
https://doi.org/10.1007/s10664-021-09944-w

Revisiting the VCCFinder approach for the identification
of vulnerability-contributing commits

Timothé Riom1 ·Arthur Sawadogo2 ·Kevin Allix1 ·Tegawendé F. Bissyandé1 ·
Naouel Moha2 · Jacques Klein1

Accepted: 22 January 2021
© The Author(s) 2021

Abstract
Detecting vulnerabilities in software is a constant race between development teams and
potential attackers. While many static and dynamic approaches have focused on regularly
analyzing the software in its entirety, a recent research direction has focused on the analysis
of changes that are applied to the code. VCCFinder is a seminal approach in the litera-
ture that builds on machine learning to automatically detect whether an incoming commit
will introduce some vulnerabilities. Given the influence of VCCFinder in the literature, we
undertake an investigation into its performance as a state-of-the-art system. To that end, we
propose to attempt a replication study on the VCCFinder supervised learning approach. The
insights of our failure to replicate the results reported in the original publication informed
the design of a new approach to identify vulnerability-contributing commits based on a
semi-supervised learning technique with an alternate feature set. We provide all artefacts
and a clear description of this approach as a new reproducible baseline for advancing
research on machine learning-based identification of vulnerability-introducing commits.

Keywords Vulnerability detection · Machine learning · Replication · Software engineering

1 Introduction

Software development is a complex engineering activity. At any stage of the software lifecy-
cle, developers will introduce bugs, some of which will lead to failures that violate security
policies. Such bugs are commonly known as software vulnerabilities (Krsul 1998) and are
one of the main concerns that our ever-increasingly digitalised world is facing. Detecting
software vulnerabilities as early as possible has thus become a key endeavour for software
engineering and security research communities (Zhu et al. 2019; Cadar et al. 2008; Livshits
and Lam 2005; Larochelle and Evans 2001). Typically, software vulnerabilities are tracked

Communicated by: Eric Bodden

� Timothé Riom
timothee.riom@uni.lu

1 SnT, University of Luxembourg, Luxembourg, Luxembourg
2 Université du Québec à Montréal, Montreal, Canada

/ Published online: 29 March 2021

Empirical Software Engineering (2021) 26: 46

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-021-09944-w&domain=pdf
mailto: timothee.riom@uni.lu


during code reviews, often with the help of analysis tools that narrow down the focus scope
by flagging potentially dangerous code. On the one hand, when such tools build on static
analysis (either deciding based on code metrics or matching detection rules), the number of
false positives can be a deterrent to their adoption. On the other hand, when the tools build
on dynamic analysis (e.g., for pinpointing invalid memory address), they are operated on
the entire software which may not scale to the frequent evolutions of software.

To address the aforementioned challenges that static and dynamic tools face in finding
vulnerabilities, (Perl et al. 2015) have proposed the VCCFinder approach with two key inno-
vations: (1) the focus is made on code commits, which are “the natural unit upon which to
check whether new code is dangerous”, allowing to implement early detection of vulnera-
bilities just when they are being introduced; (2) the wealth of metadata on the context of
who wrote the code and how it is committed is leveraged together with the code analysis to
refine the detection of vulnerabilities.

VCCFinder is a machine learning approach that trains a classification model, which can
discriminate between safe commits and commits that lead to the code being vulnerable. The
experimental assessment presented by the authors has shown great promise for wide adop-
tion. Indeed, by training a classifier on vulnerable commits made in 2011 on open source
projects, VCCFinder was demonstrated to be capable of precisely flagging a majority of
vulnerable commits that were made between 2011 until 2014. VCCFinder further produced
99% less false positives than the tool the authors decided to compare their implementa-
tion to, namely FlawFinder (Wheeler 2001). Finally, the authors reported that VCCFinder
flagged some 36 commits to which no CVE was attached, one of which has been indeed
confirmed as a vulnerability introducing commit.

VCCFinder constitutes a literature milestone in the research direction of vulnerabil-
ity detection at commit-time. Their overall detection performance, presented in the form
of Recall-to-Precision curve, however indicates that the problem of vulnerability finding
remains largely unsolved. Indeed, when precision is high (e.g., around 80%), recall is dra-
matically low (e.g., around 5%). This high precision is a promise that security experts’ time
will be spent on likely Vulnerability-Contributing Commits. This is how to make the best of
their skills. Similarly, when aiming for high recall (e.g., at 80%), precision is virtually null.

Unfortunately, since the publication of VCCFinder, and despite the tremendous need and
appeal of automatically detecting commits that introduce vulnerability, this field has not
attracted as much interest, and therefore as much progress, as one could have imagined.

Thus, to date, it remains unclear (1) whether the ability of VCCFinder to detect
Vulnerability-Contributing Commits can be replicated 1, (2) whether, given some variations
in the datasets or in the algorithm implementation, the produced classification model is sta-
ble, and (3) whether some adaptations of the learning (e.g., to account for data imbalance)
can improve the achievable detection performance.

This paper We perform a study on the state of the art of vulnerability finding at commit-
time in order to inform future research in this direction. To that end, we first report on
a replication attempt of VCCFinder. Replication attempt for which we tried to stick as
much as possible to the original work. Then, we present an exploratory study on alterna-
tive features from the literature as well as the implementation of a semi-supervised learning
scenario. We contribute to the research domain in several axes:

1Throughout this paper, we use the words reproduction (different team, same experimental setup) and repli-
cation (different team, different experimental setup) as defined in the ACM Artifact Review and Badging
Document. We further note that this terminology was updated in August 2020; We use the updated version.
https://www.acm.org/publications/policies/artifact-review-and-badging-current

(2021) 26:Empir Software Eng 4646 Page 2 of 30

https://www.acm.org/publications/policies/artifact-review-and-badging-current


– We perform a replication study of VCCFinder, highlighting the different steps of
the methodology and assessing to what extent our results conform with the authors
published findings.

– We rebuild and share a clean, fully reproducible pipeline, including artefacts, for facili-
tating performance assessment and comparisons against the VCCFinder state-of-the-art
approach. This new baseline might help unlock the field.

– We explore the feasibility of assembling a new state of the art in vulnerability-
contributing commit identification, by assessing a new feature set.

– We identify one issue to be the lack of labelled data, and we explore the possibility to
leverage a specialised technique, namely co-training, to mitigate that issue.

The main findings of this work are as follows:

– The VCCFinder publication lacks sufficient information and artefacts to enable repli-
cation.

– Despite our best experimental efforts, we were unable to replicate the results reported
in the publication, suggesting some generalisation issues due to high sensitivity of the
approach to dataset selection and learning process.

– A semi-supervised learning approach based on our new feature set (inspired by a recent
work (Sawadogo et al. 2020) that is targeting the detection of vulnerability fix commits,
rather than the detection of Vulnerability-Contributing Commits, or VCCs) does not
achieve the same detection performance as reported in the state of the art. Nevertheless,
our approach constitutes a reproducible baseline for this research direction.

The rest of this paper is organised as follows:

– We first focus on describing the VCCFinder approach: what resources are available,
what we had to guess, and how we reimplemented it (Section 2). We compare the
achieved results with the originally presented ones.

– We then propose and evaluate in Section 3 a new approach, built with another feature
set, and co-training.

– We finally contextualise our work with the existing related work (Section 4), and
summarise our contributions in Section 5.

2 Replication Study of VCCFinder

The first objective of our work is to investigate to what extent the VCCFinder (Perl
et al. 2015) state-of-the-art approach can be replicated (different team, different experi-
mental setup) and/or reproduced (different team, same experimental setup). VCCFinder2

2VCCFinder means Vulnerability-Contributing Commit Finder

(2021) 26:Empir Software Eng 46 Page 3 of 30 46



is a machine learning-based approach aiming at detecting commits which contribute to the
introduction of vulnerabilities into a C/C++ code base.

As most machine learning-based approaches, VCCFinder relies on several building
blocks:

1. A labelled dataset of commits which is used to train a supervised learning model;
2. A feature extraction engine that is used to extract relevant characteristics from commits;
3. A machine learning algorithm that leverages the extracted features to yield a binary

classifier that discriminates vulnerability-contributing commits from other commits.

In the following, we present, for each of the aforementioned three building blocks, the
descriptions of operations in the original paper. We then discuss to what extent we were able
to replicate these operations. Subsequently, we present the results of our replication study.

2.1 Datasets

2.1.1 Datasets - VCCFinder Paper

A key contribution in the VCCFinder publication is the construction of two labelled datasets
of C/C++ commits.

– A dataset of commits that contribute vulnerabilities (VCCs) into a code base;
– A dataset of commits that fix vulnerabilities that exist within a code base.

With the assumption that a commit that fixes a vulnerability does not introduce a new
one, the authors consider the second dataset as a negative dataset (i.e., the correspond-
ing dataset of non-vulnerability-contributing commits). To build both datasets, the paper
reports that 66 open-source git repositories of C and C++ projects were considered. Overall,
these repositories included some 170 860 commits. For the creation of the vulnerability-
fixing commits data set, the authors gather all the CVEs3 related to these repositories. They
selected CVEs that are linked to a fixing commit. With this method, 718 vulnerability fixing
commits were collected.

Collecting commits contributing to a vulnerability is less straightforward. Indeed, usu-
ally, commits introducing vulnerability are not tagged as such, and there are no direct
information in the commit message that indicates the vulnerable nature of the commit.

