIX Association, Jul. 2021, pp. 495–514. [Online]. Available:1125

https://www.usenix.org/conference/osdi21/presentation/thorpe1126

[53] M. Zhang, C. Krintz, and R. Wolski, ‘‘Edge-adaptable serverless acceler-1127

ation for machine learning Internet of Things applications,’’ Softw., Pract.1128

Exper., vol. 51, no. 9, pp. 1852–1867, Sep. 2021.1129

[54] M. Sánchez-Artigas and P. G. Sarroca, ‘‘Experience paper: Towards1130

enhancing cost efficiency in serverless machine learning training,’’ inProc.1131

22nd Int. Middleware Conf., Dec. 2021, pp. 210–222.1132

[55] A. Grafberger, M. Chadha, A. Jindal, J. Gu, and M. Gerndt, ‘‘FedLess: 1133

Secure and scalable federated learning using serverless computing,’’ 2021, 1134

arXiv:2111.03396. 1135

[56] M. Yu, Z. Jiang, H. C. Ng, W. Wang, R. Chen, and B. Li, ‘‘Gillis: Serving 1136

large neural networks in serverless functions with automatic model parti- 1137

tioning,’’ in Proc. IEEE 41st Int. Conf. Distrib. Comput. Syst. (ICDCS), 1138

Jul. 2021, pp. 138–148. 1139

[57] E. Paraskevoulakou and D. Kyriazis, ‘‘Leveraging the serverless paradigm 1140

for realizingmachine learning pipelines across the edge-cloud continuum,’’ 1141

in Proc. 24th Conf. Innov. Clouds, Internet Netw. Workshops (ICIN), 1142

Mar. 2021, pp. 110–117. 1143

[58] D. Chahal, M. Mishra, S. Palepu, and R. Singhal, ‘‘Performance and 1144

cost comparison of cloud services for deep learning workload,’’ in Proc. 1145

Companion ACM/SPEC Int. Conf. Perform. Eng., Apr. 2021, pp. 49–55. 1146

[59] D. Chahal, S. Palepu, M. Mishra, and R. Singhal, ‘‘SLA-aware workload 1147

scheduling using hybrid cloud services,’’ in Proc. 1st Workshop High 1148

Perform. Serverless Comput., 2021, pp. 1–4. 1149

[60] P. Patros, J. Spillner, A. V. Papadopoulos, B. Varghese, O. Rana, and 1150

S. Dustdar, ‘‘Toward sustainable serverless computing,’’ IEEE Internet 1151

Comput., vol. 25, no. 6, pp. 42–50, Nov. 2021. 1152

[61] J. Jiang, S. Gan, Y. Liu, F. Wang, G. Alonso, A. Klimovic, 1153

A. Singla, W. Wu, and C. Zhang, ‘‘Towards demystifying serverless 1154

machine learning training,’’ in Proc. Int. Conf. Manag. Data, Jun. 2021, 1155

pp. 857–871. 1156

[62] A. Nesen and B. Bhargava, ‘‘Towards situational awareness with multi- 1157

modal streaming data fusion: Serverless computing approach,’’ in Proc. 1158

Int. Workshop Big Data Emergent Distrib. Environ., Jun. 2021, pp. 1–6. 1159

[63] J. Tagliabue, ‘‘You do not need a bigger boat: Recommendations at rea- 1160

sonable scale in a (mostly) serverless and open stack,’’ in Proc. 15th ACM 1161

Conf. Recommender Syst., Sep. 2021, pp. 598–600. 1162

[64] F. Xu, Y. Qin, L. Chen, Z. Zhou, and F. Liu, ‘‘λDNN:Achieving predictable 1163

distributed DNN training with serverless architectures,’’ IEEE Trans. Com- 1164

put., vol. 71, no. 2, pp. 450–463, Feb. 2022. 1165

[65] T. P. Bac, M. N. Tran, and Y. Kim, ‘‘Serverless computing approach for 1166

deploying machine learning applications in edge layer,’’ in Proc. Int. Conf. 1167