To overcome this difficulty, the authors follow an approach defined by Śliwerski et al.
(2005) and called SZZ. The principle is to start from vulnerable lines of code. Such vul-
nerable lines of code are identified thanks to the vulnerability fixing commits: indeed, it is
reasonable to assume that the lines that have been fixed were previously vulnerable. Then
the git blame command is used on these identified lines of code. The git blame com-
mand allows finding the last commit that modified a given line. The assumption here is that
the last modification made on a vulnerable line of code is the modification that introduced
the vulnerability.

Thanks to this method, 640 vulnerability-contributing commits (VCC) have been col-
lected. Note that the numbers of vulnerability-contributing commits and vulnerability fixing
commits are different simply because one commit can potentially contribute to more than
one vulnerability.

3CVEs: Common Vulnerabilities and Exposures are publicly available cybersecurity vulnerabilities.

(2021) 26:Empir Software Eng 4646 Page 4 of 30



Table 1 Datasets comparisons

VCCFinder Paper Replication

66 repositories 38 repositories

Training Test Total Training Test Total

Positive 421 219 640 470 253 723

(vuln. contr. commit)a

Negative 469 249 718 389 879 1268

(vuln. fixing commit)

Unlabelled 90 282 79 220 169 502 229 381 119 489 348 870

Total 170 860 350 861

aVulnerability-Contributing Commit

In the VCCFinder paper, both datasets have been divided into a training set and a testing
set (following a two-third, one-third ratio). All commits created before January, 1st 2011
are put in the training set, and the remaining in the test set. The numbers of commits of
each dataset are presented in the left part of Table 1. Note that among the whole dataset of
170 860 commits, only 1258 (640+718) commits have been classified. The 468 (219+249)
labelled commits in the test set is used as ground truth, notably to compute Precision and
Recall performance metrics.

All other commits that are not categorised into the two first datasets (169 502) are put
in a third dataset named unlabelled dataset. This dataset of unlabelled commits is also split
into two datasets. All commits created after January, 1st 2011 are in a test set. In the original
paper, this unlabelled test set is used to try to uncover yet-undisclosed vulnerabilities. The
authors claim VCCFinder was able to flag 36 commits as VCCs. They detail one VCC for
which they received confirmation from the development team that it was indeed a VCC. At
the time they wrote the presentation of their work, they had not received confirmation for
the others.

2.1.2 Datasets - Availability

The dataset of the original VCCFinder article is not directly accessible.
Online investigation may direct to a specific Github repository4 that holds the name of

the tool and the name of one of the authors. However, the original paper does not men-
tion this repository. The code present in this repository is not fully documented, as was
already mentioned by a prior work whose authors noted some major challenges to exploit
its contents (Hogan et al. 2019). After carefully analysing this repository, we came to the
conclusion that the artefacts in this repository would not allow us to re-construct the exact
same dataset as the one used in the original VCCFinder. Moreover, it would not even allow
to construct a different dataset, as parts of the features extraction process is missing (to the
best of our knowledge).

4https://github.com/hperl/vccfinder

(2021) 26:Empir Software Eng 46 Page 5 of 30 46

https://github.com/hperl/vccfinder


2.1.3 Datasets - Our Replication Study

At the time we reached a conclusion about the available Github repository, we had already
contacted the authors of VCCFinder who offered to provide directly the output of their
feature extraction pipeline. We accepted their offer, as it seemed that it was the only viable
solution.

This dataset provided to us by VCCFinder’s authors is a database export that contains
three tables:

– A table listing 179 public repositories of C/C++ projects;
– A table listing 351 400 commits, each commit being linked to a repository thanks to the

use of a repository id;
– A table listing the CVEs used to identify the vulnerability fixing commits.

Note that over those 179 repositories, all commits are related to an existing repository.
However, only 50 repositories have at least one declared commit (i.e., 129 repositories have
no related commit).

Furthermore, out of these 50 repositories, only 38 repositories contain at least one vulner-
ability fixing or vulnerability-contributing commit. Among these 38 repositories, only 27
are linked to both a vulnerability contributing commit and its relevant vulnerability fixing
commit.

While no such process is mentioned by original authors, we opted to discard commits
that do not modify any code file, as they are very unlikely to be involved in any vulnerability
fixing or introducing.We used a simple heuristic that discards commits with no modification
to a file whose extension is either .h, .c, .cpp, or .cc.

Table 1 presents a comparison between a) the number of commits that have been involved
in our replication attempt, and b) the dataset described in VCCFinder original paper.

We note that the dataset provided to us is significantly different than the one described
in the VCCFinder paper. We also note that we are unable to evaluate whether there is any
overlap between the dataset we had access to and the original one.

Use of the data sets The aforementioned ground truth notion is important as VCCFinder’s
authors opted to both report performance metrics computed against this ground truth, and
metrics computed on data they had no ground truth for (we do not know how they did this).
Original authors were contacted but did not come back to us on the matter. As a result, we
faced huge difficulty to clearly understand the notion of ground truth as used in the original
VCCFinder paper.

(2021) 26:Empir Software Eng 4646 Page 6 of 30



Since our understanding of their notion of ground truth is based on deduction and
guesswork, and not on a clear authoritative description from original authors, we now care-
fully detail on what we trained our classifiers on, and on what they were tested on. More
specifically, we performed three different experiments:

1. What we think the original experiment was;
2. A less coherent setup;
3. A more traditional setup.

We note that we cannot definitely affirm which of the first or the second setup
VCCFinder original paper used, as both are coherent with the figures reported. The
repartition is presented in Table 2, and detailed in the following paragraphs:

Unlabelled Train Replication A classifier is trained on the whole training set, including
the unlabelled commits created before 2011. This first one is the one we think to match the
most with the description of the original experiment. The negative label (i.e., not VCC) is
associated with those unlabelled commits before training. The resulting classifier is tested
on the whole test set, including the unlabelled commits from 2011 and newer. Similarly,
those unlabelled commits are associated with the negative label. The goal being to find
VCCs, if the resulting classifier predicts one originally unlabelled commit to be a VCC, this
will display as a False Positive.

Unlabelled Replication This setup is very similar to the previous one, with the exception
that the unlabelled commits created before 2011 are not used in the training phase. Those
related to after 2011 are used in the test set (and associated with the negative label). This
scenario would enable to analyse the model’s behaviour once facing security neutral com-
mits. That is to say, commits that are neither VCCs nor fixing commits, the latter having to
be written with a security mindset. Still, the model would train on the closest we have to a
ground truth. This setup is less coherent in the sense that unlabelled commits are not treated
similarly in the training than in the testing.

Ground Truth Replication In this more traditional setup, a classifier is trained on the train
set for which we have a ground truth, i.e., excluding the unlabelled commits. Similarly, the
resulting classifier is tested on the test set for which we have a ground truth, i.e., excluding
the unlabelled commits.

Table 2 Dataset repartition scenarios

Training Test

Unlabelled Train positive 470 253

Replication negative 229 770 (389 + 229 381) 120 368 (879 + 119 489)

Unlabelled positive 470 253

Replication negative 389 120 368 (879 + 119 489)

Ground Truth positive 470 253

Replication negative 389 879

(2021) 26:Empir Software Eng 46 Page 7 of 30 46



2.2 Features

2.2.1 Features - VCCFinder Paper

The second main step of the VCCFinder approach consists in extracting the relevant features
that will feed the machine learning algorithm. Among the selected features, VCCFinder
considers code metrics and meta-data related to both a particular commit and the whole
repository.

Regarding the commit5 itself, the patch code and the commit message are both consid-
ered. Note that a specific section of the original paper is dedicated to asserting the relevance
of the features by comparing their frequency in vulnerability-contributing commits and
other commits.

Regarding code metrics, for a given commit m from a repository R, VCCFinder extracts:

– The number of structural keywords of C/C++ programs (such as if, int, struct,
return, void, unsigned, goto, or sizeof, etc) present in m. Overall, 62
keywords are referenced;

– The number of hunks6 in m;
– The number of additions in m;
– The number of files changed in R.

Regarding metadata, for a given commit m from a repository R, VCCFinder considers:

– The total number of commits in R;
– The percentage of commits in R performed by the author of m;
– The number of changes performed on the files modified by m after m was applied;
– The number of changes performed on the files modified by m before m was applied;
– The number of authors altering the files impacted by m;
– The number of stargazers, forks, subscribers, open issues and others, including the

commit message itself.

2.2.2 Features - Availability

The earlier mentioned git repository ends up registering commits in a database, though as
already stated (Section 2.1.2), we are unsure whether the resulting database would have
all the information needed, in particular, we have been unable to locate code that would
compute all the features required. Furthermore, the original paper does not contain enough
details to fully re-implement the full feature extraction ourselves.

Therefore, regarding the extraction of features, we have to rely on the fields present in
the database given by the original authors.

2.2.3 Features - Our Replication Study

As already explained, the original paper does not precisely list all the features extracted
leading to a situation where we were unable to re-implement a feature extraction engine,
and thus unable to re-use their approach on another dataset.

5We remind that a commit is composed of a patch (i.e., the ”diff” representing the code changes), and a
commit message (explaining the modification performed by the patch)
6a hunk is a block of continuous added lines

(2021) 26:Empir Software Eng 4646 Page 8 of 30



However, the database that was shared with us already contains the features computed
by VCCFinder authors themselves. We hence directly used those features.

2.3 Machine Learning Algorithm

2.3.1 Machine Learning Algorithm - VCCFinder Paper

The VCCFinder approach leverages an SVM algorithm (through its LibLinear (Fan et al.
2008) implementation) to learn discriminating vulnerability introducing commits from other
commits. This algorithm builds a hyper-plan that would separate, in our case, vulnerabil-
ity introducing commits from others. To classify a given commit, a distance is computed
between the feature vector of this commit (i.e., a point in the hyper-space) and this hyper-
plan. The sign of this distance determines whether this commit contributes to a vulnerability
or not.

Given a commit and the extracted features, we describe now the generation of the feature
vector of this commit that is used as input of the machine learning algorithm. This pro-
cess follows a generalised bag-of-words approach that normalises the features’ values into
boolean vectors. Regarding the normalisation, for each feature, commits are categorised into
bins based on the occurrences of the feature. Then a string is built by concatenating the name
of the feature and the bin identifier. Finally, joining all these newly created strings together
with the texts formed by the patch code and/or commit message, a considerable string is
built and fed to a tool named SALLY (Rieck et al. 2012). SALLY is a binary tokenisation
tool which generates a high-dimensional sparse vector of booleans from a string, comput-
ing a hash for each split-on-space sub-string. At the end of this process, each commit is
represented now by, first, a boolean, indicating its class (vulnerability-contributing commit
or not) and a succession of pairs (feature hash/binary value) that represent a
sparse vector of the features.

The VCCFinder authors mention they used a handicap value C of 1 and weight for this
one-class problem of 100 as ”the best values” (last sentence of their section 4.2).

Eventually, the authors present their results on the test set with a Recall-to-Precision
curve for which the actual parameter is the threshold in Fig. 1. After computing the distance
from the hyperplane for each commit in the test set and by incrementally lowering the
threshold, the commits the closest to the hyperplane will be classified as VCCs. Lowering
the threshold results in increasing the number of True Positives, but might also quickly bring
more False Positives. The higher the Recall-to-Precision curve, the more precise, and the
more horizontal, the more the model is not sacrificing precision for recall.

2.3.2 Machine Learning Algorithm - VCCFinder Availability

As already explained, VCCFinder authors did not release code that perform all the required
steps of their approach. Even in the repository found on the Internet (but not mentioned in
the VCCFinder paper), the code that orchestrates the training of the classifier and its usage
is absent.

(2021) 26:Empir Software Eng 46 Page 9 of 30 46



Fig. 1 Extracted from the VCCFinder paper: precision/recall performance profile of VCCFinders

However, as noted above, authors provide some of the parameters in the paper. We note
that the embedding step (i.e., tokenisation and discretisation) is almost adequately described
in the original paper, with the exception of the number of bins (cf. below).

2.3.3 Machine Learning Algorithm - Our Replication Study

The VCCFinder authors mentioned they used the LibLinear (Fan et al. 2008) library to run
the SVM algorithm. However, several front-ends of LibLinear exist. We decided to use the
LinearSVC7 implementation included in the popular framework scikit-learn.

Regarding the construction of the feature vectors, and more specifically regarding
the normalisation step, the authors do not specify the number of bins they use, nor on
which features this step was performed. We decided to consider 10 bins per feature con-
taining each, as much as possible, the same number of commits. This was done with
scikit-learn’s preprocessing.QuantileTransformer facility, assigning the value
of 10 to n quantiles parameter, and ’uniform’ to the output distribution
parameter.

We then apply LinearSVC classifier with C parameter equals to one, the weight of the
class one to 100 over 200 000 iterations.

7https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html

(2021) 26:Empir Software Eng 4646 Page 10 of 30

https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html


2.4 Results

In this section, we detail the results yielded by VCCFinder in the original paper, as well as
the results that we obtain when we replicate VCCFinder.

2.4.1 VCCFinder Paper

To assess the performance of their machine learning-based approach, the authors keep about
two-thirds of their datasets for training, and use one-third of the datasets for testing. Table 1
presents the exact numbers. Note that, as explained in Section 2.1, we are not sure about
what the training and testing sets are composed of.

The original results are presented in Fig. 1, which is directly extracted from the
paper (Perl et al. 2015). The plot is obtained by measuring/computing precision and recall
values when varying the threshold.

In the original paper, the authors compare VCCFinder against a then-state-of-the-art
tool named flawfinder (in red in Fig. 1). Flawfinder is a static analyser tool that looks for
dangerous calls to sensitive C/C++ APIs in the code as strcpy and flags them.

Figure 1 shows that VCCFinder greatly outperforms Flawfinder. The authors also set
their tool to the same level of recall that Flawfinder is capable of for this dataset, 24%, and
show that their approach presents then a precision of 60%. In comparison, Flawfinder can
only achieve 1% in such conditions. For a recall of 84%, VCCFinder has a precision of 1%.

With precision and recall values extracted from Fig. 1, an F1-score can be computed
thanks to the following formula:

F1 = 2 ∗ Precision ∗ Recall

P recision + Recall

We can notice that the maximal F1-score of VCCFinder seems to be lower than 0.4, with
a maximum of either (Recall;Precision) =(0.25;0.6) or (Recall;Precision)=(0.3;0.5). Those
lead to an F1-score of either 0.35 or 0.375.

Table 3 describes several metrics (extracted from the original paper) such as True Pos-
itive, False Positive, etc computed on the test set. VCCFinder flagged 53 commits that
are, according to the ground truth, actually introducing a known vulnerability. Applying
VCCFinder to the larger set of unclassified commits, 36 commits were flagged as suspi-
cious. Among those 36 potential VCCs, one was described by authors as confirmed by the
project maintainers, who had already patched this vulnerability. Authors opted not to com-
ment on the other 35 commits, invoking ”responsible disclosure”. These 36 commits are
presented as belonging all to the post-January 2011 unclassified set. Thus, on what they
define themselves as the ground truth, no false positive is met.

2.4.2 Our Replication Study

The results presented in Fig. 2 show the precision per recall we obtain on the 3 different
test sets while diminishing the threshold. One can understand the threshold as the minimum
distance from the hyperplane for a commit to be considered as VCC. The grey curves rep-
resent the lines for a constant F1-score at 0.2, 0.4, 0.6 and 0.8. We now details the results
for each of the 3 test sets presented in 2.1.3:

Ground Truth Replication The replication achieves a maximum F1-score of 0.63 for a
recall of 0.76 and a precision of 0.54 (see line 2 of Table 3 and green dots in Fig. 2). We also

(2021) 26:Empir Software Eng 46 Page 11 of 30 46



Table 3 Results of replication on updated test set

True Positive(VCCa) False Positives False Negatives True Negativesb Precision Recall

VCCFinder 53 36 166 79 184 0.60 0.24

Ground Truth Replication 61 5 192 885 0.92 0.24

Unlabelled Replication 61 3145 192 157 224 0.02 0.24

Unlabelled Trained Replication 61 695 192 159 674 0.08 0.24

aVCC: Vulnerability-Contributing Commit
bVulnerability-Fixing Commit and post-2011 Unlabelled

set ourselves, for the purpose of comparison, to the reference recall used in VCCFinder’s
original paper of 0.24 to find a precision of then 0.92. In these conditions, the F1-score is
of 0.38. It presents a progressive decline and correctly tags 61 commits as VCCs.

Unlabelled Replication This attempt trains on the ground truth but is tested on both ground
truth and beyond 2011 unclassified is drawn in red in Fig. 2. We can see it perform very
poorly, presenting more than three thousand false positives, once set to the same recall of
0.24. The precision is then barely of 2% and the F1 score of 0.037.

Unlabelled Train Replication It is after assessing how poorly the last experiments per-
formed that we decided to include unclassified in the training, forcing them as non-VCCs.
The results are illustrated thanks to the blue curve in Fig. 2 and the last row of Table 3. It
improves sensibly the performances without reaching the level of the original. The precision
for fixed recall is of 8%, leading to an F1-score of 0.12.

Fig. 2 Precision/recall performance profile of VCCFinder’s Replication

(2021) 26:Empir Software Eng 4646 Page 12 of 30



2.4.3 Parameters Exploration

Besides the results on the 3 different test sets, we took the opportunity of this replication
attempt of VCCFinder to investigate the impact of various parameters.

Exploration over parameter C In the original paper it is just stated that the optimal condi-
tions are for a cost parameter C of 1. We experiment for different values of C on the basis of
the Ground Truth Replication. We experiment for values from C = 10−6 to 100, and obtain
the values presented in Fig. 3.

It appears that the behaviour seems to tend toward an optimal behaviour starting at C =
10−2 and higher. Thus, as advocated by the VCCFinder authors, using a value of C at 1
makes sense.

Exploration over class weight parameter Altering the weight of the positive class (VCCs)
from 0.1 to 100, we saw no difference in the output using the same other settings. There is,
thus, no reason to deviate from the original paper declared values.

Exploration with other algorithms We also experimented with a variety of different
machine learning algorithms. Results are presented in Fig. 4. We note that SVM—that
is used by the original VCCFinder paper—is among the algorithms that produce the best
results.

2.5 Analysis

We discuss the experimental results of our replication attempt of the VCCFinder approach.
RQ 1: Is our reproduction of VCCFinder successful?