Inf. Netw. (ICOIN), Jan. 2022, pp. 396–401. 1168

[66] D. Barcelona-Pons, P. Sutra, M. Sánchez-Artigas, G. París, and 1169

P. García-López, ‘‘Stateful serverless computing with crucial,’’ 1170

ACM Trans. Softw. Eng. Methodol., vol. 31, no. 3, pp. 1–38, 1171

Jul. 2022. 1172

[67] Y. Yang, L. Zhao, Y. Li, H. Zhang, J. Li, M. Zhao, X. Chen, and K. Li, 1173

‘‘INFless: A native serverless system for low-latency, high-throughput 1174

inference,’’ in Proc. 27th ACM Int. Conf. Architectural Support Program. 1175

Lang. Operating Syst., Feb. 2022, pp. 768–781. 1176

[68] P. G. Sarroca and M. Sánchez-Artigas, ‘‘MLLess: Achieving cost effi- 1177

ciency in serverless machine learning training,’’ 2022, arXiv:2206.05786. 1178

[69] H. B. Hassan, S. A. Barakat, and Q. I. Sarhan, ‘‘Survey on serverless 1179

computing,’’ J. Cloud Comput., vol. 10, no. 1, pp. 1–29, 2021. 1180

[70] D. A. Tamburri, ‘‘Sustainable MLOps: Trends and challenges,’’ in Proc. 1181

22nd Int. Symp. Symbolic Numeric Algorithms Sci. Comput. (SYNASC), 1182

Sep. 2020, pp. 17–23. 1183

[71] J. M. Hellerstein, J. Faleiro, J. E. Gonzalez, J. Schleier-Smith, V. Sreekanti, 1184

A. Tumanov, and C. Wu, ‘‘Serverless computing: One step forward, two 1185

steps back,’’ 2018, arXiv:1812.03651. 1186

[72] H. van Kemenade. (Jan. 2022). Python-Pillow/Pillow: 9.0.0. [Online]. 1187

Available: https://doi.org/10.5281/zenodo.5813885 1188

[73] D. G. McNeely-White, J. R. Beveridge, and B. A. Draper, ‘‘Inception 1189

and ResNet: Same training, same features,’’ in Proc. Biologically Inspired 1190

Cognit. Archit. Meeting. Cham, Switzerland: Springer, 2019, pp. 352–357. 1191

[74] Amazon. (2021). Aws lambda. [Online]. Available: 1192

https://github.com/aws/aws-lambda-go 1193

[75] I. E. Akkus. (2021). Knix. [Online]. Available: https://github.com/knix- 1194

microfunctions/knix 1195

[76] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, 1196

S. Ghemawat, G. Irving, M. Isard, and M. Kudlur, ‘‘Tensorflow: A system 1197

for large-scale machine learning,’’ in Proc. 12th USENIX Symp. Operating 1198

Syst. design Implement. (OSDI), 2016, pp. 265–283. 1199

[77] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, 1200

‘‘Spark: Cluster computing with working sets,’’ HotCloud, vol. 10, 1201

nos. 10–10, p. 95, Jun. 2010. 1202

[78] AWS Lambda Now Supports Up to 10 Gb of Memory and 6 VCPU Cores 1203

for Lambda Functions. Accessed: Jan. 17, 2022. [Online]. Available: 1204

https://aws.amazon.com/fr/about-aws/whats-new/2020/12/aws-lambda- 1205

supports-10gb-memory-6-vcpu-cores-lambda-functions/ 1206

VOLUME 10, 2022 99351

http://dx.doi.org/10.1109/CLOUD.2019.00067
http://dx.doi.org/10.1002/cpe.6728


A. Barrak et al.: Serverless on Machine Learning: A Systematic Mapping Study

[79] J. R. Gunasekaran, P. Thinakaran, M. T. Kandemir, B. Urgaonkar,1207

G. Kesidis, and C. Das, ‘‘Spock: Exploiting serverless functions for SLO1208

and cost aware resource procurement in public cloud,’’ in Proc. IEEE 12th1209

Int. Conf. Cloud Comput. (CLOUD), Jul. 2019, pp. 199–208.1210

[80] AWS Lambda VS EC2: Which to Use and When | CBT1211

Nuggets. Accessed: Jan. 26, 2022. [Online]. Available:1212

https://www.cbtnuggets.com/blog/certifications/cloud/aws-lambda-1213

vs-ec2-which-to-use-and-when1214

[81] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift, ‘‘Peeking behind1215

the curtains of serverless platforms,’’ in Proc. USENIX Annu. Tech. Conf.,1216

2018, pp. 133–146.1217

[82] D. Mvondo, M. Bacou, K. Nguetchouang, L. Ngale, S. Pouget, J. Kouam,1218

R. Lachaize, J. Hwang, T. Wood, D. Hagimont, and N. De Palma, ‘‘OFC:1219

An opportunistic caching system for FaaS platforms,’’ in Proc. 16th Eur.1220

Conf. Comput. Syst., 2021, pp. 228–244.1221

[83] V. Tolpegin, S. Truex, M. E. Gursoy, and L. Liu, ‘‘Data poisoning attacks1222