Fig. 3 Precision/recall performance profile of VCCFinder’s replication for varying values of C parameter

(2021) 26:Empir Software Eng 46 Page 13 of 30 46



Fig. 4 Precision/recall performance profile for comparing classifying algorithms

According to the terminology used by ACM’s Artifact Review and Badging guidelines,
a Reproduction requires the same experimental setup (Association for Computer Machin-
ery 2020). We recognise that some elements of our setup were different from the setup in
VCCFinder publication. We have therefore documented the differences.

We note that the combination of a) an implementation of the approach, and b) the exact
dataset used originally would have allowed us—and any other researcher—to positively
validate the results reported by VCCFinder’s authors.

RQ 2: Does the present work constitute a successful Replication of VCCFinder?
The ACM’s terminology states that researchers conducted a successful Replication when

they ”obtain the same result using artifacts which they develop completely independently”.8

We were unable to obtain the same results, mostly because we were unable to re-
implement ourselves the code based on the paper. This is caused by the lack of details and/or
of clarity of the original paper. As an example, even if we had had access to the software
that collects the code repositories and built a database,9 we would still miss the complete
list of repositories that were involved in the original experiment.

8https://www.acm.org/publications/policies/artifact-review-and-badging-current
9Note that the link provided in footnote 1 of page 3 in the original post-print publication raises a 404 error.

(2021) 26:Empir Software Eng 4646 Page 14 of 30

https://www.acm.org/publications/policies/artifact-review-and-badging-current


Given that the differences in experimental results between our replication study and the
original VCCFinder publication may be due to the variations in the dataset or in the learning
process, we propose to investigate an alternative approach, that we would make available
to the research community, and that could yield similar performance to the promising one
reported in the VCCFinder paper.

3 Research for Improvement

VCCFinder is an important milestone in the literature of vulnerability detection. Indeed,
departing from approaches that regularly scanned source code to statically find vulnerabil-
ities, VCCFinder initiated an innovative research direction that focuses on code changes
to flag vulnerabilities while they are being introduced, i.e., at commit time. Unfortunately,
its replicability challenges advances in this direction. By investing in an attempt to fully
replicate VCCFinder and making all artefacts publicly available, we unlock the research
direction of vulnerability detection at commit-time and provide the community with support
to advance the state of the art.

Considering our released artefacts of a new replicable baseline, we propose to investi-
gate some seemingly-appealing variations of the VCCFinder approach to offer insights to
the community. Thus, in this section, we go beyond a traditional replication paper by :

(1) Studying the impact of leveraging a different feature set that was claimed to be rel-
evant to vulnerabilities (Sawadogo et al. 2020), thus proposing a new approach to
compare against VCCFinder (in Section 3.1);

(2) Trying to overcome the problem of unbalanced datasets, i.e., the fact that there are
much more unlabelled samples than labelled ones (in Section 3.2).

3.1 Using an Alternate Feature Set

As described above, the feature set used in VCCFinder is not sufficiently documented to
be re-implemented, and the VCCFinder authors did not release a tool that is able to extract
features from a collection of commits.

In this section, we investigate the use of an alternate feature set, described in a recent
publication (Sawadogo et al. 2020) that is targeting the detection of vulnerability fix com-
mits, rather than the detection of VCC. To reduce ambiguity when needed, we refer to
this alternate feature set as New Features, while the VCCFinder feature set is denoted VCC
Features.

In this experiment, the settings of the machine learning stay the same as in the replication
(LinearSVC with C=1 and the class weight set to 100).

RQ 3: How a less extensive but more security-focused feature set alters the VCCFinder
approach?

3.1.1 New Feature Set

The New Feature set is made of three types of features: Text-based features, Security-
Sensitive features and Code-Fix features. They are all shown in Table 4

– Code metrics: A difference between the two feature sets concerning the code is that
the new feature set focuses on 17 characteristics of the code, while VCCFinder collects

(2021) 26:Empir Software Eng 46 Page 15 of 30 46



Table 4 Alternate set of features (adapted from Sawadogo et al. 2020)

ID Code-fix ID Security-sensitive

F1 #commit files changed S1 #sizeof added

F2 #loops added S2 #sizeof removed

F3 #loops removed S3

F4 S4 S1+S2

F5 F2+F3 S5-S6 Like S1-S2 for

continue

F6-F9 Like F2-F5 for if S7-S8 Like S1-S2 for

break

F10-F13 Like F2-F5 for Lines S9-S10 Like S1-S2 for

INTMAX

F14-F17 Like F2-F5 for S11-S12 Like S1-S2 for

Parenthesized expression goto

F18-F21 Like F2-F5 for S13-S14 Like S1-S2 for

Boolean operators define

F22-F25 Like F2-F5 for S15-S18 Like S1-S4 for

Assignements struct

F26-F29 Like F2-F5 for S19-S20 Like S1-S2 for

Functions call offset

F30-F33 Like F2-F5 for S21-S24 Like S1-S4 for

Expressions void

ID Text

W1-W10 Most recurrent top 10 word

62 keywords. Though, for each, it also computes whether they are added, removed, the
difference of those two factors and their addition.

Taken individually, most of them are common to the two feature sets. Except for
the count of elements under parenthesis, function calls, keywords: INTMAX, define
and offset, VCCFinder’s feature set includes them all and beyond.

– Commit message: In New Features, only the ten most significant words present in
the commit message corpus, as obtained through a term-frequency inverse-document-
frequency (TFIDF) analysis, are captured.

Note that we tried to normalise the features (as recommended in Hsu et al. (2003)). The
results of detection along the test set were the same or slightly worse with this normalisation
step. Thus we decided not to normalise the features.

3.1.2 Results

Figure 5 and Table 5 present the performances with the New Feature Set.
By considering the Ground Truth only (second line of Table 5 and green curve in Fig. 5),

the New Features are less performant than VCC Features. For, still, a recall of 0.24, the
precision is only 67% while it used to top at 92% in such a case.

(2021) 26:Empir Software Eng 4646 Page 16 of 30



Fig. 5 Precision-recall performances using New Features

Here again, because of the doubt on what is the actual test set in the original paper (cf.
Section 2.1.3), we also tested on both the ground truth and the unclassified commits post
January, 1st 2011 (red curve in Fig. 5 and last row in Table 5).

3.2 Adding Co-Training

A major issue with any VCC detection endeavour is the lack of labelled data, with less
than one per cent of the data being labelled. While researchers can collect many hundreds
of thousands commits, acquiring even a modest dataset of known VCCs requires a massive
effort.

One field of machine learning focuses on the usability of the unlabelled data. The study
by Castelli and Cover (1995) states that it is possible, in some case, to leverage unlabelled
samples to improve a machine learning model. Zhang and Oles (2000) investigated the

Table 5 Confusion table for new features

True Positive(VCC) False Positives False Negatives True Negatives Precision Recall

VCCFinder 53 36 166 79 184 0.60 0.24

Ground Truth New Features 61 9 192 854 0.871 0.241

Unlabelled New Features 61 5672 192 120 346 0.010 0.241

(2021) 26:Empir Software Eng 46 Page 17 of 30 46



potential for gaining information from unlabelled data. This last study concludes that so
called active-methods have already proven theoretical efficiency.

In our case, depending on the interpretation of the use of the dataset as explained earlier,
unlabelled commits for training (before 2011) are either discarded (Ground Truth experi-
ment) or incorporated in the non-VCCs set (Unlabelled Replication and Unlabelled Train
Replication).

RQ 4: Can semi-supervised sorting of unlabelled data improve the VCCFinder
approach?

One semi-supervised learning approach, called co-training and introduced by Blum and
Mitchell, could help answer this question. On a Web page classification problem, Blum and
Mitchell (1998) used two classifiers in parallel to complete training sets with unlabelled
data. They ended up with an error rate of just 5% based on both the page content and hyper-
links over a test set of 265 pages: only 12 pages labelled (3 as positives course-pages, 9
negatives) and around 800 unlabelled. They demonstrated that Co-Training achieved perfor-
mances on this problem that was unmatched by standard, fully-supervised machine learning
methods. It is a technique that has industrially proven a reduction of false positive by a
factor 2 to 11 on specific element detection on a video (Levin et al. 2003), and for which
conditions of maximum efficiency it induces were analysed (Balcan and Blum 2005).

3.2.1 Co-Training Principle

When trying to detect VCCs, an important point is that unlabelled commits are unlabelled
not because they are not VCCs, but because it is unknown whether they are VCCs. Arguably,
in any large-enough collection of commits, it is reasonable to assume at least some of them
are actually VCCs.

The insight behind trying Co-Training with VCC detection is the following: By building
two preliminary and independent VCC classifiers, the unlabelled commits predicted to be
VCCs by both classifiers could be used to augment the training set. By repeating this step,
it might be possible to leverage the vast space of unlabelled commits.

3.2.2 Description of the Algorithm

Blum and Mitchell (1998) showed that the co-training algorithm works well if the feature
set division of dataset satisfies two assumptions: (1) each set of features is sufficient for
classification, and (2) the two feature sets of each instance are conditionally independent
given the class.

Both the VCC Features set and the alternate feature set can be split into two subsets of
features: One based on code metrics, and one based on the commit message.

Previous work on security patches detection showed that, for the New Feature set, the
two resulting feature subsets are independent, and thus satisfy the two main assumptions for
Co-training (Sawadogo et al. 2020).

Once these two assumptions are satisfied, the Co-training algorithm considers these two
feature sets as two different, but complementary views. Each of them is used as an input of
one of two classifiers used in Co-training: One focused on code metrics, and the other on
commit messages. The algorithm is given three sets: a positive set, a negative set, and a set
of unlabelled.

As described in Algorithm 1, and shown in Fig. 6, the training process is an iterative
process in which each classifier (h1 and h2 on Fig. 6) is initialised being just given the

(2021) 26:Empir Software Eng 4646 Page 18 of 30



labelled inputs LP, that is used as the ground truth. From the whole set of unlabelled, a
subset U’ is randomly selected. At every round, each classifier is trained on a labelled set
(LP for the first round). Then a number of unlabelled commits from U’ are classified with
those two classifiers. When both classifiers agree on a commit, this commit is added to the
ground truth, i.e., it will be used to augment the training set in the next round. The process
keeps going until we reach a predetermined size of the labelled set.

3.2.3 Implementation

For the implementation of the Co-training, we select two Support Vector Machines (SVM)
(Vapnik 2013) as classification algorithms. We also perform experiments using three different
size limits of the training set: by 1000, 5000 and 10 000 unlabelled commits added.

This variation enables us to compare the effect of this variable in prediction performance.
To respect temporality, the unlabelled commits were all taken before January, 1st 2011, as
was for the original unaltered training set. For both sets of features, the co-training occurs
after the extraction of features. One classifier trains on the code metrics and the other on the
metadata. We finally use, as for the replication, a LibLinear model to classify the commits
of the test set. For the latter values of C is 1 and, still, the weight of the class to 100.

(2021) 26:Empir Software Eng 46 Page 19 of 30 46



Fig. 6 Co-Training (Figure extracted from Sawadogo et al. 2020)

3.2.4 Co-Training Results

Co-Training with VCC Features Performance is improved slightly (cf. Fig. 7 vs Fig. 2)
when Co-Training is used in conjunction with VCC Features. This improvement, however,
does not appear to change with the size increase of the training set (whether 1000 or 10 000).

When testing with the Unlabelled Test, performance drops for all attempts. Therefore,
no improvement can be concluded in this aspect.

Co-Training with New Features Figure 8 presents the results for a Co-Training process
based on New Features. It includes variations for the training set (with 1000 and 10 000
unclassified commits) and, tests with and without the unclassified commits. On testing with-
out the unlabelled Test set, one can conclude that the increase of 1000 unlabelled already
helps perform better than the baseline green curve of Fig. 5. An increase of the dataset by
10 000 is further contributing to detect more VCCs.

3.2.5 Co-Training Analysis

This finding is clear when we consider the unclassified commits, in which cases the
performance metrics dramatically drop. There seems to be an effect, though, for the New
Features when only considering the Ground Truth.

(2021) 26:Empir Software Eng 4646 Page 20 of 30



Fig. 7 Co-Training Performance using VCC Features’ set

4 RelatedWork

The possibility of automatically finding vulnerabilities in code bases has long been identi-
fied by researchers as a worthy investigation target. In this section, we present a selection
of significant prior works that we group by families of approaches.

4.1 Static Analysis for Vulnerability Detection

First released in May 2001, Flawfinder
performs static analysis of C and C++ programs and detects calls to a manually curated

list of sensitive APIs (Wheeler 2001). Examples of such APIs widely recognised as sensitive
are strcpy, random or syslog.

Splint (Larochelle and Evans 2001) is another static security testing tool, which performs
lightweight analyses of ANSI C code and augments the code with annotations that set con-
straints on each C statement. It notably reveals the risks of buffer overflows, and alteration
of the flow of instructions around loops and ifs. Splint does not pretend to be complete nor
sound but a good first pass at a very small cost. It was evaluated on BIND and wu-ftpd and
uncovered a few buffer overflows, both known and by-then-unknown.

Find-Sec-Bugs10 targets Web applications written in Java, and searches for poten-
tial vulnerabilities by matching high-level patterns that model problematic code pieces.
Find-Sec-Bugs was made available to developers through a convenient IDE plugin.

Recently, Arusoaie et al. (2017) compared several open-source, security-oriented, Static
Analysers for C and C++ code. Among the tools compared are:

10https://find-sec-bugs.github.io

(2021) 26:Empir Software Eng 46 Page 21 of 30 46

https://find-sec-bugs.github.io


Fig. 8 Co-Training Performance using New Features set

– Frama-C (Signoles et al. 2012), that leverages Static- and Dynamic-Analysis, Formal
verification, and Testing;

– Clang11, that can find bugs such as memory leaks, ’use after free’ errors, and dangerous
(though valid) type casting;

– Oclint12, that performs analyses of Abstract Syntax Trees to find known patterns of
dangerous code constructs;

– Cppcheck13, that specialises in finding undefined behaviours, and that strives to
produce very few False Positives;

– Infer14, that catches memory safety errors by trying to build formal proofs of programs,
and then interpreting failures of proof as bugs;

– Uno (Holzmann 2002), that offers an approach aiming at detecting a limited number of
errors, but with high precision;

– Sparse, that was developed by Torvalds et al. (2003) specifically for the Linux kernel
and thus can detect low-level errors in (among other things) bitfields operations or
endianness;

– Flint++15, that can detect and warn developers about dangerous coding practices.
– git-vuln-finder16, that is based on C/C++ pattern matching.

11https://clang-analyzer.llvm.org
12http://oclint.org
13http://cppcheck.sourceforge.net
14https://fbinfer.com
15https://github.com/JossWhittle/FlintPlusPlus
16https://github.com/cve-search/git-vuln-finder

(2021) 26:Empir Software Eng 4646 Page 22 of 30

https://clang-analyzer.llvm.org
http://oclint.org
http://cppcheck.sourceforge.net
https://fbinfer.com
https://github.com/JossWhittle/FlintPlusPlus
https://github.com/cve-search/git-vuln-finder


Arusoaie et al. (2017) were able to compare those approaches both quantitatively and
qualitatively, and characterised Frama-C as the most precise approach, Oclint as the tool
uncovering most dangerous behaviours, and Cppcheck as presenting a very low false-positive
rate.

Taint analysis allows to follow the path data travels inside a program. This can
allow uncovering vulnerabilities that would not be detectable by analysing one func-
tion/class/package at a time. Such approaches were proposed by Arzt et al. (2014) for
Android applications in order to locate insecure use of data caused by the interactions of
several software components.

Yamaguchi et al. (2014) demonstrated an approach that combines Abstract Syntax Trees
(AST), Program Dependence Graphs (PDG), and Control Flow Graph (CDG). They were
able to discover 18 new vulnerabilities in the Linux kernel.

A recent implementation was tried by Wang et al. (2016) with BUGRAM that generates
n-gram sequences and considers the least likely as a bug. BUGRAM was run on 16 Java
projects and found 14 confirmed bugs that other state-of-the-art tools were not able to find.

Martin et al. (2005) introduced a query language to search patterns of dangerous use,
such as non-encrypted password hard-disk writing or possibility left for a SQL injection.

Livshits and Lam (2005) presented a framework available as an Eclipse plug-in to per-
form various static analyses. Their approach managed to find 29 security errors, two of
which in widely used Java software: hibernate and the J2EE implementation.

4.2 Vulnerability Detection with Symbolic Execution

Symbolic execution has also long been identified by researchers as a promising technique
to detect vulnerabilities in software. It enables some flexibility on the testing by using
unknown symbolic variables rather than hard-coded-like asserting tests. Symbolic execu-
tion methods were notably experimented in 2008 by the tool KLEE that found 56 new bugs,
including 3 in COREUTILS (Cadar et al. 2008).

A good review of the use of Symbolic execution for software security was published in
2013 by Cadar and Sen (2013).

More recently, Li et al. (2016a) leveraged CIL—a C intermediate language—library to
statically analyze the source code, allowing backward tracing of the sensitive variables.
Then, the instrumented program is passed to a concolic testing engine to verify and report
the existence of vulnerabilities. Their approach focuses on buffer overflows and was report-
edly not able to deal with nested structures in C code, function pointers and pointer’s
pointer.

4.3 Vulnerability Detection with Dynamic Analysis

Another important technique for software security is Dynamic Analysis, where programs
under test are actually run and monitored. Fuzzing, which automatically generates inputs
and tests a program on them, has rapidly come to play a major role in software vulnerabil-
ity detection. Fundamentally, a fuzzer is an infinite loop which mutates an input seed and
launches the target program on the mutated seed. If the target crashes, a bug is detected.
Manual analysis will tell if the bugs is a vulnerability or not. AFL is a popular fuzzer for
C/C++ programs (Zalewski 2017). Recent works (Zhu et al. 2019; Klees et al. 2018) use
it as the reference. AFL instruments the target program to keep track of the coverage. If
a mutated seed increases the coverage, the seed is kept to be mutated further. FuzzIL is a

(2021) 26:Empir Software Eng 46 Page 23 of 30 46



fuzzer for Javascript VM (Groß 2018). Like AFL, it uses coverage to rank seeds. JQF (Pad-
hye et al. 2019) or Kelinci (Kersten and Luckow 2017) are coverage-guided fuzzers to test
Java programs.

Approaches have augmented Symbolic execution with actual execution of parts of pro-
grams, allowing to overcome limitations of symbolic execution. Such hybrid methods are
called concolic, as they mix both concrete and symbolic execution.

MACE (Cho et al. 2011), uses model-inference to direct concolic execution. This
approach improves the exploration of the state-space of programs, thus allowing to find
more vulnerabilities than tools with less coverage.