against federated learning systems,’’ in Proc. Eur. Symp. Res. Comput.1223

Secur. Cham, Switzerland: Springer, 2020, pp. 480–501.1224

[84] D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E. Gonzalez, and1225

I. Stoica, ‘‘Clipper: A low-latency online prediction serving system,’’ in1226

Proc. 14th USENIX Symp. Networked Syst. Design Implement. (NSDI),1227

2017, pp. 613–627.1228

[85] A. Fuerst and P. Sharma, ‘‘FaasCache: Keeping serverless computing alive1229

with greedy-dual caching,’’ in Proc. 26th ACM Int. Conf. Architectural1230

Support Program. Lang. Operating Syst., Apr. 2021, pp. 386–400.1231

[86] J. Li, S. G. Kulkarni, K. K. Ramakrishnan, and D. Li, ‘‘Analyzing1232

open-source serverless platforms: Characteristics and performance,’’ 2021,1233

arXiv:2106.03601.1234

[87] Serverless: Develop & Monitor Apps on Aws Lambda. Accessed: Jul. 11,1235

2022. [Online]. Available: https://www.serverless.com/1236

[88] A. Gujarati, S. Elnikety, Y. He, K. S. McKinley, and B. B. Brandenburg,1237

‘‘Swayam: Distributed autoscaling to meet SLAs of machine learn-1238

ing inference services with resource efficiency,’’ in Proc. 18th ACM/I-1239

FIP/USENIX Middleware Conf., Dec. 2017, pp. 109–120.1240

[89] What is Mlops? | Nvidia Blog. Accessed: Mar. 09, 2022. [Online]. Avail-1241

able: https://blogs.nvidia.com/blog/2020/09/03/what-is-mlops/1242

[90] D. Khatri, S. K. Khatri, and D. Mishra, ‘‘Potential bottleneck and1243

measuring performance of serverless computing: A literature study,’’ in1244

Proc. 8th Int. Conf. Rel., Infocom Technol. Optim. (ICRITO), Jun. 2020,1245

pp. 161–164.1246

[91] Y.Wu, T. T. A. Dinh, G. Hu,M. Zhang, Y.M. Chee, and B. C. Ooi, ‘‘Server-1247

less data science—Arewe there yet? A case study of model serving,’’ 2021,1248

arXiv:2103.02958.1249

[92] J. Scheuner and P. Leitner, ‘‘Function-as-a-service performance evalua-1250

tion: A multivocal literature review,’’ J. Syst. Softw., vol. 170, Dec. 2020,1251

Art. no. 110708.1252

[93] M. Sadaqat, R. Colomo-Palacios, K. Ricardo, and L. E. S. Knud-1253

sen, ‘‘Serverless computing: A multivocal literature review,’’ NOKOBIT–1254

Norsk Konferanse Organisasjoners Bruk AV Informasjonsteknologi, 2018.1255

[Online]. Available: http://hdl.handle.net/11250/25776001256

[94] D. Taibi, N. El Ioini, C. Pahl, and J. R. S. Niederkofler, ‘‘Serverless1257

cloud computing (function-as-a-service) patterns: A multivocal literature1258

review,’’ in Proc. 10th Int. Conf. Cloud Comput. Services Sci. (CLOSER),1259

2020, pp. 1–12.1260

[95] M. M. John, H. H. Olsson, and J. Bosch, ‘‘Architecting AI deployment:1261

A systematic review of state-of-the-art and state-of-practice literature,’’ in1262

Proc. Int. Conf. Softw. Bus. Cham, Switzerland: Springer, 2020, pp. 14–29.1263

[96] A. B. Kolltveit and J. Li, ‘‘Operationalizing machine learning models—A1264

systematic literature review,’’ in Proc. IEEE/ACM 1st Int. Workshop Softw.1265

Eng. Responsible Artif. Intell. (SERAI), May 2022, pp. 1–8.1266

[97] F. Jauro, H. Chiroma, A. Y. Gital, M. Almutairi, S. M. Abdulhamid, and1267

J. H. Abawajy, ‘‘Deep learning architectures in emerging cloud computing1268

architectures: Recent development, challenges and next research trend,’’1269

Appl. Soft Comput., vol. 96, Nov. 2020, Art. no. 106582.1270

[98] C. P. Filho, E. Marques, V. Chang, L. D. Santos, F. Bernardini, P. F. Pires,1271