4.4 Vulnerability Detection with CodeMetadata

Often, code nowadays comes with large amounts of associated metadata, such as bug
tracking and code versioning information.

This metadata was quickly identified as a treasure trove ready to augment vulnerability
detection approaches. In 2005, it was shown by Śliwerski et al. (2005) that changes made
on Fridays to the Mozilla and Eclipse projects were more likely to introduce problems than
the changes made in other days.

Kim et al. (2008) considered change log, author, change date, source code, change delta
and metadata on 12 well-known software projects (Apache HTTP, Bugzilla, Eclipse, Post-
greSQL, etc). They were able to reach an average precision of 0.61 for a recall of 0.6 for
vulnerability introducing commits.

Vulture was demonstrated by Neuhaus et al. (2007). It is able to learn known vulnerabil-
ities to detect new ones. Vulture managed to obtain a 70% precision on the Mozilla project,
while not only detecting vulnerabilities, but also pinpointing their location.

Wijayasekara et al. (2012) proposed to mine bug databases as some of these bugs are only
revealed to be vulnerabilities years after. In another work, this idea was experimented on the
Linux Kernel for data between 2006 and 2011 (Wijayasekara et al. 2014). They reported a
precision of 0.02, but noted that this performance is better than random.

(Meneely et al. 2013) found that, on Apache HTTPD, VCCs were related with bigger
commits as non-VCCwhile tracking 68 vulnerabilities and their 124 manually-found related
VCCs.They note as well that bigger commits were related, generally, with the introduction
of new features.

VulPecker (Li et al. 2016b) chose to focus on patch hunks and code similarity analysis.
It led Li et al. (2016b) to discover 40 vulnerabilities not in the NVD database, 18 of which
were still unpatched.

4.5 Machine Learning Application for Vulnerability Analysis

A large body of work in the literature has proposed to use machine learning to discover
vulnerability patterns in an entire code base, without considering commits individually.
Ghaffarian and Shahriari (2017) provide a thorough literature survey on various approaches
in this direction. One of the key finding reported by the authors is that the field of
vulnerability prediction models was not yet mature.

Literature approaches have employed learning techniques on diverse programming lan-
guages and software systems: Chang et al. (2008) have applied a HMFSM (Heuristic
Maximal Frequent Subgraph Mining) to four C programs (make, openssl, procmail and
amaya). Their approach uses a a mix of static analysis and data mining to extract patterns
that were then associated with their frequency: the more frequent a pattern, the safer it is

(2021) 26:Empir Software Eng 4646 Page 24 of 30



considered. In their evaluation, they managed to find 3800 violations of well-known pat-
terns. Zimmermann et al. (2010) proposed to use a measure of code complexity (described
by McCabe 1976) to predict the presence of vulnerabilities in Windows Vista. Using Lin-
ear Regression, they manage to have a precision below 64% for a relatively low recall of
21% on a ten-fold validation process. Yamaguchi et al. (2013) have presented CHUCKY,
an approach to identify anomalous or missing checks on C programs. It is a combination
of taint analysis and machine learning that results in finding up to 96% of missing checks
by comparing a piece of code to the most similar ones. Scandariato et al. (2014) extracted
text from 182 releases of 20 Android applications to generate feature vectors, using a fea-
ture discretisation method proposed by Kononenko (1995). This approach achieved good
performance for detecting vulnerabilities within a project, but lower performance for inter-
project detection. DEKANT was proposed to generate a model out of sliced pieces of PHP
applications and WordPress plugins (Medeiros et al. 2016). This model, based on a set of
annotated source code, serves as the basis for the discovery of new vulnerabilities.

Researchers have explored various code representations for learning vulnerability prop-
erties. Feng et al. (2016) used machine learning on CFGs. Their tool, Genius, identified 38
potentially vulnerable firmware, 23 of which were manually confirmed. Similarly, Lin et al.
(2018) have tokenised Abstract Syntax Trees (AST) to feed a deep learning classifier (Bi-
LSTM) to obtain a model of vulnerabilities. This model was then applied to a new project
and enabled early vulnerability detection. Recently, Ban et al. (2019) also used Bi-LSTM
on ASTs from C and C++ datasets. In contrast to these works, Alohaly and Takabi (2017)
presented an approach that balances text and structural features. Tested on phpAdmin and
Moodle, their results were slightly below those of an usual bag of words technique.

Other papers focused on the importance of the extracted features. For example, Shin and
Williams (2011) tried to focus on the correlation between code complexity features and the
presence of vulnerabilities. The overall performance was rather low in term of completeness
(letting no vulnerable program pass unflagged (Ghaffarian and Shahriari 2017)) with an
overall precision of 12%, while the recall reached 67% to 81% depending on the project,
respectively Firefox and Wireshark. Though, another paper, namely Moshtari et al. (2013)
replicated this study with much more success using Bayesian Networks (as used by Shin
and Williams (2011)) only focusing on Firefox and adding more complete information they
had on the vulnerabilities through the allocated Common Weakness Enumeration (i.e., the
vulnerability type). They even reached greater success changing either for IBK algorithm
or Random Tree by Random Committee, by reaching a Recall of 92% and a Precision of
98% for the latter case, but still only on Mozilla. On cross-project attempt (adding Eclipse,
Apache Tomcat, Linux kernel 2.6.9 and OpenSCADA) it drops at 32% for the Precision and
7% for the Recall. It is to mention that Mozilla presents a ground truth of on average 2300
vulnerabilities split into 1000 files. Other projects considered on the cross-project analysis
do only so from 12 files (OpenSCADA) to 814 (Eclipse written in Java).

Goseva-Popstojanova and Tyo (2018) investigated what features to consider for vulnera-
bility detection, and concluded that the features do not affect significantly the classification
performance. The best performing algorithm was different depending not only on the
features but more importantly on the dataset.

4.6 Vulnerability Detection at Commit Level

A few articles try to address the issue of automated detection of vulnerabilities at commit
level.

(2021) 26:Empir Software Eng 46 Page 25 of 30 46



Yang et al. (2017) focuses on automatically detecting vulnerability-contributing changes
in the Mozilla Firefox project. The tool extracts features from commits and uses a ran-
dom forests classifier to detect VCCs. By first using an estimated number of potential
VCCs present in the code under analysis, they claim to produce fewer False Positives than
VCCFinder. Sabetta and Bezzi (2018) consider the code modified by a commit as a text doc-
ument, and then leverage Natural Language Processing techniques to feed multiple machine
learning classifiers. One of Wan (2019)’s contribution is to filter commits by excluding or
including those matching a list of keywords. For example, their filtering step can discard
up to 92% of commits, hence vastly reducing the effort needed to analyse the suspicious
commits. However, in each of these works, the artefact are not available so, cannot compare
against neither VCCFinder nor our baseline approach. Moreover, being unavailable, these
approaches cannot be used as baseline for the research community.

Other works have directly mentioned and inherited from VCCFinder. Directly trying to
improve on VCCFinder, in a 5 pages technical report, Yamamoto (2018) aims at decreas-
ing the number of false-positive results yielded by VCCFinder. To that end, he proposes
to separate additions from deletions in the commits to extract code-related features. The
results presented in this technical paper are claimed to be slightly better than those of
VCCFinder. However, being yet unpublished, and by only proposing a marginal variation
with VCCFinder, we opted to only consider VCCFinder for our reproduction/replication
work. Zhou and Sharma (2017) compare different algorithms for automatically discover-
ing security issues. Albeit mentioning that VCCFinder uses LinearSVM, they only consider
information from the commit message, gathered using regular expressions, and from bug
reports. In opposition with VCCFinder and our baseline approach no information is taken
from the patch code itself. The experimental results provided in this paper do not allow
us to clearly compare the performance of their approach to that of VCCFinder, nor to our
baseline.

Finally, even if they do not propose an ML based approach to detect vulnerability at
commit level, Hogan et al. (2019) address the issue of the reliability of the labelled data
taking VCCFinder as an example. They simplified the version of the project scrapper avail-
able online for VCCFinder, re-adapted the code to make it work regarding their focus and
manually analysed the commits considered as VCCs. They conclude that only 58% of the
commits that would be considered as ground truth, if they relied on VCCFinder’s technique,
are actually contributing to a vulnerability. This is an issue we did not have to address since
we attempted to replicate the performances presented in VCCFinder original paper using
data provided by the authors, not to check the validity of the ground truth construction
method. The issue raised by Hogan et al. (2019) underlines an important problem for the
field that had already been mentioned by Goseva-Popstojanova and Tyo (2018).

5 Conclusion

Vulnerability detection is a key challenge in software development projects. Ideally, vul-
nerabilities should be discovered when they are being introduced, i.e., by flagging the
suspicious vulnerability-contributing commits. VCCFinder, presented in 2015 at the CCS
flagship security conference held the promise of detecting vulnerability-contributing com-
mits at scale using machine learning. Since the research direction that this approach initiated
has not boomed since then, we have proposed to revisit it. First, we attempted (and failed)
to replicate the approach and to replicate the results. Then, we propose to build an alterna-
tive approach for the detection of vulnerability-contributing commits using a new feature

(2021) 26:Empir Software Eng 4646 Page 26 of 30



sets (whose extraction is clearly replicable) and a semi-supervised learning technique based
on co-training to account for the existence of a large set of unlabelled commits. Our exper-
imental results indicate that the proposed approach does not yield as good performance as
the ones reported in the VCCFinder publication. Nevertheless, it constitutes a strong and
reproducible baseline for the research community. Our artefacts are publicly available at
https://github.com/Trustworthy-Software/RevisitingVCCFinder.

Acknowledgments We thank all the anonymous reviewers for their insightful comments from which this
work decisively benefited. We also wish to thank Dr Alexandre Bartel for his continuous advice and support
relative to vulnerability-detection tools.

This work was partly supported (1) by the Luxembourg National Research Fund (FNR), under project
CHARACTERIZE C17/IS/11693861, (2) by the SPARTA project, which has received funding from the Euro-
pean Union’s Horizon 2020 research and innovation program under grant agreement No 830892, and (3)
by the Luxembourg Ministry of Foreign and European Affairs through their Digital4Development (D4D)
portfolio under project LuxWAyS.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Alohaly M, Takabi H (2017) When do changes induce software vulnerabilities? In: 2017 IEEE 3rd Interna-
tional conference on collaboration and internet computing (CIC). pp 59–66. https://doi.org/10.1109/CIC.
2017.00020

Arusoaie A, Ciobâca S, Craciun V, Gavrilut D, Lucanu D (2017) A comparison of open-source static analysis
tools for vulnerability detection in c/c++ code. In: 2017 19th International symposium on symbolic and
numeric algorithms for scientific computing (SYNASC), IEEE. pp 161–168

Arzt S, Rasthofer S, Fritz C, Bodden E, Bartel A, Klein J, Le Traon Y, Octeau D, McDaniel P (2014)
Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware tain analysis for android
apps. In: Proceedings of the 35th ACM SIGPLAN Conference on programming language design and
implementation, association for computing machinery, New York, NY, USA, PLDI ’14, pp 259–269.
https://doi.org/10.1145/2594291.2594299

Association for Computer Machinery (2020) Artifact review and badging. https://www.acm.org/publications/
policies/artifact-review-badging-current, accessed November27, 2020

Balcan MF, Blum A (2005) A pac-style model for learning from labeled and unlabeled data. In: International
conference on computational learning theory, Springer. pp 111–126

Ban X, Liu S, Chen C, Chua C (2019) A performance evaluation of deep-learnt features for software
vulnerability detection. Concurr Comput Pract Exp 31(19):e5103. https://doi.org/10.1002/cpe.5103

Blum A, Mitchell T (1998) Combining labeled and unlabeled data with co-training. In: Proceedings of the
Eleventh annual conference on computational learning theory, association for computing machinery,
New York, NY, USA, COLT’ 98, pp 92–100. https://doi.org/10.1145/279943.279962

Cadar C, Sen K (2013) Symbolic execution for software testing: Three decades later. Commun ACM
56(2):82–90. https://doi.org/10.1145/2408776.2408795

Cadar C, Dunbar D, Engler D (2008) Klee: Unassisted and automatic generation of high-coverage tests for
complex systems programs. In: Proceedings of the 8th USENIX Conference on operating systems design
and implementation, USENIX Association, USA, OSDI’08, pp 209–224

Castelli V, Cover TM (1995) On the exponential value of labeled samples. Pattern Recogn. Lett. 16(1):105–
111

Chang R, Podgurski A, Yang J (2008) Discovering neglected conditions in software by mining dependence
graphs. IEEE Trans. Softw. Eng. 34(5):579–596. https://doi.org/10.1109/TSE.2008.24

(2021) 26:Empir Software Eng 46 Page 27 of 30 46

https://github.com/Trustworthy-Software/RevisitingVCCFinder
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/CIC.2017.00020
https://doi.org/10.1109/CIC.2017.00020
https://doi.org/10.1145/2594291.2594299
https://www.acm.org/publications/policies/artifact-review-bad ging-current
https://www.acm.org/publications/policies/artifact-review-bad ging-current
https://doi.org/10.1002/cpe.5103
https://doi.org/10.1145/279943.279962
https://doi.org/10.1145/2408776.2408795
https://doi.org/10.1109/TSE.2008.24


Cho CY, Babiundefined D, Poosankam P, Chen KZ, Wu EX, Song D (2011) Mace: Model-inference-assisted
concolic exploration for protocol and vulnerability discovery. In: Proceedings of the 20th USENIX
Conference on security, USENIX Association, USA, SEC’11. pp 10

Fan RE, Chang KW, Hsieh CJ, Wang XR, Lin CJ (2008) Liblinear: A library for large linear classification. J
Mach Learn Res 9:1871–1874

Feng Q, Zhou R, Xu C, Cheng Y, Testa B, Yin H (2016) Scalable graph-based bug search for
firmware images. In: Proceedings of the ACM SIGSAC Conference on computer and communica-
tions security, association for computing machinery, New York, NY, USA, CCS ’16, pp 480–491.
https://doi.org/10.1145/2976749.2978370

Ghaffarian SM, Shahriari HR (2017) Software vulnerability analysis and discovery using machine-learning
and data-mining techniques: A survey. ACM Comput Surv (CSUR) 50(4):1–36

Goseva-Popstojanova K, Tyo J (2018) Identification of security related bug reports via text mining using
supervised and unsupervised classification. In: 2018 IEEE International conference on software quality,
reliability and security (QRS), pp 344–355. https://doi.org/10.1109/QRS.2018.00047

Groß S (2018) Fuzzil: Coverage guided fuzzing for javascript engines. Master’s thesis, Karlsruhe Institute of
Technology

Hogan K, Warford N, Morrison R, Miller D, Malone S, Purtilo J (2019) The challenges of labeling
vulnerability-contributing commits. In: 2019 IEEE International symposium on software reliability
engineering workshops (ISSREW). IEEE, pp 270–275

Holzmann GJ (2002) Uno: Static source code checking for userdefined properties. In: 6th World conference
on integrated design and process technology, IDPT ’02

Hsu CW, Chang CC, Lin CJ (2003) A practical guide to support vector classification. Tech. rep., Department
of Computer Science, National Taiwan University. http://www.csie.ntu.edu.tw/cjlin/papers.html

Kersten R, Luckow KS (2017) Poster: Afl-based fuzzing for java with kelinci. In: ACM Conference on
computer and communications security

Kim S, Whitehead EJ Jr, Zhang Y (2008) Classifying software changes: Clean or buggy? IEEE Trans. Softw.
Eng. 34(2):181–196. https://doi.org/10.1109/TSE.2007.70773

Klees G, Ruef A, Cooper B, Wei S, Hicks M (2018) Evaluating fuzz testing. In: Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security, pp 2123–2138

Kononenko I (1995) On biases in estimating multi-valued attributes. In: Proceedings of the 14th International
joint conference on artificial intelligence - Volume 2, Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, IJCAI’95, pp 1034–1040

Krsul IV (1998) Software vulnerability analysis. Purdue University West Lafayette, IN
Larochelle D, Evans D (2001) Statically detecting likely buffer overflow vulnerabilities. In: Proceedings

of the 10th Conference on USENIX security symposium - Volume 10, USENIX Association, USA,
SSYM’01

Levin A, Viola P, Freund Y (2003) Unsupervised improvement of visual detectors using co-training. In:
IEEE, p 626

Li H, Oh J, Oh H, Lee H (2016a) Automated source code instrumentation for verifying potential vulnera-
bilities. In: Hoepman JH, Katzenbeisser S (eds) ICT Systems security and privacy protection, Springer
International Publishing, Cham. pp 211–226

Li Z, Zou D, Xu S, Jin H, Qi H, Hu J (2016b) Vulpecker: An automated vulnerability detection system
based on code similarity analysis. In: Proceedings of the 32nd Annual conference on computer security
applications, association for computing machinery, New York, NY, USA, ACSAC ’16, pp 201–213.
https://doi.org/10.1145/2991079.2991102

Lin G, Zhang J, Luo W, Pan L, Xiang Y, De Vel O, Montague P (2018) Cross-project transfer rep-
resentation learning for vulnerable function discovery. IEEE Trans Industr Inform 14(7):3289–3297.
https://doi.org/10.1109/TII.2018.2821768

Livshits VB, LamMS (2005) Finding security vulnerabilities in java applications with static analysis. In: Pro-
ceedings of the 14th Conference on USENIX security symposium - Volume 14, USENIX Association,
USA, SSYM’05, p 18

Śliwerski J, Zimmermann T, Zeller A (2005) When do changes induce fixes? In: Proceedings of the 2005
International workshop on mining software repositories, association for computing machinery, New
York, NY, USA, MSR ’05. p 1–5. https://doi.org/10.1145/1083142.1083147

Martin M, Livshits B, Lam MS (2005) Finding application errors and security flaws using pql: A program
query language. In: Proceedings of the 20th Annual ACM SIGPLAN conference on object-oriented
programming, systems, languages, and applications, association for computing machinery, New York,
NY, USA, OOPSLA ’05, pp 365–383. https://doi.org/10.1145/1094811.1094840

McCabe TJ (1976) A complexity measure. IEEE Trans Softw Eng SE-2(4):308–320. https://doi.org/10.1109/
TSE.1976.233837

(2021) 26:Empir Software Eng 4646 Page 28 of 30

https://doi.org/10.1145/2976749.2978370
https://doi.org/10.1109/QRS.2018.00047
http://www.csie.ntu.edu.tw/ cjlin/papers.html
https://doi.org/10.1109/TSE.2007.70773
https://doi.org/10.1145/2991079.2991102
https://doi.org/10.1109/TII.2018.2821768
https://doi.org/10.1145/1083142.1083147
https://doi.org/10.1145/1094811.1094840
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1109/TSE.1976.233837