L. Ochi, and F. C. Delicato, ‘‘A systematic literature review on distributed1272

machine learning in edge computing,’’ Sensors, vol. 22, no. 7, p. 2665,1273

Mar. 2022.1274

[99] G. A. S. Cassel, V. F. Rodrigues, R. D. R. Righi, M. R. Bez,1275

A. C. Nepomuceno, and C. A. D. Costa, ‘‘Serverless computing for Inter-1276

net of Things: A systematic literature review,’’ Future Gener. Comput.1277

Syst., vol. 128, pp. 299–316, Mar. 2022.1278

[100] Scopus vs Web of Science. Accessed: Jan. 25, 2022. [Online]. Available:1279

https://www.internauka.org/en/blog/scopus-vs-web-of-science1280

[101] P. D. Francesco, I. Malavolta, and P. Lago, ‘‘Research on architecting 1281

microservices: Trends, focus, and potential for industrial adoption,’’ in 1282

Proc. IEEE Int. Conf. Softw. Archit. (ICSA), Apr. 2017, pp. 21–30. 1283

AMINE BARRAK received the master’s degree 1284

in occurrence of security vulnerability changes 1285

in software code from Polytechnique Montreal. 1286

He is currently pursuing the Ph.D. degree in soft- 1287

ware engineering with the University of Quebec 1288

at Chicoutimi. His doctoral research focuses on 1289

the suitability between serverless computing and 1290

machine learning pipelines. He has currently 1291

published two in major refereed international 1292

conferences. His research interests include cloud 1293

computing, MLOps, application of machine learning techniques, analysis 1294

of software repositories, data science, data analytics, and natural language 1295

processing. He was a recipient of the Best Student Paper Award from 1296

CASCON 2018. 1297

FABIO PETRILLO received the Ph.D. degree in 1298

computer science from the Federal University of 1299

Rio Grande do Sul, Brazil, in 2016. He is an Asso- 1300

ciate Professor with the Department of Software 1301

Engineering Information Technology, École de 1302

Technologie Supérieure, Canada. He was a Post- 1303

doctoral Fellow at Concordia University, Canada. 1304

He has was a programmer, software architect, 1305

manager, and agile coach for more than 20 years, 1306

working on critical mission projects and guiding 1307

several teams. He has published several papers in international confer- 1308

ences and journals, including IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 1309

(TSE), European Master on Software Engineering (EMSE), Journal of 1310

Systems and Software (JSS), Information and Software Technology (IST), 1311

IEEE SOFTWARE, QRS, ICPC, SAC, ICSOC, and VISSOFT. His research 1312

interests include empirical software engineering, software quality, debug- 1313

ging, service-oriented architecture, cloud computing, and agile methods. 1314

He has been recognized as a Pioneer and an international reference on 1315

Software Engineering for Computer Games. He is the Creator of Swarm 1316

Debugging—a new collaborative approach to support debugging activi- 1317

ties. He has served on the program committees of several international 1318

conferences, including QRS, CHI, SIGCSE, ICPC, VISSOFT, and GAS. 1319

He has reviewed for top international journals, such as IEEE TRANSACTIONS 1320

ON SOFTWARE ENGINEERING (TSE), ACM Transactions on Software Engineer- 1321

ing and Methodology (TOSEM), Journal of Systems and Software (JSS), 1322

European Master on Software Engineering (EMSE), and Information and 1323

Software Technology (IST). 1324

FEHMI JAAFAR received the Ph.D. degree from 1325

the Department of Computer Science, Montreal 1326

University, Canada. He was a Researcher at 1327

the Computer Research Institute of Montreal, 1328

an Adjunct Professor at Concordia University of 1329

Edmonton, and a Postdoctoral Research Fellow at 1330

Queen’s University and Polytechnique Montreal. 1331

He is currently is an Associate Professor with 1332

Quebec University at Chicoutimi and an Affiliate 1333

Professor with Laval University and Concordia 1334

University. His researches have been published in top venues in computer 1335

sciences, including the Journal of Empirical Software Engineering (EMSE) 1336

and the Journal of Software: Evolution and Process (JSEP). He established 1337

externally funded research programs in collaboration with Defence Canada, 1338

Safety Canada, NSERC, MITACS, etc. His research interests include the 1339

Internet of Things security and the application of machine learning tech- 1340

niques in cybersecurity. 1341

1342

99352 VOLUME 10, 2022