Medeiros I, Neves N, Correia M (2016) Dekant: A static analysis tool that learns to detect web appli-
cation vulnerabilities. In: Proceedings of the 25th International symposium on software testing and
analysis, association for computing machinery, New York, NY, USA, ISSTA, vol 2016, pp 1–11.
https://doi.org/10.1145/2931037.2931041

Meneely A, Srinivasan H, Musa A, Tejeda AR, Mokary M, Spates B (2013) When a patch goes bad: Explor-
ing the properties of vulnerability-contributing commits. In: 2013 ACM / IEEE International symposium
on empirical software engineering and measurement. pp 65–74. https://doi.org/10.1109/ESEM.2013.19

Moshtari S, Sami A, Azimi M (2013) Using complexity metrics to improve software security. Comput Fraud
Secur 2013(5):8–17

Neuhaus S, Zimmermann T, Holler C, Zeller A (2007) Predicting vulnerable software components. In: Pro-
ceedings of the 14th ACM Conference on Computer and Communications Security, Association for
Computing Machinery, New York, NY, USA, CCS ’07, pp 529–540. https://doi.org/10.1145/1315245.
1315311

Padhye R, Lemieux C, Sen K (2019) Jqf: coverage-guided property-based testing in java. pp 398–401.
https://doi.org/10.1145/3293882.3339002

Perl H, Dechand S, Smith M, Arp D, Yamaguchi F, Rieck K, Fahl S, Acar Y (2015) Vccfinder: Finding
potential vulnerabilities in open-source projects to assist code audits. In: Proceedings of the 22nd ACM
SIGSAC Conference on computer and communications security, association for computing machinery,
New York, NY, USA, CCS ’15, pp 426–437. https://doi.org/10.1145/2810103.2813604

Rieck K, Wressnegger C, Bikadorov A (2012) Sally: A tool for embedding strings in vector spaces. J Mach
Learn Res 13(1):3247–3251

Sabetta A, Bezzi M (2018) A practical approach to the automatic classification of security-relevant commits.
In: 2018 IEEE International conference on software maintenance and evolution (ICSME). pp 579–582,.
https://doi.org/10.1109/ICSME.2018.00058

Sawadogo AD, Bissyandé TF, Moha N, Allix K, Klein J, Li L, Le Traon Y (2020) Learning to catch security
patches. arXiv:2001.09148

Scandariato R, Walden J, Hovsepyan A, Joosen W (2014) Predicting vulnerable software components via
text mining. IEEE Trans. Softw. Eng. 40(10):993–1006. https://doi.org/10.1109/TSE.2014.2340398

Shin Y, Williams L (2011) An initial study on the use of execution complexity metrics as indicators of
software vulnerabilities. In: Proceedings of the 7th International workshop on software engineering for
secure systems, pp 1–7

Signoles J, Cuoq P, Kirchner F, Kosmatov N, Prevosto V, Yakobowski B (2012) Frama-c: a software analysis
perspective, vol 27. https://doi.org/10.1007/s00165-014-0326-7

Torvalds L, Triplett J, Li C, Oostenryck LV (2003) Sparse - a semantic parser for c. https://sparse.wiki.kernel.
org/index.php/Main Page accessed january 2020

Vapnik V (2013) The nature of statistical learning theory. Springer science & business media, New York
Wan L (2019) Automated vulnerability detection system based on commit messages. PhD thesis
Wang S, Chollak D, Movshovitz-Attias D, Tan L (2016) Bugram: Bug detection with n-gram language

models. In: Proceedings of the 31st IEEE/ACM International conference on automated software
engineering, association for computing machinery, New York, NY, USA, ASE 2016, pp 708–719.
https://doi.org/10.1145/2970276.2970341

Wheeler DA (2001) Flawfinder. https://dwheeler.com/flawfinder/, accessed April 2020
Wijayasekara D, Manic M, Wright JL, McQueen M (2012) Mining bug databases for unidentified soft-

ware vulnerabilities. In: 2012 5th International conference on human system interactions. pp 89–96.
https://doi.org/10.1109/HSI.2012.22

Wijayasekara D, Manic M, McQueen M (2014) Vulnerability identification and classification via text mining
bug databases. In: IECON 2014 - 40th Annual Conference of the IEEE Industrial Electronics Society,
pp 3612–3618. https://doi.org/10.1109/IECON.2014.7049035

Yamaguchi F, Wressnegger C, Gascon H, Rieck K (2013) Chucky: Exposing missing checks in source code
for vulnerability discovery. In: Proceedings of the 2013 ACM SIGSAC Conference on computer &
communications security, association for computing machinery, New York, NY, USA, CCS ’13, pp 499–
510. https://doi.org/10.1145/2508859.2516665

Yamaguchi F, Golde N, Arp D, Rieck K (2014) Modeling and discovering vulnerabilities with code property
graphs. https://doi.org/10.1109/SP.2014.44

Yamamoto K (2018) Vulnerability detection in source code based on git history. https://doi.org/10.13140/
RG.2.2.28338.09922. (Unpublished)

Yang L, Li X, Yu Y (2017) Vuldigger: A just-in-time and cost-aware tool for digging vulnerability-
contributing changes. In: GLOBECOM 2017 - 2017 IEEE Global communications conference, pp 1–7.
https://doi.org/10.1109/GLOCOM.2017.8254428

Zalewski M (2017) American fuzzy lop. http://lcamtuf.coredump.cx/afl/

(2021) 26:Empir Software Eng 46 Page 29 of 30 46

https://doi.org/10.1145/2931037.2931041
https://doi.org/10.1109/ESEM.2013.19
https://doi.org/10.1145/1315245.1315311
https://doi.org/10.1145/1315245.1315311
https://doi.org/10.1145/3293882.3339002
https://doi.org/10.1145/2810103.2813604
https://doi.org/10.1109/ICSME.2018.00058
http://arxiv.org/abs/2001.09148
https://doi.org/10.1109/TSE.2014.2340398
https://doi.org/10.1007/s00165-014-0326-7
https://sparse.wiki.kernel.org/index.php/Main_Page
https://sparse.wiki.kernel.org/index.php/Main_Page
https://doi.org/10.1145/2970276.2970341
https://dwheeler.com/flawfinder/
https://doi.org/10.1109/HSI.2012.22
https://doi.org/10.1109/IECON.2014.7049035
https://doi.org/10.1145/2508859.2516665
https://doi.org/10.1109/SP.2014.44
https://doi.org/10.13140/RG.2.2.28338.09922
https://doi.org/10.13140/RG.2.2.28338.09922
https://doi.org/10.1109/GLOCOM.2017.8254428
http://lcamtuf.coredump.cx/afl/


Zhang T, Oles F (2000) The value of unlabeled data for classification problems
Zhou Y, Sharma A (2017) Automated identification of security issues from commit messages and

bug reports. In: Proceedings of the 2017 11th Joint meeting on foundations of software engineer-
ing, association for computing machinery, New York, NY, USA ESEC/FSE 2017, pp 914–919.
https://doi.org/10.1145/3106237.3117771

Zhu X, Feng X, Jiao T, Wen S, Xiang Y, Camtepe S, Xue J (2019) A feature-oriented corpus for
understanding, evaluating and improving fuzz testing, pp 658–663

Zimmermann T, Nagappan N, Williams L (2010) Searching for a needle in a haystack: Predicting secu-
rity vulnerabilities for windows vista. In: 2010 Third international conference on software testing,
verification and validation, pp 421–428. https://doi.org/10.1109/ICST.2010.32

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

(2021) 26:Empir Software Eng 4646 Page 30 of 30

https://doi.org/10.1145/3106237.3117771
https://doi.org/10.1109/ICST.2010.32

	Revisiting the VCCFinder approach for the identification of vulnerability-contributing commits
	Abstract
	Introduction
	This paper

	Replication Study of VCCFinder
	Datasets
	Datasets - VCCFinder Paper
	Datasets - Availability
	Datasets - Our Replication Study
	Use of the data sets
	Unlabelled Train Replication
	Unlabelled Replication
	Ground Truth Replication


	Features
	Features - VCCFinder Paper
	Features - Availability
	Features - Our Replication Study

	Machine Learning Algorithm
	Machine Learning Algorithm - VCCFinder Paper
	Machine Learning Algorithm - VCCFinder Availability
	Machine Learning Algorithm - Our Replication Study

	Results
	VCCFinder Paper
	Our Replication Study
	Ground Truth Replication
	Unlabelled Replication
	Unlabelled Train Replication

	Parameters Exploration
	Exploration over parameter C
	Exploration over class weight parameter
	Exploration with other algorithms


	Analysis

	Research for Improvement
	Using an Alternate Feature Set
	New Feature Set
	Results

	Adding Co-Training
	Co-Training Principle
	Description of the Algorithm
	Implementation
	Co-Training Results
	Co-Training with VCC Features
	Co-Training with New Features

	Co-Training Analysis


	Related Work
	Static Analysis for Vulnerability Detection
	Vulnerability Detection with Symbolic Execution
	Vulnerability Detection with Dynamic Analysis
	Vulnerability Detection with Code Metadata
	Machine Learning Application for Vulnerability Analysis
	Vulnerability Detection at Commit Level

	Conclusion
	References




